A Review of Hematological Complications and Treatment in COVID-19
Abstract
:1. Introduction
2. Material and Methods
3. Hematological Complications
3.1. Thrombocytopenia
3.2. Coagulation Abnormalities
3.3. Red Blood Cells and Hemoglobin
3.4. White Blood Cell
4. Pharmaceutical Treatments
4.1. Ritonavir-Boosted Nirmatrelvir (Paxlovid)
4.2. Bebtelovimab
4.3. Metformin
4.4. Tixagevimab Plus Cilgavimab
4.5. Convalescent Plasma Therapy
4.6. Dexamethasone plus Remdesivir
4.7. Molnupiravir
5. Antithrombotic Treatment in COVID-19
6. How to Manage Blood Disorders
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rahman, A.; Niloofa, R.; Jayarajah, U.; De Mel, S.; Abeysuriya, V.; Seneviratne, S.L. Hematological Abnormalities in COVID-19: A Narrative Review. Am. J. Trop. Med. Hyg. 2021, 104, 1188–1201. [Google Scholar] [CrossRef] [PubMed]
- Wais, T.; Hasan, M.; Rai, V.; Agrawal, D.K. Gut-brain communication in COVID-19: Molecular mechanisms, mediators, biomarkers, and therapeutics. Expert Rev. Clin. Immunol. 2022, 18, 947–960. [Google Scholar] [CrossRef] [PubMed]
- Struyf, T.; Deeks, J.J.; Dinnes, J.; Takwoingi, Y.; Davenport, C.; Leeflang, M.M.; Spijker, R.; Hooft, L.; Emperador, D.; Dittrich, S.; et al. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19 disease. Cochrane Database Syst. Rev. 2020, 7, CD013665. [Google Scholar] [CrossRef]
- Nooti, S.K.; Rai, V.; Singh, H.; Potluri, V.; Agrawal, D.K. Strokes, Neurological, and Neuropsychiatric Disorders in COVID-19. In Delineating Health and Health System: Mechanistic Insights into COVID-19 Complications; Springer Nature Singapore: Singapore, 2021; pp. 209–231. [Google Scholar]
- El Chaer, F.; Auletta, J.J.; Chemaly, R.F. How I treat and prevent COVID-19 in patients with hematologic malignancies and recipients of cellular therapies. Blood 2022, 140, 673–684. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Banerjee, M. Immune Thrombocytopenia Secondary to COVID-19: A Systematic Review. SN Compr. Clin. Med. 2020, 2, 2048–2058. [Google Scholar] [CrossRef]
- Xu, P.; Zhou, Q.; Xu, J. Mechanism of thrombocytopenia in COVID-19 patients. Ann. Hematol. 2020, 99, 1205–1208. [Google Scholar] [CrossRef]
- Sivaramakrishnan, P.; Mishra, M. Vaccination-associated immune thrombocytopenia possibly due to ChAdOx1 nCoV-19 (Covishield) coronavirus vaccine. BMJ Case Rep. 2022, 15, 157–166. [Google Scholar] [CrossRef]
- Alharbi, M.G.; Alanazi, N.; Yousef, A.; Alanazi, N.; Alotaibi, B.; Aljurf, M.; El Fakih, R. COVID-19 associated with immune thrombocytopenia: A systematic review and meta-analysis. Expert Rev. Hematol. 2022, 15, 157–166. [Google Scholar] [CrossRef]
- Santhosh, S.; Malik, B.; Kalantary, A.; Kunadi, A. Immune Thrombocytopenic Purpura (ITP) Following Natural COVID-19 Infection. Cureus 2022, 14, e26582. [Google Scholar] [CrossRef]
- Fueyo-Rodriguez, O.; Valente-Acosta, B.; Jimenez-Soto, R.; Neme-Yunes, Y.; Inclan-Alarcon, S.I.; Trejo-Gonzalez, R.; Garcia-Salcido, M.A. Secondary immune thrombocytopenia supposedly attributable to COVID-19 vaccination. BMJ Case Rep. 2021, 14, e242220. [Google Scholar] [CrossRef]
- Venugopal, A. Disseminated intravascular coagulation. Indian J. Anaesth. 2014, 58, 603. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Cao, J.; Wang, Q.; Shi, Q.; Liu, K.; Luo, Z.; Chen, X.; Chen, S.; Yu, K.; Huang, Z.; et al. D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: A case control study. J. Intensive Care 2020, 8, 49. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.; Chen, S.; Li, X.; Liu, S.; Wang, F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J. Thromb. Haemost. 2020, 18, 1421–1424. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, C.; Perdomo, J.; Calvo, A.; Ferrando, C.; Reverter, J.C.; Tassies, D.; Blasi, A. High D dimers and low global fibrinolysis coexist in COVID19 patients: What is going on in there? J. Thromb. Thrombolysis 2021, 51, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; Iba, T. COVID-19 coagulopathy: Is it disseminated intravascular coagulation? Intern. Emerg. Med. 2021, 16, 309–312. [Google Scholar] [CrossRef]
- Price, L.C.; McCabe, C.; Garfield, B.; Wort, S.J. Thrombosis and COVID-19 pneumonia: The clot thickens! Eur. Respir. J. 2020, 56, 2001608. [Google Scholar] [CrossRef]
- Al-Saadi, E.; Abdulnabi, M.A. Hematological changes associated with COVID-19 infection. J. Clin. Lab. Anal. 2022, 36, e24064. [Google Scholar] [CrossRef]
- Jin, S.; Jin, Y.; Xu, B.; Hong, J.; Yang, X. Prevalence and Impact of Coagulation Dysfunction in COVID-19 in China: A Meta-Analysis. Thromb. Haemost. 2020, 120, 1524–1535. [Google Scholar] [CrossRef]
