Effectiveness of Convalescent Plasma Therapy in COVID-19 Patients with Hematological Malignancies: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Inclusion and Exclusion Criteria
2.2. Quality Assessment and Risk of Bias Assessment
2.3. Data Extraction and Synthesis
2.4. Statistical Analysis
3. Results
3.1. Search Findings
3.2. Study Characteristics and Patients’ Demographics
3.3. Dose, Time of Administration and Clinical Outcomes of CPT
3.4. Assessment of Primary and Secondary Endpoints
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.-M.; Wang, W.; Song, Z.-G.; Hu, Y.; Tao, Z.-W.; Tian, J.-H.; Pei, Y.-Y.; et al. Author Correction: A New Coronavirus Associated with Human Respiratory Disease in China. Nature 2020, 580, E7. [Google Scholar] [CrossRef] [Green Version]
- Rnjak, D.; Ravlić, S.; Šola, A.M.; Halassy, B.; Šemnički, J.; Šuperba, M.; Hećimović, A.; Kurolt, I.C.; Kurtović, T.; Mačak Šafranko, Ž. COVID-19 convalescent plasma as long-term therapy in immunodeficient patients? Transfus. Clin. Biol. 2021, 28, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Cheng, Y.; Wu, Y. Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools. Virol. Sin. 2020, 35, 266–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decker, A.; Welzel, M.; Laubner, K.; Grundmann, S.; Kochs, G.; Panning, M.; Thimme, R.; Bode, C.; Wagner, D.; Lother, A. Prolonged SARS-CoV-2 Shedding and Mild Course of COVID-19 in a Patient after Recent Heart Transplantation. Am. J. Transpl. 2020, 20, 3239–3245. [Google Scholar] [CrossRef] [PubMed]
- Lemal, R.; Tournilhac, O.; Bay, J.O. Biological Markers in Haematological Malignancies. Bull Cancer 2014, 101, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Kuderer, N.M.; Choueiri, T.K.; Shah, D.P.; Shyr, Y.; Rubinstein, S.M.; Rivera, D.R.; Shete, S.; Hsu, C.-Y.; Desai, A.; Lima Lopes, G., Jr. Clinical Impact of COVID-19 on Patients with Cancer (CCC19): A Cohort Study. Lancet 2020, 395, 1907–1918. [Google Scholar] [CrossRef]
- Shankar, R.; Radhakrishnan, N.; Dua, S.; Arora, S.; Rana, M.; Sahu, D.K.; Rai, S.; Gupta, D.K. Convalescent Plasma to Aid in Recovery of COVID-19 Pneumonia in a Child with Acute Lymphoblastic Leukemia. Transfus. Apher. Sci. 2021, 60, 102956. [Google Scholar] [CrossRef]
- Tremblay, D.; Seah, C.; Schneider, T.; Bhalla, S.; Feld, J.; Naymagon, L.; Wang, B.; Patel, V.; Jun, T.; Jandl, T. Convalescent Plasma for the Treatment of Severe COVID-19 Infection in Cancer Patients. Cancer Med. 2020, 9, 8571–8578. [Google Scholar] [CrossRef]
- Bharadwaj, K.K.; Sarkar, T.; Ghosh, A.; Baishya, D.; Rabha, B.; Panda, M.K.; Nelson, B.R.; John, A.B.; Sheikh, H.I.; Dash, B.P. Macrolactin A as a Novel Inhibitory Agent for SARS-CoV-2 M(Pro. Bioinformatics Approach. Appl. Biochem. Biotechnol. 2021, 193, 3371–3394. [Google Scholar] [CrossRef]
- Rizk, J.G.; Forthal, D.N.; Kalantar-Zadeh, K.; Mehra, M.R.; Lavie, C.J.; Rizk, Y.; Pfeiffer, J.P.; Lewin, J.C. Expanded Access Programs, Compassionate Drug Use, and Emergency Use Authorizations during the COVID-19 Pandemic. Drug Discov. Today 2021, 26, 593–603. [Google Scholar] [CrossRef]
- Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Bull. World Health Organ. 2007, 85, 867–872. [Google Scholar] [CrossRef]
- Kaushik, A.; Gupta, S.; Sood, M.; Sharma, S.; Verma, S. A Systematic Review of Multisystem Inflammatory Syndrome in Children Associated with SARS-CoV-2 Infection. Pediatr. Infect. Dis. J. 2020, 39, 340–346. [Google Scholar] [CrossRef]
