Uncommon Entities, Uncommon Challenges: A Review of Rare Plasma Cell Disorders
Abstract
1. Introduction
2. IgD Multiple Myeloma
3. IgE Multiple Myeloma
4. IgM Multiple Myeloma
5. Non-Secretory Multiple Myeloma (NSMM)
6. Plasma Cell Leukemia (PCL)
7. Heavy Chain Disease (HCD)
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soh, K.T.; Tario, J.D., Jr.; Wallace, P.K. Diagnosis of Plasma Cell Dyscrasias and Monitoring of Minimal Residual Disease by Multiparametric Flow Cytometry. Clin. Lab. Med. 2017, 37, 821–853. [Google Scholar] [CrossRef] [PubMed]
- Barlogie, B.; Alexanian, R.; Jagannath, S. Plasma cell dyscrasias. JAMA 1992, 268, 2946–2951. [Google Scholar] [CrossRef]
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014, 15, e538–e548. [Google Scholar] [CrossRef]
- Zhuge, L.; Lin, X.; Fan, Z.; Jia, M.; Lin, C.; Zhu, M.; Teng, H.; Chen, G. Global, regional and national epidemiological trends of multiple myeloma from 1990 to 2021: A systematic analysis of the Global Burden of Disease study 2021. Front. Public Health 2025, 13, 1527198. [Google Scholar] [CrossRef] [PubMed]
- Elsabah, H.; El Omri, H.; Habas, E.; Taha, R.Y.; ElKourashy, S.A.; Ibrahim, F.; Nashwan, A.J.; Kassem, N.; Ojha, L.; Singh, R.; et al. Real world evidence of epidemiological trends, clinical presentation, and prognostic outcomes of multiple myeloma (2007–2021). Front. Med. 2024, 11, 1338552. [Google Scholar] [CrossRef]
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef] [PubMed]
- Intra, J.; Pezzatti, S.; Brivio, R.; Carpenedo, M.; Romano, R.; Spinoni, N.; Casati, M. Characteristics of 15 Subjects Affected by IgD Multiple Myeloma and the Key Role of the Laboratory in Diagnosis: A Retrospective Study Report and Literature Review. Int. J. Transl. Med. 2024, 4, 498–504. [Google Scholar] [CrossRef]
- Selene, I.I.; Jose, J.A.; Khalil, M.J.; Faisal, M.S.; Malik, M.N. Presentation Patterns, Diagnostic Markers, Management Strategies, and Outcomes of IgD Multiple Myeloma: A Systematic Review of Literature. Cureus 2019, 11, e4011. [Google Scholar] [CrossRef]
- Pandey, S.; Kyle, R.A. Unusual myelomas: A review of IgD and IgE variants. Oncology 2013, 27, 798–803. [Google Scholar]
- Agbuduwe, C.; Iqbal, G.; Cairns, D.; Menzies, T.; Dunn, J.; Gregory, W.; Kaiser, M.; Owen, R.; Pawlyn, C.; Child, J.A.; et al. Clinical characteristics and outcomes of IgD myeloma: Experience across UK national trials. Blood Adv. 2022, 6, 5113–5123. [Google Scholar] [CrossRef]
- Zagouri, F.; Kastritis, E.; Symeonidis, A.S.; Giannakoulas, N.; Katodritou, E.; Delimpasi, S.; Repousis, P.; Terpos, E.; Dimopoulos, M.A. Immunoglobulin D myeloma: Clinical features and outcome in the era of novel agents. Eur. J. Haematol. 2014, 92, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Li, F.; Song, P.; Zhou, X.; An, Z.; Mei, J.; Shao, J.; Li, H.; Wang, X.; Guo, X.; et al. Poor outcomes of immunoglobulin D multiple myeloma patients in the era of novel agents: A single-center experience. Cancer Commun. 2019, 39, 51. [Google Scholar] [CrossRef]
- Li, Y.; Cai, Z. Clinical characteristics and survival of patients with IgD multiple myeloma. Blood Sci. 2021, 3, 57–58. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, C.X.; Li, Z.L.; Gong, M.; Ma, Y.G. Detection of intracellular IgD using flow cytometry could be a novel and supplementary method to diagnose IgD multiple myeloma. BMC Cancer 2018, 18, 650. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Li, H.; Zhang, Y.; Xia, C.; Wang, M.; Jia, Y.; Shang, J.; Zhao, Z. Renal insufficiency predicts worse prognosis in newly diagnosed IgD multiple myeloma patients. Front. Oncol. 2022, 12, 1012889. [Google Scholar] [CrossRef]