- Porfidia, A.; Valeriani, E.; Pola, R.; Porreca, E.; Rutjes, A.W.S.; Di Nisio, M. Venous thromboembolism in patients with COVID-19: Systematic review and meta-analysis. Thromb. Res. 2020, 196, 67–74. [Google Scholar] [CrossRef]
- Grobler, C.; Maphumulo, S.C.; Grobbelaar, L.M.; Bredenkamp, J.C.; Laubscher, G.J.; Lourens, P.J.; Steenkamp, J.; Kell, D.B.; Pretorius, E. Covid-19: The Rollercoaster of Fibrin(Ogen), D-Dimer, Von Willebrand Factor, P-Selectin and Their Interactions with Endothelial Cells, Platelets and Erythrocytes. Int. J. Mol. Sci. 2020, 21, 5168. [Google Scholar] [CrossRef]
- Cheng, L.; Li, H.; Li, L.; Liu, C.; Yan, S.; Chen, H.; Li, Y. Ferritin in the coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J. Clin. Lab. Anal. 2020, 34, e23618. [Google Scholar] [CrossRef]
- Bergamaschi, G.; Borrelli de Andreis, F.; Aronico, N.; Lenti, M.V.; Barteselli, C.; Merli, S.; Pellegrino, I.; Coppola, L.; Cremonte, E.M.; Croce, G.; et al. Anemia in patients with Covid-19: Pathogenesis and clinical significance. Clin. Exp. Med. 2021, 21, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Bellmann-Weiler, R.; Lanser, L.; Barket, R.; Rangger, L.; Schapfl, A.; Schaber, M.; Fritsche, G.; Woll, E.; Weiss, G. Prevalence and Predictive Value of Anemia and Dysregulated Iron Homeostasis in Patients with COVID-19 Infection. J. Clin. Med. 2020, 9, 2429. [Google Scholar] [CrossRef] [PubMed]
- Taneri, P.E.; Gomez-Ochoa, S.A.; Llanaj, E.; Raguindin, P.F.; Rojas, L.Z.; Roa-Diaz, Z.M.; Salvador, D., Jr.; Groothof, D.; Minder, B.; Kopp-Heim, D.; et al. Anemia and iron metabolism in COVID-19: A systematic review and meta-analysis. Eur. J. Epidemiol. 2020, 35, 763–773. [Google Scholar] [CrossRef]
- Rahman, M.A.; Shanjana, Y.; Tushar, M.I.; Mahmud, T.; Rahman, G.M.S.; Milan, Z.H.; Sultana, T.; Chowdhury, A.; Bhuiyan, M.A.; Islam, M.R.; et al. Hematological abnormalities and comorbidities are associated with COVID-19 severity among hospitalized patients: Experience from Bangladesh. PLoS ONE 2021, 16, e0255379. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Liu, J.; Liang, B.; Wang, X.; Wang, H.; Li, W.; Tong, Q.; Yi, J.; Zhao, L.; et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 2020, 55, 102763. [Google Scholar] [CrossRef]
- Foy, B.H.; Carlson, J.C.T.; Reinertsen, E.; Padros, I.V.R.; Pallares Lopez, R.; Palanques-Tost, E.; Mow, C.; Westover, M.B.; Aguirre, A.D.; Higgins, J.M. Association of Red Blood Cell Distribution Width with Mortality Risk in Hospitalized Adults With SARS-CoV-2 Infection. JAMA Netw. Open 2020, 3, e2022058. [Google Scholar] [CrossRef] [PubMed]
- Yip, C.Y.C.; Yap, E.S.; De Mel, S.; Teo, W.Z.Y.; Lee, C.T.; Kan, S.; Lee, M.C.C.; Loh, W.N.H.; Lim, E.L.; Lee, S.Y. Temporal changes in immune blood cell parameters in COVID-19 infection and recovery from severe infection. Br. J. Haematol. 2020, 190, 33–36. [Google Scholar] [CrossRef]
- Zhang, J.J.; Dong, X.; Cao, Y.Y.; Yuan, Y.D.; Yang, Y.B.; Yan, Y.Q.; Akdis, C.A.; Gao, Y.D. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 2020, 75, 1730–1741. [Google Scholar] [CrossRef]
- Terpos, E.; Ntanasis-Stathopoulos, I.; Elalamy, I.; Kastritis, E.; Sergentanis, T.N.; Politou, M.; Psaltopoulou, T.; Gerotziafas, G.; Dimopoulos, M.A. Hematological findings and complications of COVID-19. Am. J. Hematol. 2020, 95, 834–847. [Google Scholar] [CrossRef]
- Li, Q.; Ding, X.; Xia, G.; Geng, Z.; Chen, F.; Wang, L.; Wang, Z. A simple laboratory parameter facilitates early identification of COVID-19 patients. MedRxiv 2020. [Google Scholar] [CrossRef]
- Nazarullah, A.; Liang, C.; Villarreal, A.; Higgins, R.A.; Mais, D.D. Peripheral Blood Examination Findings in SARS-CoV-2 Infection. Am. J. Clin. Pathol. 2020, 154, 319–329. [Google Scholar] [CrossRef]
- Singh, A.; Sood, N.; Narang, V.; Goyal, A. Morphology of COVID-19-affected cells in peripheral blood film. BMJ Case Rep. 2020, 13, e236117. [Google Scholar] [CrossRef] [PubMed]
- Gorup, T.; Cohen, A.T.; Sybenga, A.B.; Rappaport, E.S. Significance of green granules in neutrophils and monocytes. Proc (Bayl. Univ. Med. Cent) 2018, 31, 94–96. [Google Scholar] [CrossRef] [PubMed]
- Cantu, M.D.; Towne, W.S.; Emmons, F.N.; Mostyka, M.; Borczuk, A.; Salvatore, S.P.; Yang, H.S.; Zhao, Z.; Vasovic, L.V.; Racine-Brzostek, S.E. Clinical significance of blue-green neutrophil and monocyte cytoplasmic inclusions in SARS-CoV-2 positive critically ill patients. Br. J. Haematol. 2020, 190, e89–e92. [Google Scholar] [CrossRef] [PubMed]
- Call, A.O.; Safety, O.P.; Course, P.L.; Education, I.-P.; ArMA, M. CDC: COVID-19 Rebound After Paxlovid Treatment; Centers for Disease Control and Prevention (U.S.): Atlanta, GA, USA, 2022.
