Clinical Validation of the Somatic FANCD2 Mutation (c.2022-5C>T) as a Novel Molecular Biomarker for Early Disease Progression in Chronic Myeloid Leukemia: A Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and DNA Extraction
2.2. Sequencing of FANCD2 Using Next-Generation Sequencing (NGS)
2.3. Next-Generation Sequencing (NGS) Data Analysis
2.4. Primary Analysis
2.5. Validation of Mutation by Sanger Sequencing
2.6. Statistical Analysis of Patient Clinical Data
3. Results
3.1. Patient Characteristics
3.2. Next-Generation Sequencing (NGS)
3.3. Validation of Mutation by Sanger Sequencing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Senapati, J.; Sasaki, K.; Issa, G.C.; Lipton, J.H.; Radich, J.P.; Jabbour, E.; Kantarjian, H.M. Management of Chronic Myeloid Leukemia in 2023—Common Ground and Common Sense. Blood Cancer J. 2023, 13, 58. [Google Scholar] [CrossRef] [PubMed]
- Romero-Morelos, P.; González-Yebra, A.L.; Muñoz-López, D.; Lara-Lona, E.; González-Yebra, B. Frequencies of BCR::ABL1 Transcripts in Patients with Chronic Myeloid Leukemia: A Meta-Analysis. Genes 2024, 15, 232. [Google Scholar] [CrossRef] [PubMed]
- Eden, R.E.; Coviello, J.M. Cancer, Chronic Myelogenous Leukemia (CML, Chronic Granulocytic Leukemia). PubMed. Available online: https://www.ncbi.nlm.nih.gov/books/NBK531459/ (accessed on 11 February 2021).
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Jabbour, E.; Kantarjian, H. Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring. Am. J. Hematol. 2020, 95, 691–709. [Google Scholar] [CrossRef]
- Cortes, J.E.; Talpaz, M.; O’Brien, S.; Faderl, S.; Garcia-Manero, G.; Ferrajoli, A.; Verstovsek, S.; Rios, M.B.; Shan, J.; Kantarjian, H.M. Staging of chronic myeloid leukemia in the imatinib era: An evaluation of the World Health Organization proposal. Cancer 2006, 106, 1306–1315. [Google Scholar] [CrossRef] [PubMed]
- Senapati, J.; Jabbour, E.; Kantarjian, H.; Short, N.J. Pathogenesis and management of accelerated and blast phases of chronic myeloid leukemia. Leukemia 2023, 37, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, I.; Winston, K. Chronic Myeloid Leukemia, from Pathophysiology to Treatment-Free Remission: A Narrative Literature Review. J. Blood Med. 2023, 14, 261–277. [Google Scholar] [CrossRef] [PubMed]
- Venkitaraman, A.R. Tracing the Network Connecting Brca and Fanconi Anaemia Proteins. Nature Reviews Cancer 2004, 4, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Busch, C.; Mulholland, T.; Zagnoni, M.; Dalby, M.; Berry, C.; Wheadon, H. Overcoming BCR::ABL1 dependent and independent survival mechanisms in chronic myeloid leukaemia using a multi-kinase targeting approach. Cell Commun. Signal. CCS 2023, 21, 342. [Google Scholar] [CrossRef]
- Takahashi, N. Rinsho ketsueki. Jpn. J. Clin. Hematol. 2023, 64, 981–987. [Google Scholar]