- Liu, J.; Hu, X.; Jia, Y.; Lu, J.; Lee, J.H.; Kim, K.; Chen, W.; Liu, A.; Liu, Y.; Chen, Q.; et al. Clinical features and survival outcomes in IgD myeloma: A study by Asia Myeloma Network (AMN). Leukemia 2021, 35, 1797–1802. [Google Scholar] [CrossRef] [PubMed]
- Nafría Jiménez, B.; Oliveros Conejero, R. IgE multiple myeloma: Detection and follow-up. Adv. Lab. Med. 2022, 3, 79–90. [Google Scholar] [CrossRef]
- Wang, M.L.; Huang, Q.; Yang, T.X. IgE myeloma with elevated level of serum CA125. J. Zhejiang Univ. Sci. B 2009, 10, 559–562. [Google Scholar] [CrossRef]
- Galakhoff, N.; Leven, C.; Eveillard, J.R.; Tempescul, A.; Kerspern, H.; Aubron, C.; Buors, C.; Lippert, É.; Carré, J.L.; Padelli, M. A case of IgE myeloma transformed into IgE-producing plasma cell leukaemia. Biochem. Med. 2020, 30, 010801. [Google Scholar] [CrossRef]
- Proctor, S.J.; Chawla, S.L.; Bird, A.G.; Stephenson, J. Hyperviscosity syndrome in IgE myeloma. Br. Med. J. (Clin. Res. Ed.) 1984, 289, 1112. [Google Scholar] [CrossRef]
- Weiner, E.; DiCamelli, R.; Showel, J.; Osmand, A.P.; Sassetti, R.J.; Gewurz, H. IgE myeloma presenting with classical myeloma features. J. Allergy Clin. Immunol. 1976, 58, 373–380. [Google Scholar] [CrossRef]
- Bakkus, M.H.; Schots, R.; Gomez La Fuente, P.B.; Van Riet, I.; Thielemans, K.; De Waele, M.; Van Camp, B. Clonally related IgA- and IgE-secreting plasma cells in a myeloma patient. Eur. J. Haematol. 2000, 65, 348–355. [Google Scholar] [CrossRef]
- Altinier, S.; Barberio, G.; Varagnolo, M.; Zaninotto, M.; Furlan, A.; Caberlotto, L.; Plebani, M. An IgE multiple myeloma: Contradictory findings in clinical laboratory testing. Clin. Chim. Acta 2013, 425, 114–116. [Google Scholar] [CrossRef] [PubMed]
- Vecchione, A.; Devlin, J.C.; Tasker, C.; Ramnarayan, V.R.; Haase, P.; Conde, E.; Srivastava, D.; Atwal, G.S.; Bruhns, P.; Murphy, A.J.; et al. IgE plasma cells are transcriptionally and functionally distinct from other isotypes. Sci. Immunol. 2024, 9, eadm8964. [Google Scholar] [CrossRef] [PubMed]
- Kehl, N.; Kilian, M.; Michel, J.; Wagner, T.R.; Uhrig, S.; Brobeil, A.; Sester, L.S.; Blobner, S.; Steiger, S.; Hundemer, M.; et al. IgE type multiple myeloma exhibits hypermutated phenotype and tumor reactive T cells. J. Immunother. Cancer 2022, 10, e005815. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, B.; Yanagihara, R.; Cornbleet, P.J. IgM myeloma: Case report with immunophenotypic profile. Am. J. Hematol. 1998, 59, 302–308. [Google Scholar] [CrossRef]
- Bonilla-Valentín, F.J.; Cerra, J.; Cáceres-Perkins, W.; Alsina, M. Case Report of IgM Multiple Myeloma: Diagnosing a Rare Hematologic Entity. Cancer Control 2018, 25, 1073274817744448. [Google Scholar] [CrossRef]
- Castillo, J.J.; Jurczyszyn, A.; Brozova, L.; Crusoe, E.; Czepiel, J.; Davila, J.; Dispenzieri, A.; Eveillard, M.; Fiala, M.A.; Ghobrial, I.M.; et al. IgM myeloma: A multicenter retrospective study of 134 patients. Am. J. Hematol. 2017, 92, 746–751. [Google Scholar] [CrossRef]