- Najjar-Debbiny, R.; Gronich, N.; Weber, G.; Khoury, J.; Amar, M.; Stein, N.; Goldstein, L.H.; Saliba, W. Effectiveness of Paxlovid in Reducing Severe COVID-19 and Mortality in High Risk Patients. Clin. Infect. Dis. 2022, 76, e342–e349. [Google Scholar] [CrossRef]
- In Coronavirus Disease 2019 (COVID-19) Treatment Guidelines; Bethesda, MD, USA. 2021. Available online: https://files.covid19treatmentguidelines.nih.gov/guidelines/covid19treatmentguidelines.pdf (accessed on 26 April 2023).
- SK, S.R.; Anuba, P.A.; Swetha, B.; Aishwarya, P.M.; Sabarathinam, S. Drug interaction risk between cardioprotective drugs and drugs used in treatment of COVID-19: A evidence-based review from six databases. Diabetes Metab. Syndr. 2022, 16, 102451. [Google Scholar] [CrossRef]
- Haddad, F.; Dokmak, G.; Karaman, R. A Comprehensive Review on the Efficacy of Several Pharmacologic Agents for the Treatment of COVID-19. Life 2022, 12, 1758. [Google Scholar] [CrossRef]
- Hammond, J.; Leister-Tebbe, H.; Gardner, A.; Abreu, P.; Bao, W.; Wisemandle, W.; Baniecki, M.; Hendrick, V.M.; Damle, B.; Simon-Campos, A.; et al. Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with COVID-19. N. Engl. J. Med. 2022, 386, 1397–1408. [Google Scholar] [CrossRef]
- Xie, Y.; Choi, T.; Al-Aly, Z. Nirmatrelvir and the risk of post-acute sequelae of COVID-19. medRxiv 2022, 186, 554–564. [Google Scholar] [CrossRef]
- Yetmar, Z.A.; Beam, E.; O’Horo, J.C.; Seville, M.T.; Brumble, L.; Ganesh, R.; Razonable, R.R. Outcomes of bebtelovimab and sotrovimab treatment of solid organ transplant recipients with mild-to-moderate coronavirus disease 2019 during the Omicron epoch. Transpl. Infect. Dis. 2022, 24, e13901. [Google Scholar] [CrossRef]
- Gearges, C.; Haider, H.; Rana, V.; Asghar, Z.; Kewalramani, A.; Kuschner, Z. Bebtelovimab-Induced Bradycardia Leading to Cardiac Arrest. Crit. Care Explor. 2022, 4, e0747. [Google Scholar] [CrossRef]
- Westendorf, K.; Zentelis, S.; Wang, L.; Foster, D.; Vaillancourt, P.; Wiggin, M.; Lovett, E.; van der Lee, R.; Hendle, J.; Pustilnik, A.; et al. LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Cell Rep. 2022, 39, 110812. [Google Scholar] [CrossRef]
- National Institutes of Health. Therapeutic Management of Nonhospitalized Adults with COVID-19; National Institutes of Health: Bethesda, MD, USA, 2022.
- Razonable, R.R.; Tulledge-Scheitel, S.M.; Hanson, S.N.; Arndt, R.F.; Speicher, L.L.; Seville, T.A.; Larsen, J.J.; Ganesh, R.; O’Horo, J.C. Real-world Clinical Outcomes of Bebtelovimab and Sotrovimab Treatment of High-risk Persons with Coronavirus Disease 2019 During the Omicron Epoch. Open Forum Infect. Dis. 2022, 9, ofac411. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Fact Sheet for Healthcare Providers: Emergency Use Authorization for Bebtelovimab; Food and Drug Administration: Montgomery, MD, USA, 2023. Available online: https://www.fda.gov/media/156152/download#:~:text=EMERGENCY%20USE%20AUTHORIZATION-,The%20U.S.%20Food%20and%20Drug%20Administration%20(FDA)%20has%20issued%20an,%E2%80%A2%20with%20positive%20results%20of (accessed on 26 April 2023).
- HOFEUSEA EUA. Fact Sheet for Healthcare Providers: Emergency Use Authorization for Bebtelovimab; HOFEUSEA EUA: 2022. Available online: https://www.fda.gov/media/156153/download (accessed on 26 April 2023).