- Szwebel, T.A.; Veyer, D.; Robillard, N.; Eshagh, D.; Canoui, E.; Bruneau, T.; Contejean, A.; Azoulay, C.; Serrano, T.; Hueso, T. Usefulness of Plasma SARS-CoV-2 RNA Quantification by Droplet-Based Digital PCR to Monitor Treatment Against COVID-19 in a B-Cell Lymphoma Patient. Stem. Cell Rev. Rep. 2021, 17, 296–299. [Google Scholar] [CrossRef]
- Wright, Z.; Bersabe, A.; Eden, R.; Bradley, J.; Cap, A. Successful Use of COVID-19 Convalescent Plasma in a Patient Recently Treated for Follicular Lymphoma; Clin. Lymphoma Myeloma Leuk; Elsevier Inc.: Philadelphia, PA, USA, 2021; Volume 21. [Google Scholar]
- Thompson, M.A.; Henderson, J.P.; Shah, P.K.; Rubinstein, S.M.; Joyner, M.J.; Choueiri, T.K.; Flora, D.B.; Griffiths, E.A.; Gulati, A.P.; Hwang, C. Association of Convalescent Plasma Therapy with Survival in Patients with Hematologic Cancers and COVID-19. JAMA Oncol. 2021, 7, 1167–1175. [Google Scholar] [CrossRef]
- Luetkens, T.; Metcalf, R.; Planelles, V.; Zheng, Y.; Larragoite, E.T.; Spivak, E.S.; Spivak, A.M.; Steinbach, M.; Blaylock, R.C.; Avila, S.V. Successful transfer of anti-SARS-CoV-2 immunity using convalescent plasma in an MM patient with hypogammaglobulinemia and COVID-19. Blood Adv. 2020, 4, 4864–4868. [Google Scholar] [CrossRef]
- Moore, J.L.; Ganapathiraju, P.V.; Kurtz, C.P.; Wainscoat, B. A 63-Year-Old Woman with a History of Non-Hodgkin Lymphoma with Persistent SARS-CoV-2 Infection Who Was Seronegative and Treated with Convalescent Plasma. Am. J. Case Rep. 2020, 21, 927812. [Google Scholar] [CrossRef]
- Malsy, J.; Veletzky, L.; Heide, J.; Hennigs, A.; Gil-Ibanez, I.; Stein, A.; Lütgehetmann, M.; Rosien, U.; Jasper, D.; Peine, S. Sustained Response after Remdesivir and Convalescent Plasma Therapy in a B-Cell Depleted Patient with Protracted COVID-19. Clin. Infect. Dis. 2020, 73, 4020–4024. [Google Scholar] [CrossRef]
- Balashov, D.; Trakhtman, P.; Livshits, A.; Kovalenko, I.; Tereshenko, G.; Solopova, G.; Petraikina, E.; Maschan, A.; Novichkova, G. SARS-CoV-2 convalescent plasma therapy in pediatric patient after hematopoietic stem cell transplantation. Transfus. Apher. Sci. 2021, 60, 102983. [Google Scholar] [CrossRef]
- Biernat, M.M.; Kolasińska, A.; Kwiatkowski, J.; Urbaniak-Kujda, D.; Biernat, P.; Janocha-Litwin, J.; Szymczyk-Nużka, M.; Bursy, D.; Kalicińska, E.; Simon, K. Early Administration of Convalescent Plasma Improves Survival in Patients with Hematological Malignancies and COVID-19. Viruses 2021, 13, 436. [Google Scholar] [CrossRef]
- Çınar, O.E.; Sayınalp, B.; Aladağ Karakulak, E.; Avşar Karataş, A.; Velet, M.; İnkaya, A.Ç.; Ersoy Ortaç, N.E.; Öcal, S.; Aksu, S.; Haznedaroğlu, İ.C. Convalescent (immune) plasma treatment in a myelodysplastic COVID-19 patient with disseminated tuberculosis. Transfus. Apher. Sci. 2020, 59, 102821. [Google Scholar] [CrossRef]
- Dell’Isola, G.B.; Felicioni, M.; Ferraro, L.; Capolsini, I.; Cerri, C.; Gurdo, G.; Mastrodicasa, E.; Massei, M.S.; Perruccio, K.; Brogna, M. Case Report: Remdesivir and Convalescent Plasma in a Newly Acute B Lymphoblastic Leukemia Diagnosis With Concomitant Sars-CoV-2 Infection. Front. Pediatr. 2021, 9, 712603. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, S.; Caprioli, C.; Weber, A.; Rambaldi, A.; Lussana, F. Convalescent Hyperimmune Plasma for Chemo-Immunotherapy Induced Immunodeficiency in COVID-19 Patients with Hematological Malignancies. Leuk Lymphoma 2021, 62, 1490–1496. [Google Scholar] [CrossRef] [PubMed]