- Schuster, S.R.; Rajkumar, S.V.; Dispenzieri, A.; Morice, W.; Aspitia, A.M.; Ansell, S.; Kyle, R.; Mikhael, J. IgM multiple myeloma: Disease definition, prognosis, and differentiation from Waldenstrom’s macroglobulinemia. Am. J. Hematol. 2010, 85, 853–855. [Google Scholar] [CrossRef]
- Feyler, S.; O’Connor, S.J.; Rawstron, A.C.; Subash, C.; Ross, F.M.; Pratt, G.; Drayson, M.T.; Ashcroft, J.; Cook, G.; Owen, R.G. IgM myeloma: A rare entity characterized by a CD20-CD56-CD117- immunophenotype and the t(11;14). Br. J. Haematol. 2008, 140, 547–551. [Google Scholar] [CrossRef]
- Willenbacher, W.; Willenbacher, E.; Brunner, A.; Manzl, C. Improved accuracy of discrimination between IgM multiple myeloma and Waldenström macroglobulinaemia by testing for MYD88 L265P mutations. Br. J. Haematol. 2013, 161, 902–904. [Google Scholar] [CrossRef]
- Elba, S.; Castellino, A.; Soriasio, R.; Castellino, C.; Bonferroni, M.; Mattei, D.; Strola, G.; Drandi, D.; Mordini, N.; Foglietta, M.; et al. Immunoglobulin M (IgM) multiple myeloma versus Waldenström macroglobulinemia: Diagnostic challenges and therapeutic options: Two case reports. J. Med. Case Rep. 2020, 14, 75. [Google Scholar] [CrossRef] [PubMed]
- Willenbacher, E.; Erdel, M.; Strasser, U.; Gastl, G.; Schmidt, S.; Gunsilius, E.; Willenbacher, W. IgM myeloma: More on a rare entity. Br. J. Haematol. 2008, 143, 146–148. [Google Scholar] [CrossRef] [PubMed]
- Tahan, I.; Seale, J.; Edwards, D. IgM multiple myeloma presenting with spinal cord compression caused by a plasmacytoma: A case report. Cases J. 2008, 1, 207. [Google Scholar] [CrossRef]
- Reece, D.E.; Vesole, D.H.; Shrestha, S.; Zhang, M.J.; Pérez, W.S.; Dispenzieri, A.; Milone, G.A.; Abidi, M.; Atkins, H.; Bashey, A.; et al. Outcome of patients with IgD and IgM multiple myeloma undergoing autologous hematopoietic stem cell transplantation: A retrospective CIBMTR study. Clin. Lymphoma Myeloma Leuk. 2010, 10, 458–463. [Google Scholar] [CrossRef]
- Corso, A.; Mangiacavalli, S. Non-Secretory Myeloma: Ready for a new Definition? Mediterr. J. Hematol. Infect. Dis. 2017, 9, e2017053. [Google Scholar] [CrossRef]
- Lonial, S.; Kaufman, J.L. Non-secretory myeloma: A clinician’s guide. Oncology 2013, 27, 924–928, 930. [Google Scholar]
- Chawla, S.S.; Kumar, S.K.; Dispenzieri, A.; Greenberg, A.J.; Larson, D.R.; Kyle, R.A.; Lacy, M.Q.; Gertz, M.A.; Rajkumar, S.V. Clinical course and prognosis of non-secretory multiple myeloma. Eur. J. Haematol. 2015, 95, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, M.A.; Kastritis, E.; Terpos, E. Non-secretory myeloma: One, two, or more entities? Oncology 2013, 27, 930–932. [Google Scholar]
- Charliński, G.; Jurczyszyn, A. Non-secretory multiple myeloma: Diagnosis and management. Adv. Clin. Exp. Med. 2022, 31, 95–100. [Google Scholar] [CrossRef]
- Migkou, M.; Avivi, I.; Gavriatopoulou, M.; Cohen, Y.C.; Fotiou, D.; Kanellias, N.; Ziogas, D.; Eleutherakis-Papaiakovou, E.; Terpos, E.; Roussou, M.; et al. Clinical characteristics and outcomes of oligosecretory and non-secretory multiple myeloma. Ann. Hematol. 2020, 99, 1251–1255. [Google Scholar] [CrossRef] [PubMed]
- Mahto, M.; Kumar, A.; Rai, N.; Kumar, V.; Kumar, S.; Kumar, T.; Sinha, R.; Singh, P. The Missing M Band: Is it Really Non Secretory Multiple Myeloma? EJIFCC 2025, 36, 74–82. [Google Scholar] [PubMed]