- Samuel, S.M.; Varghese, E.; Busselberg, D. Therapeutic Potential of Metformin in COVID-19: Reasoning for Its Protective Role. Trends Microbiol. 2021, 29, 894–907. [Google Scholar] [CrossRef] [PubMed]
- Kruglikov, I.L.; Shah, M.; Scherer, P.E. Obesity and diabetes as comorbidities for COVID-19: Underlying mechanisms and the role of viral-bacterial interactions. Elife 2020, 9, e61330. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Ahn, C.W.; Fang, S.; Lee, H.S.; Park, J.S. Association between metformin dose and vitamin B12 deficiency in patients with type 2 diabetes. Medicine 2019, 98, e17918. [Google Scholar] [CrossRef]
- Ben Salem, C.; Hmouda, H.; Slim, R.; Denguezli, M.; Belajouza, C.; Bouraoui, K. Rare case of metformin-induced leukocytoclastic vasculitis. Ann. Pharmacother. 2006, 40, 1685–1687. [Google Scholar] [CrossRef] [PubMed]
- Focosi, D.; Casadevall, A. A Critical Analysis of the Use of Cilgavimab plus Tixagevimab Monoclonal Antibody Cocktail (Evusheld) for COVID-19 Prophylaxis and Treatment. Viruses 2022, 14, 1999. [Google Scholar] [CrossRef]
- Paredes, R.; Murray, T.A.; Engen, N.; Grandits, G.; Vekstein, A.; Ivey, N.; Holland, T.L.; Ginde, A.A.; Mourad, A.; Sandkovsky, U.; et al. Tixagevimab-cilgavimab for treatment of patients hospitalised with COVID-19: A randomised, double-blind, phase 3 trial. Lancet Respir. Med. 2022, 10, 972–984. [Google Scholar] [CrossRef]
- Dejnirattisai, W.; Huo, J.; Zhou, D.; Zahradnik, J.; Supasa, P.; Liu, C.; Duyvesteyn, H.M.E.; Ginn, H.M.; Mentzer, A.J.; Tuekprakhon, A.; et al. SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell 2022, 185, 467–484 e415. [Google Scholar] [CrossRef]
- Dong, J.; Zost, S.J.; Greaney, A.J.; Starr, T.N.; Dingens, A.S.; Chen, E.C.; Chen, R.E.; Case, J.B.; Sutton, R.E.; Gilchuk, P.; et al. Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nat. Microbiol. 2021, 6, 1233–1244. [Google Scholar] [CrossRef]
- Bruel, T.; Hadjadj, J.; Maes, P.; Planas, D.; Seve, A.; Staropoli, I.; Guivel-Benhassine, F.; Porrot, F.; Bolland, W.H.; Nguyen, Y.; et al. Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies. Nat. Med. 2022, 28, 1297–1302. [Google Scholar] [CrossRef] [PubMed]
- Case, J.B.; Mackin, S.; Errico, J.M.; Chong, Z.; Madden, E.A.; Whitener, B.; Guarino, B.; Schmid, M.A.; Rosenthal, K.; Ren, K.; et al. Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains. Nat. Commun. 2022, 13, 3824. [Google Scholar] [CrossRef] [PubMed]
- Government of the Republic of Korea. Tackling COVID-19: Health, Quarantine and Economic Measures: Korean Experience; Ministry of Economy and Finance: Sejong, Republic of Korea, 2020. Available online: https://scholar.google.com/scholar_lookup?title=Tackling+COVID-19+Health,+Quarantine+and+Economic+Measures:+Korean+Experience&publication_year=2020& (accessed on 26 April 2023).
- Food and Drug Administration. Frequently Asked Questions on the Emergency Use Authorization for Evusheld (Tixagevimab Co-Packaged with Cilgavimab) for Pre-Exposure Prophylaxis (PrEP) of COVID-19; Food and Drug Administration: Montgomery, MD, USA, 2022. Available online: https://fda.gov/media/154703/download (accessed on 26 April 2023).