- Yoshimaru, R.; Minami, Y. Genetic Landscape of Chronic Myeloid Leukemia and a Novel Targeted Drug for Overcoming Resistance. Int. J. Mol. Sci. 2023, 24, 13806. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.E.; Kim, S.H.; Kong, M.; Kim, H.R.; Yoon, S.; Kee, K.M.; Kim, J.A.; Kim, D.H.; Park, S.Y.; Park, J.H.; et al. Targeting FLT3-TAZ Signaling to Suppress Drug Resistance in Blast Phase Chronic Myeloid Leukemia. Mol. Cancer 2023, 22, 177. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, L.; Chen, R.; Huang, X.; Ye, X. Understanding and Monitoring Chronic Myeloid Leukemia Blast Crisis: How to Better Manage Patients. Cancer Manag. Res. 2021, 13, 4987–5000. [Google Scholar] [CrossRef] [PubMed]
- Oehler, V.G.; Yeung, K.Y.; Choi, Y.E.; Bumgarner, R.E.; Raftery, A.E.; Radich, J.P. The Derivation of Diagnostic Markers of Chronic Myeloid Leukemia Progression from Microarray Data. Blood 2009, 114, 3292–3298. [Google Scholar] [CrossRef] [PubMed]
- Telliam, G.; Desterke, C.; Imeri, J.; M’kacher, R.; Oudrhiri, N.; Balducci, E.; Fontaine-Arnoux, M.; Acloque, H.; Bennaceur-Griscelli, A.; Turhan, A.G. Modeling Global Genomic Instability in Chronic Myeloid Leukemia (CML) Using Patient-Derived Induced Pluripotent Stem Cells (IPSCs). Cancers 2023, 15, 2594. [Google Scholar] [CrossRef] [PubMed]
- Leung, W.; Baxley, R.M.; Traband, E.; Chang, Y.-C.; Rogers, C.B.; Wang, L.; Durrett, W.; Bromley, K.S.; Fiedorowicz, L.; Thakar, T.; et al. FANCD2-dependent mitotic DNA synthesis relies on PCNA K164 ubiquitination. Cell Rep. 2023, 42, 113523. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Nebert, D.W.; Bruford, E.A.; Thompson, D.C.; Joenje, H.; Vasiliou, V. Update of the human and mouse Fanconi anemia genes. Human Genom. 2015, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, A.D.; Grompe, M. The Fanconi anaemia/BRCA pathway. Nat. Rev. Cancer 2003, 3, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Absar, M.; Mahmood, A.; Akhtar, T.; Basit, S.; Ramzan, K.; Jameel, A.; Afzal, S.; Ullah, A.; Qureshi, K.; Alanazi, N.; et al. Whole exome sequencing identifies a novel FANCD2 gene splice site mutation associated with disease progression in chronic myeloid leukemia: Implication in targeted therapy of advanced phase CML. Pak. J. Pharm. Sci. 2020, 33, 1419–1426. [Google Scholar] [CrossRef]
- Hochhaus, A.; Baccarani, M.; Silver, R.T.; Schiffer, C.; Apperley, J.F.; Cervantes, F.; Clark, R.E.; Cortes, J.E.; Deininger, M.W.; Guilhot, F.; et al. European LeukemiaNet 2020 Recommendations for Treating Chronic Myeloid Leukemia. Leukemia 2020, 34, 966–984. [Google Scholar] [CrossRef]
- Narlı Özdemir, Z.; Kılıçaslan, N.A.; Yılmaz, M.; Eşkazan, A.E. Guidelines for the Treatment of Chronic Myeloid Leukemia from the NCCN and ELN: Differences and Similarities. Int. J. Hematol. 2022, 117, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.E.; Lipton, J.H.; Miller, C.B.; Ailawadhi, S.; Akard, L.; Pinilla-Ibarz, J.; Lin, F.P.; Ericson, S.G.; Mauro, M.J. Change in Chronic Low-Grade Nonhematologic Adverse Events (AEs) and Quality of Life (QoL) in Adult Patients (Pts) with Philadelphia Chromosome–Positive (Ph+) Chronic Myeloid Leukemia in Chronic Phase (CML-CP) Switched from Imatinib (IM) to Nilotinib (NIL). Blood 2012, 120, 3782. [Google Scholar] [CrossRef]
- World Medical Association. Declaration of Helsinki. 2007. Available online: https://www.wma.net/e/ethicsunit/helsinki.htm (accessed on 11 February 2021).