- Ouzzif, Z.; Eddair, Y.; Laassara, W.; El Maaroufi, H.; Mahtat, E.M. Non-Secretory Multiple Myeloma: A New Observation and Review of the Literature. Cureus 2024, 16, e54479. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Cortés, A.K.; Olivares-Gazca, J.C.; Cantero-Fortiz, Y.; Vallejo-Villalobos, M.F.; Ruiz-Delgado, G.J.; Sánchez-Sosa, S.; Ruiz-Argüelles, G.J. True non-secretory multiple myeloma: An infrequent variant. Rev. Hematol. 2019, 20, 54–58. [Google Scholar]
- Nandakumar, B.; Kumar, S.K.; Dispenzieri, A.; Buadi, F.K.; Dingli, D.; Lacy, M.Q.; Hayman, S.R.; Kapoor, P.; Leung, N.; Fonder, A.; et al. Cytogenetic Features and Clinical Outcomes of Patients With Non-secretory Multiple Myeloma in the Era of Novel Agent Induction Therapy. Clin. Lymphoma Myeloma Leuk. 2020, 20, 53–56. [Google Scholar] [CrossRef]
- Albarracin, F.; Fonseca, R. Plasma cell leukemia. Blood Rev. 2011, 25, 107–112. [Google Scholar] [CrossRef]
- Gundesen, M.T.; Lund, T.; Moeller, H.E.H.; Abildgaard, N. Plasma Cell Leukemia: Definition, Presentation, and Treatment. Curr. Oncol. Rep. 2019, 21, 8. [Google Scholar] [CrossRef]
- van de Donk, N.W.; Lokhorst, H.M.; Anderson, K.C.; Richardson, P.G. How I treat plasma cell leukemia. Blood 2012, 120, 2376–2389. [Google Scholar] [CrossRef]
- Fernández de Larrea, C.; Kyle, R.A.; Durie, B.G.; Ludwig, H.; Usmani, S.; Vesole, D.H.; Hajek, R.; San Miguel, J.F.; Sezer, O.; Sonneveld, P.; et al. Plasma cell leukemia: Consensus statement on diagnostic requirements, response criteria and treatment recommendations by the International Myeloma Working Group. Leukemia 2013, 27, 780–791. [Google Scholar] [CrossRef]
- Gertz, M.A.; Buadi, F.K. Plasma cell leukemia. Haematologica 2010, 95, 705–707. [Google Scholar] [CrossRef]
- Naseem, S.; Kaur, S.; Gupta, R.; Kashyap, R.; Nityanand, S. Plasma cell leukemia: Case series from a tertiary center with review of literature. Indian J. Hematol. Blood Transfus. 2012, 28, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Avet-Loiseau, H.; Roussel, M.; Campion, L.; Leleu, X.; Marit, G.; Jardel, H.; Dib, M.; Decaux, O.; Lamy, T.; Tiab, M.; et al. Cytogenetic and therapeutic characterization of primary plasma cell leukemia: The IFM experience. Leukemia 2012, 26, 158–159. [Google Scholar] [CrossRef]
- Mosca, L.; Musto, P.; Todoerti, K.; Barbieri, M.; Agnelli, L.; Fabris, S.; Tuana, G.; Lionetti, M.; Bonaparte, E.; Sirchia, S.M.; et al. Genome-wide analysis of primary plasma cell leukemia identifies recurrent imbalances associated with changes in transcriptional profiles. Am. J. Hematol. 2013, 88, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Papadhimitriou, S.I.; Terpos, E.; Liapis, K.; Pavlidis, D.; Marinakis, T.; Kastritis, E.; Dimopoulos, M.A.; Tsitsilonis, O.E.; Kostopoulos, I.V. The Cytogenetic Profile of Primary and Secondary Plasma Cell Leukemia: Etiopathogenetic Perspectives, Prognostic Impact and Clinical Relevance to Newly Diagnosed Multiple Myeloma with Differential Circulating Clonal Plasma Cells. Biomedicines 2022, 10, 209. [Google Scholar] [CrossRef]
- Fernández de Larrea, C.; Kyle, R.; Rosiñol, L.; Paiva, B.; Engelhardt, M.; Usmani, S.; Caers, J.; Gonsalves, W.; Schjesvold, F.; Merlini, G.; et al. Primary plasma cell leukemia: Consensus definition by the International Myeloma Working Group according to peripheral blood plasma cell percentage. Blood Cancer J. 2021, 11, 192. [Google Scholar] [CrossRef] [PubMed]