- Agrawal, A.; Jha, T.; Gogoi, P.; Diwaker, P.; Goel, A.; Khan, A.M.; Saxena, A.K. Effect of convalescent plasma therapy on mortality in moderate-to-severely Ill COVID-19 patients. Transfus. Apher. Sci. 2022, 61, 103455. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Xu, Y.; He, H.; Zhang, L.; Wang, X.; Qiu, Q.; Sun, C.; Guo, Y.; Qiu, S.; Ma, K. A potentially effective treatment for COVID-19: A systematic review and meta-analysis of convalescent plasma therapy in treating severe infectious disease. Int. J. Infect. Dis. 2020, 98, 334–346. [Google Scholar] [CrossRef] [PubMed]
- Rojas, M.; Rodriguez, Y.; Monsalve, D.M.; Acosta-Ampudia, Y.; Camacho, B.; Gallo, J.E.; Rojas-Villarraga, A.; Ramirez-Santana, C.; Diaz-Coronado, J.C.; Manrique, R.; et al. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun. Rev. 2020, 19, 102554. [Google Scholar] [CrossRef] [PubMed]
- Gharbharan, A.; Jordans, C.; Zwaginga, L.; Papageorgiou, G.; van Geloven, N.; van Wijngaarden, P.; den Hollander, J.; Karim, F.; van Leeuwen-Segarceanu, E.; Soetekouw, R.; et al. Outpatient convalescent plasma therapy for high-risk patients with early COVID-19: A randomized placebo-controlled trial. Clin. Microbiol. Infect. 2022, 29, 208–214. [Google Scholar] [CrossRef]
- Briggs, N.; Gormally, M.V.; Li, F.; Browning, S.L.; Treggiari, M.M.; Morrison, A.; Laurent-Rolle, M.; Deng, Y.; Hendrickson, J.E.; Tormey, C.A.; et al. Early but not late convalescent plasma is associated with better survival in moderate-to-severe COVID-19. PLoS ONE 2021, 16, e0254453. [Google Scholar] [CrossRef]
- Snow, T.A.C.; Saleem, N.; Ambler, G.; Nastouli, E.; McCoy, L.E.; Singer, M.; Arulkumaran, N. Convalescent plasma for COVID-19: A meta-analysis, trial sequential analysis, and meta-regression. Br. J. Anaesth. 2021, 127, 834–844. [Google Scholar] [CrossRef]
- Sun, F.; Lin, Y.; Wang, X.; Gao, Y.; Ye, S. Paxlovid in patients who are immunocompromised and hospitalised with SARS-CoV-2 infection. Lancet Infect. Dis. 2022, 22, 1279. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.; Sharma, A.R.; Bhattacharya, M.; Sharma, G.; Lee, S.S.; Chakraborty, C. Probable Molecular Mechanism of Remdesivir for the Treatment of COVID-19: Need to Know More. Arch. Med. Res. 2020, 51, 585–586. [Google Scholar] [CrossRef] [PubMed]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the Treatment of Covid-19—Final Report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef]
- Ahmed, M.H.; Hassan, A. Dexamethasone for the Treatment of Coronavirus Disease (COVID-19): A Review. SN Compr. Clin. Med. 2020, 2, 2637–2646. [Google Scholar] [CrossRef]
- Zhong, J.; Tang, J.; Ye, C.; Dong, L. The immunology of COVID-19: Is immune modulation an option for treatment? Lancet Rheumatol. 2020, 2, e428–e436. [Google Scholar] [CrossRef] [PubMed]
- Mitre-Aguilar, I.B.; Cabrera-Quintero, A.J.; Zentella-Dehesa, A. Genomic and non-genomic effects of glucocorticoids: Implications for breast cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 1–10. [Google Scholar] [PubMed]
- Marrone, A.; Nevola, R.; Sellitto, A.; Cozzolino, D.; Romano, C.; Cuomo, G.; Aprea, C.; Schwartzbaum, M.X.P.; Ricozzi, C.; Imbriani, S.; et al. Remdesivir Plus Dexamethasone Versus Dexamethasone Alone for the Treatment of Coronavirus Disease 2019 (COVID-19) Patients Requiring Supplemental O2 Therapy: A Prospective Controlled Nonrandomized Study. Clin. Infect. Dis. 2022, 75, e403–e409. [Google Scholar] [CrossRef]
- Benfield, T.; Bodilsen, J.; Brieghel, C.; Harboe, Z.B.; Helleberg, M.; Holm, C.; Israelsen, S.B.; Jensen, J.; Jensen, T.O.; Johansen, I.S.; et al. Improved Survival Among Hospitalized Patients with Coronavirus Disease 2019 (COVID-19) Treated With Remdesivir and Dexamethasone. A Nationwide Population-Based Cohort Study. Clin. Infect. Dis. 2021, 73, 2031–2036. [Google Scholar] [CrossRef]
- Nabati, M.; Parsaee, H. Potential Cardiotoxic Effects of Remdesivir on Cardiovascular System: A Literature Review. Cardiovasc. Toxicol. 2022, 22, 268–272. [Google Scholar] [CrossRef]
- Langarizadeh, M.A.; Ranjbar Tavakoli, M.; Abiri, A.; Ghasempour, A.; Rezaei, M.; Ameri, A. A review on function and side effects of systemic corticosteroids used in high-grade COVID-19 to prevent cytokine storms. EXCLI J. 2021, 20, 339–365. [Google Scholar] [CrossRef]
- Food and Drug Administration. Update: FDA Authorizes Additional Oral Antiviral for Treatment of COVID-19 in Certain Adults; Food and Drug Administration: Montgomery, MD, USA, 2021.
- Menendez-Arias, L. Decoding molnupiravir-induced mutagenesis in SARS-CoV-2. J. Biol. Chem. 2021, 297, 100867. [Google Scholar] [CrossRef]
- Pourkarim, F.; Pourtaghi-Anvarian, S.; Rezaee, H. Molnupiravir: A new candidate for COVID-19 treatment. Pharmacol. Res. Perspect. 2022, 10, e00909. [Google Scholar] [CrossRef] [PubMed]
- Toots, M.; Yoon, J.J.; Hart, M.; Natchus, M.G.; Painter, G.R.; Plemper, R.K. Quantitative efficacy paradigms of the influenza clinical drug candidate EIDD-2801 in the ferret model. Transl. Res. 2020, 218, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Painter, W.P.; Holman, W.; Bush, J.A.; Almazedi, F.; Malik, H.; Eraut, N.; Morin, M.J.; Szewczyk, L.J.; Painter, G.R. Human Safety, Tolerability, and Pharmacokinetics of Molnupiravir, a Novel Broad-Spectrum Oral Antiviral Agent with Activity Against SARS-CoV-2. Antimicrob. Agents Chemother. 2021, 65, e02428-20. [Google Scholar] [CrossRef] [PubMed]
- Jayk Bernal, A.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martin-Quiros, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M.L.; et al. Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients. N. Engl. J. Med. 2022, 386, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Pontolillo, M.; Ucciferri, C.; Borrelli, P.; Di Nicola, M.; Vecchiet, J.; Falasca, K. Molnupiravir as an Early Treatment for COVID-19: A Real Life Study. Pathogens 2022, 11, 1121. [Google Scholar] [CrossRef]
- National Institute of Diabetes and Digestive and Kidney Diseases. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012.