- Goodyear, E.; Krleza-Jeric, M.D.; Lemmens, K. The Declaration of Helsinki. BMJ 2007, 335, 624–625. [Google Scholar] [CrossRef] [PubMed]
- Gnirke, A.; Melnikov, A.; Maguire, J.; Rogov, P.; LeProust, E.M.; Brockman, W.; Fennell, T.; Giannoukos, G.; Fisher, S.; Russ, C.; et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat. Biotechnol. 2009, 27, 182–189. [Google Scholar] [CrossRef] [PubMed]
- AlAsiri, S.; Basit, S.; Wood-Trageser, M.A.; Yatsenko, S.A.; Jeffries, E.P.; Surti, U.; Ketterer, D.M.; Afzal, S.; Ramzan, K.; Haque, M.F.U.; et al. Exome Sequencing Reveals MCM8 Mutation Underlies Ovarian Failure and Chromosomal Instability. J. Clin. Investig. 2014, 125, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Carson, A.R.; Smith, E.N.; Matsui, H.; Brækkan, S.K.; Jepsen, K.; Hansen, J.-B.; Frazer, K.A. Effective filtering strategies to improve data quality from population-based whole exome sequencing studies. BMC Bioinform. 2014, 15, 125. [Google Scholar] [CrossRef] [PubMed]
- Branford, S.; Wang, P.; Yeung, D.T.; Thomson, D.; Purins, A.; Wadham, C.; Shahrin, N.H.; Marum, J.E.; Nataren, N.; Parker, W.T.; et al. Integrative Genomic Analysis Reveals Cancer-Associated Mutations at Diagnosis of CML in Patients with High-Risk Disease. Blood 2018, 132, 948–961. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wu, M.; Sun, Y.; Zhao, H.; Wang, Y.; Gao, J. Identifying Dysregulated LncRNA-Associated CeRNA Network Biomarkers in CML Based on Dynamical Network Biomarkers. BioMed. Res. 2020, 2020, 5189549. [Google Scholar] [CrossRef] [PubMed]
- Tsiatis, A.C.; Norris-Kirby, A.; Rich, R.G.; Hafez, M.J.; Gocke, C.D.; Eshleman, J.R.; Murphy, K.M. Comparison of Sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations: Diagnostic and clinical implications. J. Mol. Diagn. 2010, 12, 425–432. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012; ISBN 3-900051-07-0. Available online: http://www.R-project.org/ (accessed on 14 August 2023).
- Joo, W.; Xu, G.; Persky, N.S.; Smogorzewska, A.; Rudge, D.G.; Buzovetsky, O.; Elledge, S.J.; Pavletich, N.P. Structure of the FANCI-FANCD2 Complex: Insights into the Fanconi Anemia DNA Repair Pathway. Science 2011, 333, 312–316. [Google Scholar] [CrossRef]
- Olazabal-Herrero, A.; He, B.; Kwon, Y.; Gupta, A.K.; Dutta, A.; Huang, Y.; Boddu, P.; Liang, Z.; Liang, F.; Teng, Y.; et al. The FANCI/FANCD2 complex links DNA damage response to R-loop regulation through SRSF1-mediated mRNA export. Cell Rep. 2024, 43, 113610. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Valeri, A.; Río, P.; Agirre, X.; Prosper, F.; Bueren, J.A. Unraveling the role of FANCD2 in chronic myeloid leukemia. Leukemia 2012, 26, 1447–1448. [Google Scholar] [CrossRef] [PubMed]
- Koptyra, M.; Stoklosa, T.; Hoser, G.; Glodkowska-Mrowka, E.; Seferynska, I.; Klejman, A.; Blasiak, J.; Skorski, T. Monoubiquitinated Fanconi anemia D2 (FANCD2-Ub) is required for BCR-ABL1 kinase-induced leukemogenesis. Leukemia 2011, 25, 1259–1267. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yao, C.; DU, W.; Chen, H.; Xiao, S.; Huang, L.; Chen, F.-P. Involvement of Fanconi anemia genes FANCD2 and FANCF in the molecular basis of drug resistance in leukemia. Mol. Med. Rep. 2015, 11, 4605–4610. [Google Scholar] [CrossRef] [PubMed]