- Katodritou, E.; Terpos, E.; Kelaidi, C.; Kotsopoulou, M.; Delimpasi, S.; Kyrtsonis, M.C.; Symeonidis, A.; Giannakoulas, N.; Stefanoudaki, A.; Christoulas, D.; et al. Treatment with bortezomib-based regimens improves overall response and predicts for survival in patients with primary or secondary plasma cell leukemia: Analysis of the Greek myeloma study group. Am. J. Hematol. 2014, 89, 145–150. [Google Scholar] [CrossRef]
- Drake, M.B.; Iacobelli, S.; van Biezen, A.; Morris, C.; Apperley, J.F.; Niederwieser, D.; Björkstrand, B.; Gahrton, G. Primary plasma cell leukemia and autologous stem cell transplantation. Haematologica 2010, 95, 804–809. [Google Scholar] [CrossRef]
- Lemieux, C.; Johnston, L.J.; Lowsky, R.; Muffly, L.S.; Craig, J.K.; Shiraz, P.; Rezvani, A.; Frank, M.J.; Weng, W.K.; Meyer, E.; et al. Outcomes with Autologous or Allogeneic Stem Cell Transplantation in Patients with Plasma Cell Leukemia in the Era of Novel Agents. Biol. Blood Marrow Transplant. 2020, 26, e328–e332. [Google Scholar] [CrossRef]
- Lawless, S.; Iacobelli, S.; Knelange, N.S.; Chevallier, P.; Blaise, D.; Milpied, N.; Foà, R.; Cornelissen, J.J.; Lioure, B.; Benjamin, R.; et al. Comparison of autologous and allogeneic hematopoietic cell transplantation strategies in patients with primary plasma cell leukemia, with dynamic prediction modeling. Haematologica 2023, 108, 1105–1114. [Google Scholar] [CrossRef]
- Deng, J.; Lin, Y.; Zhao, D.; Tong, C.; Chang, A.H.; Chen, W.; Gao, W. Case report: Plasma cell leukemia secondary to multiple myeloma successfully treated with anti-BCMA CAR-T cell therapy. Front. Oncol. 2022, 12, 901266. [Google Scholar] [CrossRef]
- Elsabah, H.; Ghasoub, R.; El Omri, H.; Benkhadra, M.; Cherif, H.; Taha, R.Y. Venetoclax in the treatment of secondary plasma cell leukemia with translocation t(11;14): A case report and literature review. Front. Oncol. 2024, 14, 1390747. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.L.; Jiang, N.G.; Zhang, L.; Shen, K.; Wu, Y. Relapsed/refractory multiple myeloma-transformed plasma-cell leukemia successfully treated with daratumumab followed by autologous stem cell transplantation. Ther. Adv. Hematol. 2021, 12, 2040620721989578. [Google Scholar] [CrossRef] [PubMed]
- Vela-Ojeda, J.; Ramirez-Alvarado, A.; Sanchez-Rodriguez, A.S.; Garcia-Chavez, J.; Montiel-Cervantes, L.A. Extraosseous Plasmacytoma Confers Poor Outcomes in Primary Plasma Cell Leukemia. Arch. Med. Res. 2025, 56, 103207. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, G.; Anderson, K.C.; Harris, N.L.; Sohani, A.R. The heavy chain diseases: Clinical and pathologic features. Oncology 2014, 28, 45–53. [Google Scholar]
- Fermand, J.P.; Brouet, J.C. Heavy-chain diseases. Hematol. Oncol. Clin. N. Am. 1999, 13, 1281–1294. [Google Scholar] [CrossRef]
- Wahner-Roedler, D.L.; Witzig, T.E.; Loehrer, L.L.; Kyle, R.A. Gamma-heavy chain disease: Review of 23 cases. Medicine 2003, 82, 236–250. [Google Scholar] [CrossRef]
- Bloch, K.J.; Lee, L.; Mills, J.A.; Haber, E. Gamma heavy chain disease--an expanding clinical and laboratory spectrum. Am. J. Med. 1973, 55, 61–70. [Google Scholar] [CrossRef]
- Stoyle, C.L.; Stephens, P.E.; Humphreys, D.P.; Heywood, S.; Cain, K.; Bulleid, N.J. IgG light chain-independent secretion of heavy chain dimers: Consequence for therapeutic antibody production and design. Biochem. J. 2017, 474, 3179–3188. [Google Scholar] [CrossRef]