- Wen, W.; Chen, C.; Tang, J.; Wang, C.; Zhou, M.; Cheng, Y.; Zhou, X.; Wu, Q.; Zhang, X.; Feng, Z.; et al. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19: A meta-analysis. Ann. Med. 2022, 54, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Zhou, J.; Zhu, H.; Chen, Y.; Lu, Y.; Zhang, T.; Yu, H.; Wang, L.; Xu, H.; Wang, Z.; et al. The feasibility, safety, and efficacy of Paxlovid treatment in SARS-CoV-2-infected children aged 6-14 years: A cohort study. Ann. Transl. Med. 2022, 10, 619. [Google Scholar] [CrossRef]
- Hariyanto, T.I.; Kurniawan, A. Metformin use is associated with reduced mortality rate from coronavirus disease 2019 (COVID-19) infection. Obes. Med. 2020, 19, 100290. [Google Scholar] [CrossRef]
- Scheen, A.J. Metformin and COVID-19: From cellular mechanisms to reduced mortality. Diabetes Metab. 2020, 46, 423–426. [Google Scholar] [CrossRef]
- Grundmann, A.; Wu, C.H.; Hardwick, M.; Baillie, J.K.; Openshaw, P.J.M.; Semple, M.G.; Bohning, D.; Pett, S.; Michael, B.D.; Thomas, R.H.; et al. Fewer COVID-19 Neurological Complications with Dexamethasone and Remdesivir. Ann. Neurol. 2022, 93, 88–102. [Google Scholar] [CrossRef]
- Knight, R.; Walker, V.; Ip, S.; Cooper, J.A.; Bolton, T.; Keene, S.; Denholm, R.; Akbari, A.; Abbasizanjani, H.; Torabi, F.; et al. Association of COVID-19 With Major Arterial and Venous Thrombotic Diseases: A Population-Wide Cohort Study of 48 Million Adults in England and Wales. Circulation 2022, 146, 892–906. [Google Scholar] [CrossRef]
- Malas, M.B.; Naazie, I.N.; Elsayed, N.; Mathlouthi, A.; Marmor, R.; Clary, B. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: A systematic review and meta-analysis. EClinicalMedicine 2020, 29, 100639. [Google Scholar] [CrossRef]
- Loo, J.; Spittle, D.A.; Newnham, M. COVID-19, immunothrombosis and venous thromboembolism: Biological mechanisms. Thorax 2021, 76, 412–420. [Google Scholar] [CrossRef]
- Izcovich, A.; Cuker, A.; Kunkle, R.; Neumann, I.; Panepinto, J.; Pai, M.; Seftel, M.; Cheung, M.C.; Lottenberg, R.; Byrne, M.; et al. A user guide to the American Society of Hematology clinical practice guidelines. Blood Adv. 2020, 4, 2095–2110. [Google Scholar] [CrossRef] [PubMed]
- The American Society of Hematology (ASH). ASH Guidelines on Use of Anticoagulation in Patients with COVID-19; The American Society of Hematology (ASH): Washington, DC, USA, 2021. [Google Scholar]
- Schulman, S.; Sholzberg, M.; Spyropoulos, A.C.; Zarychanski, R.; Resnick, H.E.; Bradbury, C.A.; Broxmeyer, L.; Connors, J.M.; Falanga, A.; Iba, T.; et al. ISTH guidelines for antithrombotic treatment in COVID-19. J. Thromb. Haemost. 2022, 20, 2214–2225. [Google Scholar] [CrossRef]
- Wilde, L.; Isidori, A.; Keiffer, G.; Palmisiano, N.; Kasner, M. Caring for AML Patients During the COVID-19 Crisis: An American and Italian Experience. Front. Oncol. 2020, 10, 1689. [Google Scholar] [CrossRef] [PubMed]
- Karunakaran, P.; Nampoothiri, R.V.; Sahu, K.K. Managing blood disorders during the Covid-19 pandemic: Current pharmacological insights. Expert. Rev. Clin. Pharmacol. 2020, 13, 1285–1287. [Google Scholar] [CrossRef] [PubMed]
- Brissot, E.; Labopin, M.; Baron, F.; Bazarbachi, A.; Bug, G.; Ciceri, F.; Esteve, J.; Giebel, S.; Gilleece, M.H.; Gorin, N.C.; et al. Management of patients with acute leukemia during the COVID-19 outbreak: Practical guidelines from the acute leukemia working party of the European Society for Blood and Marrow Transplantation. Bone Marrow Transplant. 2021, 56, 532–535. [Google Scholar] [CrossRef] [PubMed]
- Breccia, M.; Abruzzese, E.; Bocchia, M.; Bonifacio, M.; Castagnetti, F.; Fava, C.; Galimberti, S.; Gozzini, A.; Gugliotta, G.; Iurlo, A.; et al. Chronic myeloid leukemia management at the time of the COVID-19 pandemic in Italy. A campus CML survey. Leukemia 2020, 34, 2260–2261. [Google Scholar] [CrossRef] [PubMed]
- Barbui, T.; De Stefano, V. Philadelphia-Negative Myeloproliferative Neoplasms Around the COVID-19 Pandemic. Curr. Hematol. Malig. Rep. 2021, 16, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Treon, S.P.; Castillo, J.J.; Skarbnik, A.P.; Soumerai, J.D.; Ghobrial, I.M.; Guerrera, M.L.; Meid, K.; Yang, G. The BTK inhibitor ibrutinib may protect against pulmonary injury in COVID-19-infected patients. Blood 2020, 135, 1912–1915. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.Y.; Cuttica, M.J.; Ison, M.G.; Gordon, L.I. Ibrutinib for chronic lymphocytic leukemia in the setting of respiratory failure from severe COVID-19 infection: Case report and literature review. EJHaem 2020, 1, 596–600. [Google Scholar] [CrossRef] [PubMed]
- Canellos, G.P.; Anderson, J.R.; Propert, K.J.; Nissen, N.; Cooper, M.R.; Henderson, E.S.; Green, M.R.; Gottlieb, A.; Peterson, B.A. Chemotherapy of advanced Hodgkin’s disease with MOPP, ABVD, or MOPP alternating with ABVD. N. Engl. J. Med. 1992, 327, 1478–1484. [Google Scholar] [CrossRef]