- Moes-Sosnowska, J.; Rzepecka, I.K.; Chodzynska, J.; Dansonka-Mieszkowska, A.; Szafron, L.M.; Balabas, A.; Lotocka, R.; Sobiczewski, P.; Kupryjanczyk, J. Clinical importance of FANCD2, BRIP1, BRCA1, BRCA2 and FANCF expression in ovarian carcinomas. Cancer Biol. Ther. 2019, 20, 843–854. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vekariya, U.; Toma, M.M.; Nieborowska-Skorska, M.; Le, B.V.; Caron, M.-C.; Kukuyan, A.-M.; Sullivan-Reed, K.; Podszywalow-Bartnicka, P.; Chitrala, K.N.; Atkins, J.; et al. DNA polymerase θ protects leukemia cells from metabolically induced DNA damage. Blood 2023, 141, 2372–2389. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sullivan-Reed, K.; Toma, M.M.; Drzewiecka, M.; Nieborowska-Skorska, M.; Nejati, R.; Karami, A.; Wasik, M.A.; Sliwinski, T.; Skorski, T. Simultaneous Targeting of DNA Polymerase Theta and PARP1 or RAD52 Triggers Dual Synthetic Lethality in Homologous Recombination–Deficient Leukemia Cells. Mol. Cancer Res. 2023, 21, 1017–1022. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boucher, L.; Sorel, N.; Desterke, C.; Chollet, M.; Rozalska, L.; Gallego Hernanz, M.P.; Cayssials, E.; Raimbault, A.; Bennaceur-Griscelli, A.; Turhan, A.G.; et al. Deciphering Potential Molecular Signatures to Differentiate Acute Myeloid Leukemia (AML) with BCR::ABL1 from Chronic Myeloid Leukemia (CML) in Blast Crisis. Int. J. Mol. Sci. 2023, 24, 15441. [Google Scholar] [CrossRef]
- Lewis, A.G.; Flanagan, J.; Marsh, A.; Pupo, G.M.; Mann, G.; Spurdle, A.B.; Lindeman, G.J.; Visvader, J.E.; Brown, M.A.; Chenevix-Trench, G.; et al. Mutation analysis of FANCD2, BRIP1/BACH1, LMO4 and SFN in familial breast cancer. Breast Cancer Res. 2005, 7, R1005–R1016. [Google Scholar] [CrossRef]
- Li, N.; Ding, L.; Li, B.; Wang, J.; D’Andrea, A.D.; Chen, J. Functional analysis of Fanconi anemia mutations in China. Exp. Hematol. 2018, 66, 32–41.e8. [Google Scholar] [CrossRef]
- MacKay, C.; Déclais, A.-C.; Lundin, C.; Agostinho, A.; Deans, A.J.; MacArtney, T.J.; Hofmann, K.; Gartner, A.; West, S.C.; Helleday, T.; et al. Identification of KIAA1018/FAN1, a DNA Repair Nuclease Recruited to DNA Damage by Monoubiquitinated FANCD2. Cell 2010, 142, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.T.; Smogorzewska, A. SnapShot: Fanconi Anemia and Associated Proteins. Cell 2015, 160, 354–354.e1. [Google Scholar] [CrossRef] [PubMed]
- van Twest, S.; Murphy, V.J.; Hodson, C.; Tan, W.; Swuec, P.; O’rourke, J.J.; Heierhorst, J.; Crismani, W.; Deans, A.J. Mechanism of Ubiquitination and Deubiquitination in the Fanconi Anemia Pathway. Mol. Cell 2016, 65, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Smogorzewska, A.; Desetty, R.; Saito, T.T.; Schlabach, M.; Lach, F.P.; Sowa, M.E.; Clark, A.B.; Kunkel, T.A.; Harper, J.W.; Colaiácovo, M.P.; et al. A genetic screen identifies FAN1, a fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. Mol. Cell 2010, 39, 36–47. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liang, C.-C.; Li, Z.; Lopez-Martinez, D.; Nicholson, W.V.; Vénien-Bryan, C.; Cohn, M.A. The FANCD2–FANCI complex is recruited to DNA interstrand crosslinks before monoubiquitination of FANCD2. Nat. Commun. 2016, 7, 12124. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, L.; Tan, W.; Deans, A.J. Structural insight into FANCI-FANCD2 monoubiquitination. Essays Biochem. 2020, 64, 807–817. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dan, C.; Pei, H.; Zhang, B.; Zheng, X.; Ran, D.; Du, C. Fanconi anemia pathway and its relationship with cancer. Genome Instab. Dis. 2021, 2, 175–183. [Google Scholar] [CrossRef]