- Hueso, T.; Pouderoux, C.; Péré, H.; Beaumont, A.-L.; Raillon, L.-A.; Ader, F.; Chatenoud, L.; Eshagh, D.; Szwebel, T.-A.; Martinot, M. Convalescent Plasma Therapy for B-Cell-Depleted Patients with Protracted COVID-19. Blood 2020, 136, 2290–2295. [Google Scholar] [CrossRef] [PubMed]
- Jeyaraman, P.; Agrawal, N.; Bhargava, R.; Bansal, D.; Ahmed, R.; Bhurani, D.; Bansal, S.; Rastogi, N.; Borah, P.; Naithani, R. Convalescent Plasma Therapy for Severe Covid-19 in Patients with Hematological Malignancies. Transfus. Apher. Sci. 2021, 60, 103075. [Google Scholar] [CrossRef]
- Karataş, A.; İnkaya, A.Ç.; Demiroğlu, H.; Aksu, S.; Haziyev, T.; Çınar, O.E.; Alp, A.; Uzun, Ö.; Sayınalp, N.; Göker, H. Prolonged Viral Shedding in a Lymphoma Patient with COVID-19 Infection Receiving Convalescent Plasma. Transfus. Apher. Sci. 2020, 59, 102871. [Google Scholar] [CrossRef]
- Oliva, A.; Cancelli, F.; Brogi, A.; Curtolo, A.; Savelloni, G.; Siccardi, G.; Marcelli, G.; Mazzuti, L.; Ricci, P.; Turriziani, O. Convalescent Plasma for Haematological Patients with SARS-CoV-2 Pneumonia and Severe Depletion of B-Cell Lymphocytes Following Anti-CD20 Therapy: A Single-Centre Experience and Review of the Literature. New Microbiol. 2022, 45, 62–72. [Google Scholar]
- Borah, P.; Mirgh, S.; Sharma, S.K.; Bansal, S.; Dixit, A.; Dolai, T.K.; Lunkad, S.; Gupta, N.; Singh, G.; Jain, A. Effect of Age, Comorbidity and Remission Status on Outcome of COVID-19 in Patients with Hematological Malignancies. Blood Cells Mol. Dis. 2021, 87, 102525. [Google Scholar] [CrossRef] [PubMed]
- Wardhani, S.O.; Fajar, J.K.; Wulandari, L.; Soegiarto, G.; Purnamasari, Y.; Asmiragani, A.; Maliga, H.A.; Ilmawan, M.; Seran, G.; Iskandar, D.S. Association between Convalescent Plasma and the Risk of Mortality among Patients with COVID-19: A Meta-Analysis. F1000Research 2021, 10, 64. [Google Scholar] [CrossRef]
- Abeldaño Zuñiga, R.A.; Coca, S.M.; Abeldaño, G.F.; González-Villoria, R.A.M. Clinical Effectiveness of Drugs in Hospitalized Patients with COVID-19: A Systematic Review and Meta-Analysis. Ther. Adv. Respir. Dis. 2021, 15, 17534666211007214. [Google Scholar] [CrossRef]
- Barreira, D.F.; Lourenço, R.A.; Calisto, R.; Moreira-Gonçalves, D.; Santos, L.L.; Videira, P.A. Assessment of the Safety and Therapeutic Benefits of Convalescent Plasma in COVID-19 Treatment: A Systematic Review and Meta-Analysis. Front. Med. 2021, 8, 378. [Google Scholar] [CrossRef]
- Valk, S.J.; Piechotta, V.; Kimber, C.; Chai, K.L.; Monsef, I.; Doree, C.; Wood, E.M.; Lamikanra, A.A.; Roberts, D.J.; McQuilten, Z. Convalescent Plasma and Hyperimmune Immunoglobulin to Prevent Infection with SARS-CoV-2. Cochrane Database Syst. Rev. 2021, 10, CD01380. [Google Scholar]
- Bloch, E.M. COVID-19: Convalescent Plasma and Hyperimmune Globulin; Kleinman, S., Tirnauer, J.S., Feldweg, T.M., Eds.; UpToDate: Waltham, MA, USA, 2021. [Google Scholar]
- Duan, K.; Liu, B.; Li, C.; Zhang, H.; Yu, T.; Qu, J.; Zhou, M.; Chen, L.; Meng, S.; Hu, Y. Effectiveness of Convalescent Plasma Therapy in Severe COVID-19 Patients. Proc. Natl. Acad. Sci. USA 2020, 117, 9490–9496. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Mukherjee, A.; Kumar, G.; Chatterjee, P.; Bhatnagar, T.; Malhotra, P. Convalescent plasma in the management of moderate COVID-19 in adults in India: Open label phase II multicentre randomised controlled trial (PLACID Trial). BMJ 2020, 371, 3939. [Google Scholar] [CrossRef] [PubMed]
Author | Selection Criteria of Patients? * | Adequate Ascertainment Regarding the Exposure and the Outcome? * | Causality? * | Reporting? * | Total Score |
---|---|---|---|---|---|