Aim of the Study | Sample | Findings |
---|---|---|
Ritonavir-boosted Nirmatrelvir (Paxlovid) | ||
To study the use of Paxlovid in immunocompromised patients [70] | 114 hospitalized patients with COVID-19 receiving Paxlovid | Paxlovid has therapeutic potential in high-risk populations, especially when administered early after symptom onset. |
Safety and efficacy of paxlovid among serious pediatric cases [89] | 5 pediatric cases with the underlying disease treated with Paxlovid | Paxlovid is a feasible option for treating children aged 6–14, with underlying disease, infected with COVID-19. |
Bebtelovimab | ||
To quantify the effectiveness of Bebtelovimab compared to sotrovimab [45] | 361 solid organ transplant recipients receiving Bebtelovimab or sotrovimab | Bebtelovimab is similar effectiveness as Sotrovimab. Specifically, this data supports the continued use of bebtelovimab in solid organ transplant patients. |
Compare outcomes of high risk patients receiving Bebtelovimab for COVID-19 therapy [49] | 3607 high risk (older, immunocompromised, multiple comorbid conditions) treated with Bebtelovimab or ritonavir | Bebtelovimab use is supported for the treatment of COVID-19 in high-risk populations including the immunocompromised. |
Metformin | ||
To analyze the potential benefits of Metformin in patients with COVID-19 and type II diabetes [90]. | 6937 patients hospitalized with covid and treated with metformin to control their blood glucose levels. | Metformin reduces the risk of mortality in patients with COVID-19 and type II diabetes. |
Retrospective analysis of human studies to evaluate the protective role of Metformin in patients hospitalized with COVID-19 [91]. | 6256 patients from 4 different studies hospitalized with COVID-19, were separated into metformin users and non-users. | Metformin significantly reduced the mortality rate of women hospitalized with COVID-19 (not men). Odds ratio of 0.759. |
Tixagevimab plus Cilgavimab | ||
To quantify effectiveness of tixagevimab-cilgavimab mAb cocktail in hospitalized COVID-19 patients [57] | 1417 hospitalized COVID-19 patients were infused with tixagevimab-cilgavimab | No improvement in the primary outcome of time to sustained recovery with Tixagevimab-cilgavimab but was safe and mortality was lower. |
Convalescent Plasma Therapy | ||
Metanalysis evaluating the benefits of convalescent plasma therapy in the treatment of COVID-19 [69] | 8027 out of 15,587 patients with COVID-19 received convalescent plasma therapy | No clear change in mortality with convalescent plasma therapy. Additionally, no apparent impact on ICU admissions or mechanical ventilation need in patients with mild COVID-19. |
To quantify the effectiveness of convalescent plasma therapy in the treatment of COVID-19 [68] | 115 out of 3368 patients with moderate to severe COVID-19 treated with Convalescent plasma therapy | Lower 14-day and 30-day mortality and 50% decreased likelihood of in-hospital mortality. Findings only in early plasma recipients. |
Metanalysis to explore effectiveness of convalescent plasma therapy for infectious diseases [65] | Utilized 40 out of 3524 initially selected studies | Convalescent plasma therapy was effective in reducing mortality and had limited serious adverse events (SAE) in most patients. |
Dexamethasone plus Remdesivir | ||
To analyze the 30 day mortality and need for mechanical ventilation in patients hospitalized with COVID-19, treated with dexamethasone and remdesivir [77]. | 2747 patients hospitalized with COVID-19 broken into two groups. One group received only a standard of care (SOC) protocol. The second group received SOC and Dexamethasone + Remdesivir. | 30 day mortality was reduced in the group treated with SOC and Dexamethasone + Remdesivir (7.1% reduction). Mechanical ventilation use was also reduced. |
To assess the impact of treatment with dexamethasone, remdesivir, or both in COVID-19 patients [92] | 89,297 hospital in-patients with COVID-19 receiving dexamethasone, remdesivir or both | Treatment with dexamethasone, remdesivir, or both in patients with COVID-19 was associated with less neurological complication. |
Molnupiravir | ||
To assess the efficacy and safety of treatment with molnupiravir in non-hospitalized COVID-19 patients [85] | 1433 non-hospitalized unvaccinated participants with COVID-19 receiving molnupiravir | Early treatment with molnupiravir was associated with a reduced risk of hospitalization and death in COVID-19 patients. However, adverse events were reported in 30.4% of molnupiravir treated patients and 33.0% of placebo patients, with one incidence of low platelet count in each group. |
To assess human safety and tolerability of treatment with molnupiravir in healthy volunteers [84] | 129 healthy volunteers receiving molnupiravir in various dosages | Treatment with molnupiravir in healthy volunteers was generally well-tolerated and had very minimal to mild side effects. |