- Miao, H.; Ren, Q.; Li, H.; Zeng, M.; Chen, D.; Xu, C.; Chen, Y.; Wen, Z. Comprehensive analysis of the autophagy-dependent ferroptosis-related gene FANCD2 in lung adenocarcinoma. BMC Cancer 2022, 22, 225. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Palovcak, A.; Li, F.; Zafar, A.; Yuan, F.; Zhang, Y. Fanconi anemia pathway as a prospective target for cancer intervention. Cell Biosci. 2020, 10, 39. [Google Scholar] [CrossRef]
- Chirnomas, D.; Taniguchi, T.; de la Vega, M.; Vaidya, A.P.; Vasserman, M.; Hartman, A.-R.; Kennedy, R.; Foster, R.; Mahoney, J.; Seiden, M.V.; et al. Chemosensitization to cisplatin by inhibitors of the Fanconi anemia/BRCA pathway. Mol. Cancer Ther. 2006, 5, 952–961. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, J.; Yu, H.; Fei, P. Advances in the understanding of Fanconi Anemia Complementation Group D2 Protein (FANCD2) in human cancer. Cancer Cell Microenviron. 2015, 2, e986. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cornwell, M.J.; Thomson, G.J.; Coates, J.; Belotserkovskaya, R.; Waddell, I.D.; Jackson, S.P.; Galanty, Y. Small-Molecule Inhibition of UBE2T/FANCL-Mediated Ubiquitylation in the Fanconi Anemia Pathway. ACS Chem. Biol. 2019, 14, 2148–2154. [Google Scholar] [CrossRef] [PubMed]
- Niraj, J.; Färkkilä, A.; D’Andrea, A.D. The Fanconi Anemia Pathway in Cancer. Annu. Rev. Cancer Biol. 2019, 3, 457–478. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.A.; Wilson, J.B.; Clark, A.P.; Mitson-Salazar, A.; Tomashevski, A.; Ananth, S.; Glazer, P.M.; Semmes, O.J.; Bale, A.E.; Jones, N.J.; et al. Functional and physical interaction between the mismatch repair and FA-BRCA pathways. Hum. Mol. Genet. 2011, 20, 4395–4410. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Feng, L.; Jin, F. Expression and prognostic significance of Fanconi anemia group D2 protein and breast cancer type 1 susceptibility protein in familial and sporadic breast cancer. Oncol. Lett. 2019, 17, 3687–3700. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mantere, T.; Tervasmäki, A.; Nurmi, A.; Rapakko, K.; Kauppila, S.; Tang, J.; Schleutker, J.; Kallioniemi, A.; Hartikainen, J.M.; Mannermaa, A.; et al. Case-control analysis of truncating mutations in DNA damage response genes connects TEX15 and FANCD2 with hereditary breast cancer susceptibility. Sci. Rep. 2017, 7, 681. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mani, C.; Tripathi, K.; Chaudhary, S.; Somasagara, R.R.; Rocconi, R.P.; Crasto, C.; Reedy, M.; Athar, M.; Palle, K. Hedgehog/GLI1 Transcriptionally Regulates FANCD2 in Ovarian Tumor Cells: Its Inhibition Induces HR-Deficiency and Synergistic Lethality with PARP Inhibition. Neoplasia 2021, 23, 1002–1015. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Joshi, S.; Campbell, S.; Lim, J.Y.; McWeeney, S.; Krieg, A.; Bean, Y.; Pejovic, N.; Mhawech-Fauceglia, P.; Pejovic, T. Subcellular localization of FANCD2 is associated with survival in ovarian carcinoma. Oncotarget 2020, 11, 775–783. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lei, L.C.; Yu, V.Z.; Ko, J.M.Y.; Ning, L.; Lung, M.L. FANCD2 Confers a Malignant Phenotype in Esophageal Squamous Cell Carcinoma by Regulating Cell Cycle Progression. Cancers 2020, 12, 2545. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chandrasekharappa, S.C.; Chinn, S.B.; Donovan, F.X.; Chowdhury, N.I.; Kamat, A.; Adeyemo, A.A.; Thomas, J.W.; Vemulapalli, M.; Hussey, C.S.; Reid, H.H.; et al. Assessing the spectrum of germline variation in Fanconi anemia genes among patients with head and neck carcinoma before age 50. Cancer 2017, 123, 3943–3954. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, S.; Zhao, F.; Liang, Z.; Feng, H.; Bao, Y.; Xu, W.; Zhao, C.; Qin, G. Expression of FANCD2 is associated with prognosis in patients with naso-pharyngeal carcinoma. Int. J. Clin. Exp. Pathol. 2019, 12, 3465–3473. [Google Scholar] [PubMed] [PubMed Central]