- Bieliauskas, S.; Tubbs, R.R.; Bacon, C.M.; Eshoa, C.; Foucar, K.; Gibson, S.E.; Kroft, S.H.; Sohani, A.R.; Swerdlow, S.H.; Cook, J.R. Gamma heavy-chain disease: Defining the spectrum of associated lymphoproliferative disorders through analysis of 13 cases. Am. J. Surg. Pathol. 2012, 36, 534–543. [Google Scholar] [CrossRef]
- Chang, L.; Zhou, D.B.; Cao, X.X. Gamma heavy chain disease: A retrospective analysis of 6 cases. Orphanet J. Rare Dis. 2023, 18, 77. [Google Scholar] [CrossRef]
- Vakiti, A.; Padala, S.A.; Hashmi, M.F.; Mewawalla, P. Renal disease in monoclonal gammopathies. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Wester, S.M.; Banks, P.M.; Li, C.Y. The histopathology of gamma heavy-chain disease. Am. J. Clin. Pathol. 1982, 78, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, D.; Hawkes, E.A.; Jack, A.; Qian, W.; Smith, P.; Mouncey, P.; Pocock, C.; Ardeshna, K.M.; Radford, J.A.; McMillan, A.; et al. Rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisolone in patients with newly diagnosed diffuse large B-cell non-Hodgkin lymphoma: A phase 3 comparison of dose intensification with 14-day versus 21-day cycles. Lancet 2013, 381, 1817–1826. [Google Scholar] [CrossRef] [PubMed]
Category | Key Findings |
---|---|
Epidemiology | Accounts for 1–2% of MM; male predominance; younger age (50–60 years). |
Clinical presentation | Commonly presents with renal impairment, bone lesions, amyloidosis, hypercalcemia, and Bence Jones proteinuria. |
Diagnosis challenges | Delayed diagnosis due to low serum IgD and absent M-protein spike; immunofixation and free light chain assays crucial. |
Light chain association | Predominantly lambda light chain restriction (>85%); kappa association is rare |
Cytogenetic abnormalities | Frequent del(13q), 1q21 gain, IGH rearrangements; t(11;14) common; t(14;16) and del(17p) variably reported. |
Prognosis (historical) | Median OS 13–21 months due to late diagnosis and renal dysfunction. |
Prognosis (modern) | Median OS improved to 48–50+ months with novel agents and ASCT. |
Prognostic factors | Renal dysfunction and high β2-microglobulin levels predict worse OS. |
Therapeutic advances | Novel agents (bortezomib, lenalidomide, thalidomide) and ASCT improved responses (up to 89% response rate). |
Unmet needs | Late diagnosis, variable cytogenetics, high-risk features continue to impact survival; need for risk stratification and trials. |
Category | Key Findings |
---|---|
Epidemiology | Rarest MM subtype (<0.1%); described in 1967; predominantly male; younger onset. |
Clinical behavior | Aggressive course; frequent extramedullary disease, plasma cell leukemia, and poor survival. |
Clinical presentation | Features similar to MM (anemia, bone pain, hypercalcemia); more frequent hyperviscosity and PCL. |
Diagnosis challenges | Low serum IgE causes false negatives in electrophoresis; immunofixation and sFLC assays critical. |
Light chain association | Strong lambda light chain bias; consistent with transcriptional data from IgE-secreting plasma cells. |
Rare presentations | Reported dual IgE/IgA monoclonal proteins with shared clonal origin. |
Evolution and progression | May evolve from MGUS; some cases progress to secondary PCL, median survival 1–2 months. |
Complications | Hyperviscosity syndrome and elevated CA125 reported in absence of solid tumors. |