Severity of Illness | Recommendation |
---|---|
Critically ill patients who do not have confirmed or suspected venous thromboembolism | Use prophylactic-intensity over intermediate-intensity anticoagulation (low certainty of evidence) Use prophylactic-intensity over therapeutic-intensity anticoagulation (conditional recommendation based on very low certainty in the evidence about effects) |
Acutely ill patients who do not have confirmed or suspected venous thromboembolism or another indication for anticoagulation | Use therapeutic-intensity over prophylactic-intensity anticoagulation (conditional recommendation based on very low certainty in the evidence about effects). Use prophylactic-intensity over intermediate-intensity anticoagulation |
Patients being discharged from hospital and do not have confirmed or suspected venous thromboembolism | Use outpatient anticoagulant thromboprophylaxis (conditional recommendation based on very low certainty in the evidence about effects). |
Antithrombotic Therapy for Critically Ill, Hospitalized Patients | |
---|---|
Critically ill patients hospitalized for COVID-19 (COR: 3, no benefit and LOE:B-R) | Intermediate dose LMWH/UFH is not recommended over prophylactic dose LMWH/UFH |
Critically ill patients hospitalized for COVID-19 (COR: 3, no benefit and LOE:B-R) | Therapeutic dose LMWH/UFH is not recommended over usual-care or prophylactic dose LMWH/UFHs |
In selected critically ill patients hospitalized for COVID-19 (COR: 2b and LOE:B-R) | Adding an antiplatelet agent to prophylactic dose LMWH/UFH is not well established but might be considered to reduce mortality |
Antithrombotic therapy for non–critically ill, hospitalized patients | |
Non-critically ill patients hospitalized for COVID-19 (COR: 1 and LOE:B-NR) | low (prophylactic) dose LMWH or UFH is recommended in preference to no LMWH or UFH |
Selected non-critically ill patients hospitalized for COVID-19 (COR: 1 and LOE:A) | Therapeutic-dose LMWH or UFH is beneficial in preference to low (prophylactic) or intermediate dose LMWH or UFH |
Non-critically ill patients hospitalized for COVID-19 (COR: 3, no benefit and LOE:B-R) | Intermediate-dose LMWH or UFH is not recommended in preference to low (prophylactic) dose LMWH or UFH |
Non-critically ill patients hospitalized for COVID-19 (COR: 3, Harm and LOE:A) | Add-on treatment with an antiplatelet agent is potentially harmful and should not be used |
Non-critically ill patients hospitalized for COVID-19 (COR: 3, no benefit and LOE:B-R) | Therapeutic-dose DOAC is not effective |
Antithrombotic therapy for non-hospitalized patients | |
Non-hospitalized patients with symptomatic COVID-19 (COR: 3, no benefit and LOE:B-R) | Initiation of antiplatelet therapy is not effective to reduce the risk of hospitalization or thromboembolism |
Non-hospitalized patients with symptomatic COVID-19 (COR: 3, no benefit and LOE:B-R) | Initiation of direct oral anticoagulant (DOAC) therapy is not effective to reduce risk of hospitalization or thromboembolism |
Non-hospitalized patients with COVID-19 at higher risk of disease progression (COR: 2b and LOE:B-R) | Initiation of oral sulodexide therapy within 3 days of symptom onset may be considered to reduce risk of hospitalization |
Antithrombotic therapy for patients discharged from hospital | |
Selected patients who have been hospitalized for COVID-19 (COR: 2b and LOE:B-R) | Treatment with prophylactic dose rivaroxaban for approximately 30 days may be considered to reduce risk of VTE |
Disorder | Treatment |
---|---|
AML | 7 + 3 cytarabine and anthracycline regimen |
ALL | High-dose steroids post-induction, (avoid bacterial and fungal infection) |
CML/Ph+ ALL | TKI + steroids (caution during first three months) |
MPN | Aspirin twice daily (+LMWH in hospitalized) |
Indolent lymphoma | Rituximab |
CLL | Ibrutinib |
Hodgkins’s lymphoma | ABVD (adriamycin, bleomycin sulfate, vinblastine sulfate, and dacarbazine) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yazdani, A.N.; Abdi, A.; Velpuri, P.; Patel, P.; DeMarco, N.; Agrawal, D.K.; Rai, V. A Review of Hematological Complications and Treatment in COVID-19. Hematol. Rep. 2023, 15, 562-577. https://doi.org/10.3390/hematolrep15040059
Yazdani AN, Abdi A, Velpuri P, Patel P, DeMarco N, Agrawal DK, Rai V. A Review of Hematological Complications and Treatment in COVID-19. Hematology Reports. 2023; 15(4):562-577. https://doi.org/10.3390/hematolrep15040059
Chicago/Turabian StyleYazdani, Armand N., Arian Abdi, Prathosh Velpuri, Parth Patel, Nathaniel DeMarco, Devendra K. Agrawal, and Vikrant Rai. 2023. "A Review of Hematological Complications and Treatment in COVID-19" Hematology Reports 15, no. 4: 562-577. https://doi.org/10.3390/hematolrep15040059