- Zhao, Z.; Wang, R.; Wang, R.; Song, J.; Ma, F.; Pan, H.; Gao, C.; Wang, D.; Chen, X.; Fan, X. Pancancer analysis of the prognostic and immunological role of FANCD2: A potential target for carcinogenesis and survival. BMC Med. Genom. 2024, 17, 69, Erratum in BMC Med. Genom. 2024, 17, 129. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Patient Groups (%) n | ||
---|---|---|---|
CP-CML | AP-CML | p Value | |
(67.2) 123 | (32.8) 60 | ||
Mean age (Range) | 33.5 (range 7–69) | 35.6 (range = 27–43) | |
Gender | |||
Male | (60.2) 74 | (66.67) 40 | 0.60 |
Female | (39.8) 49 | (33.33) 20 | 0.59 |
Male: Female Ratio | 1.5:1 | 2:1 | 0.02 |
Mean Hemoglobin (g/dL) | 10.1 | ||
Mean WBC count (×109/L) | 313.7 | 315 | |
<50 | (16.3) 20 | (20) 10 | 0.82 |
>/=50 | (83.7) 103 | (80) 50 | 0.02 |
p-value | 0.005 | 0.02752 | |
Platelets (×109/L) Mean | 400.2 | ||
<450 | 75 (61) | 40 (66.7) | |
>/=450 | 33 (26.8) | 20 (33.3) | |
No data found | 15 (12.2) | 0 | |
p-value | 0.0011 | 0.47 | |
Imatinib | |||
Yes | (66.7) 82 | (66.7) 40 | 0.72 |
Interferon | |||
Yes | (33.3) 41 | (0) 0 | 0.0038 |
Chemotherapy | |||
Yes | (8.1) 10 | (66.7) 40 | <0.0001 |
Splenomegaly | |||
<5 cm | (3.3) 4 | (0) 0 | 0.43 |
5–8 cm | (7.3) 9 | (16.7) 10 | 0.061 |
>8 cm | (56.9) 70 | (83.3) 50 | 0.07 |
No splenomegaly | (32.5) 40 | (0) 0 | 0.004 |
Hepatomegaly | |||
Yes | (28.5) 35 | (66.7) 40 | 0.001 |
Survival Status | (100) 123 | 59 (98.3) | 0.0003 |
Confirmed deaths | 0 | 1 (1.7) | 0.0003 |
Frequency of FANCD2 (c. 2022-5C>T) | 0 (00) | 59 (98.3) | 0.0003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanazi, N.; Siyal, A.; Basit, S.; Shammas, M.; Al-Mukhaylid, S.; Aleem, A.; Mahmood, A.; Iqbal, Z. Clinical Validation of the Somatic FANCD2 Mutation (c.2022-5C>T) as a Novel Molecular Biomarker for Early Disease Progression in Chronic Myeloid Leukemia: A Case–Control Study. Hematol. Rep. 2024, 16, 465-478. https://doi.org/10.3390/hematolrep16030045
Alanazi N, Siyal A, Basit S, Shammas M, Al-Mukhaylid S, Aleem A, Mahmood A, Iqbal Z. Clinical Validation of the Somatic FANCD2 Mutation (c.2022-5C>T) as a Novel Molecular Biomarker for Early Disease Progression in Chronic Myeloid Leukemia: A Case–Control Study. Hematology Reports. 2024; 16(3):465-478. https://doi.org/10.3390/hematolrep16030045
Chicago/Turabian StyleAlanazi, Nawaf, Abdulaziz Siyal, Sulman Basit, Masood Shammas, Sarah Al-Mukhaylid, Aamer Aleem, Amer Mahmood, and Zafar Iqbal. 2024. "Clinical Validation of the Somatic FANCD2 Mutation (c.2022-5C>T) as a Novel Molecular Biomarker for Early Disease Progression in Chronic Myeloid Leukemia: A Case–Control Study" Hematology Reports 16, no. 3: 465-478. https://doi.org/10.3390/hematolrep16030045
APA StyleAlanazi, N., Siyal, A., Basit, S., Shammas, M., Al-Mukhaylid, S., Aleem, A., Mahmood, A., & Iqbal, Z. (2024). Clinical Validation of the Somatic FANCD2 Mutation (c.2022-5C>T) as a Novel Molecular Biomarker for Early Disease Progression in Chronic Myeloid Leukemia: A Case–Control Study. Hematology Reports, 16(3), 465-478. https://doi.org/10.3390/hematolrep16030045