Molecular features | IgE plasma cells are transcriptionally unique; high ER stress, TACI, and BCMA expression. |
Genomic insights | High mutation burden and tumor-reactive T cells suggest potential for personalized immunotherapy. |
Treatment and prognosis | No IgE-specific protocols; treated as conventional MM; survival remains shorter than IgG/IgA MM. |
Research and future directions | Case reports and immunogenetic studies offer insights; future strategies may improve outcomes. |
Category | Key Findings |
---|---|
Epidemiology | Extremely rare (<0.5% of MM); overlaps clinically with Waldenström macroglobulinemia (WM). |
Clinical features | Presents with CRAB features; IgM monoclonal protein present; may include WM-like symptoms. |
Diagnostic criteria | ≥10% plasma cells, IgM M-protein, CRAB criteria, bone lesions, and absence of MYD88 mutation. |
Light chain association | Typically kappa-restricted; lambda chains are less common and should prompt diagnostic re-evaluation. |
Cytogenetics | Commonly harbors t(11;14)(q13;q32); cyclin D1 dysregulation seen in ~39–50% of cases. |
Immunophenotype | CD138+, cyclin D1+; lacks CD20, CD19, CD56, CD117—distinguishes from WM clones. |
Differentiation from WM | MYD88 L265P mutation absent; histology reveals plasma cells (vs. lymphoplasmacytic in WM). |
Survival and prognosis | Median OS ~ 61 months; comparable to IgG/IgA MM, inferior to indolent WM outcomes. |
Therapeutic strategies | Responds to MM regimens (PI, IMiDs, ASCT); anti-CD20 (e.g., rituximab) not effective. |
Case reports and variants | Reports of rare presentations (e.g., spinal cord compression); diagnostic reclassification not uncommon. |
Clinical implications | Accurate distinction from WM is critical for therapy; integrated diagnostic approach essential. |
Category | Key Findings |
---|---|
Epidemiology | Accounts for 1–5% of MM; initially defined by absence of M-protein in serum/urine. |
Definition and evolution | Definition has evolved with FLC assays; now includes truly non-secretory, oligosecretory, and hyposecretory forms. |
Subtypes | Two main types: oligosecretory (detectable by FLC/immunofixation) and true non-secretory (no detectable Ig). |
Diagnostic challenges | Diagnosis requires bone marrow, imaging, and advanced assays; ’missing M-band’ cases reclassified with repeat testing. |
Clinical features | Presents with CRAB features; diagnosis often delayed due to lack of measurable M-protein. |
Prognosis | May have lower tumor burden at diagnosis; survival comparable or better than secretory MM in some studies. |
Therapeutic approaches | Treatment mirrors MM: PI, IMiDs, antibodies, ASCT; modern regimens benefit NSMM patients. |
Response monitoring | Response assessment challenging; relies on bone marrow and imaging rather than serum biomarkers. |
Cytogenetics | Cytogenetic risks (del(17p), t(4;14), gain(1q)) occur at similar rates as in secretory MM. |
Future directions | Research needed on molecular markers and surrogate endpoints to guide therapy and monitoring. |
Category | Key Findings |
---|---|
Definition | Defined by >5% circulating plasma cells in peripheral blood (IMWG 2021 criteria). |
Epidemiology | Accounts for 1–4% of plasma cell malignancies; often affects younger patients. |
Clinical features | Aggressive presentation with hepatosplenomegaly, CNS/extramedullary disease, anemia, and renal dysfunction. |
Genomic and cytogenetic features | High-risk cytogenetics (e.g., del(17p), t(11;14), t(14;16), complex karyotypes); distinct transcriptional profile. |
Revised diagnostic criteria | IMWG revised diagnostic cutoff from 20% to >5% circulating plasma cells based on recent evidence. |
Treatment strategies | Initial therapy typically includes bortezomib + dexamethasone + alkylator/IMiD; improved response with novel agents. |
Transplantation approaches | ASCT used in eligible patients; allo-HCT and tandem transplant (auto-allo) associated with better PFS in some studies. |
Maintenance therapy | Maintenance therapy (lenalidomide, pomalidomide, PIs) explored post-transplant; data remain inconclusive. |
Emerging therapies | Anti-CD38 mAbs, venetoclax (t(11;14)), CAR T-cells under investigation for refractory disease. |
Prognosis | Prognosis poor (median OS 7–12 months); adverse factors include high LDH, β2-M, extramedullary disease. |
Future directions | Further research on early diagnosis, novel agents, and consensus criteria urgently needed. |
Category | Key Findings |
---|---|
Definition | Rare B-cell disorder with production of truncated heavy chains lacking light chains. |
Subtypes | Includes γ-HCD (most common), α-HCD (Seligmann’s disease), and μ-HCD. |
Pathogenesis | Defective assembly of immunoglobulin chains leads to secretion of free heavy chains. |
Epidemiology | Median age ~65 years, slight female predominance; γ-HCD most common in Western populations. |
Clinical presentation | Variable symptoms: lymphadenopathy, splenomegaly, fever, weight loss, autoimmune disease. |
Histopathology | Histology shows lymphoplasmacytic, marginal zone, or DLBCL-like features. |
Immunophenotype | Cytoplasmic heavy chain expression; CD19+, CD20+, CD79a+; lacks light chains. |
Autoimmune associations | Frequently associated with SLE and RA; some cases initially mimic autoimmune disease. |
Renal involvement | Rare cases show renal cast nephropathy similar to light chain disease. |
Diagnostic approach | Requires serum/urine electrophoresis, immunofixation, mass spectrometry, and biopsy. |
Treatment strategies | No standard therapy; managed per associated lymphoma or autoimmune condition. |
Prognosis | Highly variable; indolent forms may be stable; aggressive forms have poor prognosis. |
Clinical implications | Often misdiagnosed; awareness and advanced diagnostics critical for accurate classification. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanbali, A.; Alamer, A.; Alhayli, S. Uncommon Entities, Uncommon Challenges: A Review of Rare Plasma Cell Disorders. Hematol. Rep. 2025, 17, 31. https://doi.org/10.3390/hematolrep17040031
Hanbali A, Alamer A, Alhayli S. Uncommon Entities, Uncommon Challenges: A Review of Rare Plasma Cell Disorders. Hematology Reports. 2025; 17(4):31. https://doi.org/10.3390/hematolrep17040031
Chicago/Turabian StyleHanbali, Amr, Abdullah Alamer, and Saud Alhayli. 2025. "Uncommon Entities, Uncommon Challenges: A Review of Rare Plasma Cell Disorders" Hematology Reports 17, no. 4: 31. https://doi.org/10.3390/hematolrep17040031
APA StyleHanbali, A., Alamer, A., & Alhayli, S. (2025). Uncommon Entities, Uncommon Challenges: A Review of Rare Plasma Cell Disorders. Hematology Reports, 17(4), 31. https://doi.org/10.3390/hematolrep17040031