Shankar et al. [7] | 2 | 2 | 2 | 2 | 8 |
Szwebel et al. [13] | 2 | 2 | 2 | 2 | 8 |
Wright et al. [14] | 2 | 2 | 2 | 2 | 8 |
Tremblay et al. [8] | 2 | 2 | 2 | 2 | 8 |
Thompson et al. [15] | 2 | 2 | 2 | 2 | 8 |
Luetkens et al. [16] | 2 | 2 | 2 | 2 | 8 |
Moore et al. [17] | 2 | 2 | 2 | 2 | 8 |
Malsy et al. [18] | 2 | 2 | 2 | 2 | 8 |
Rnjak et al. [2] | 2 | 2 | 2 | 2 | 8 |
Balashov et al. [19] | 2 | 2 | 2 | 2 | 8 |
Biernat et al. [20] | 2 | 2 | 2 | 2 | 8 |
Çınar et al. [21] | 2 | 2 | 2 | 2 | 8 |
Dell’Isola et al. [22] | 2 | 2 | 2 | 2 | 8 |
Ferrari et al. [23] | 2 | 2 | 2 | 2 | 8 |
Hueso et al. [24] | 2 | 2 | 2 | 2 | 8 |
Jeyaraman et al. [25] | 2 | 2 | 2 | 2 | 8 |
Karatas et al. [26] | 2 | 2 | 2 | 2 | 8 |
Oliva et al. [27] | 2 | 2 | 2 | 2 | 8 |
Author | Year | Country | Malignancy | Study Design | Sample Sizes CPT/Non-CPT | Age Median (Range) | Gender | Transplant |
---|---|---|---|---|---|---|---|---|
Shankar et al. [7] | 2021 | United States | ALL | Case report | 1/0 | 4 years | F | |
Szwebel et al. [13] | 2021 | France | HIV and cancer B-cell lymphoma | Case report | 1/0 | NA | M | ASCT |
Wright et al. [14] | 2021 | United States | FL | Case report | 1/0 | 54 years | M | |
Tremblay et al. [8] | 2020 | United States | Hematologic and solid cancer | Case series | 24/0 | 69 years (31–88) | 41.7% F, 58.3% M | |
Thompson et al. [15] | 2021 | Unites States | Hematologic cancer | Retrospective cohort study | 143/823 | 65 years | NA | |
Luetkens et al. [16] | 2020 | United States | MM | Case report | 1/0 | 72 years | F | 3 ASCT |
Moore et al. [17] | 2020 | United States | NHL | Case report | 1/0 | 63 years | F | |
Malsy et al. [18] | 2020 | Germany Croatia | FL | Case report | 1/0 | 53 years | F | |
Rnjak et al. [2] | 2021 | Russia | DLBCL | Case report | 1/0 | 53 years | M | ASCT |
Balashov et al. [19] | 2021 | Russia | Juvenile myelomonocytic leukemia | Case report | 1/0 | 9 months | F | HSCT |
Biernat et al. [20] | 2021 | Poland | Hematological malignancy (Acute leukemia/MDS, CLL, Aggressive Lymphoma, MM) | Retrospective cohort study | 23/22 | NA | 38% F, 62% M | |
Çınar et al. [21] | 2020 | Turkey | MDS complicated by recently disseminated tuberculosis with associated kidney disease | Case report | 1/0 | 55 years | M | |
Dell’Isola et al. [22] | 2021 | Italy | B-cell ALL | Case report | 1/0 | 6 years | F | |
Ferrari et al. [23] | 2021 | Italy | FL | Case report | 7/0 | 48 years | F | |
FL | 60 years | M | ||||||
Indolent NHL | 60 years | M | SCT | |||||
Primary myelofibrosis | 43 years | M | ||||||
DLBL | 70 years | M | ||||||
ALL | 69 years | M | SCT | |||||
CLL | 60 years | M | ||||||
Hueso et al. [24] | 2020 | France | B-cell lymphopenia | Observational multicenter study | 15/0 | 58 (35–77) | 5 F, 12 M | |
Jeyaraman et al. [25] | 2021 | India | Hematological malignancies | Retrospective observational multicenter study | 33/0 | 62 years (18–80) | 10 F, 23 M | 1 ASCT |
Karatas et al. [26] | 2020 | Turkey | Mixed cellularity classical Hodgkin lymphoma and peripheral T-cell lymphoma | Case report | 1/0 | 61 years | M | ASCT |
Oliva et al. [27] | 2022 | Italy | non-Hodgkin’s lymphoma | Retrospective observational single center study | 6 | 59.5 years | 6F |
Authors | Sample Sizes CPT/Non-CPT | Day of CPT Administration | No. of CP Units (Dosage) | Outcome Endpoint | Outcome | Mortality | Adverse Events to CPT | Drugs |
---|---|---|---|---|---|---|---|---|
Shankar et al. [7] | 1/0 | Day 8 and 9 post illness onset | 2 (15 mL/kg) | 14 Days | Asymptomatic after 14 days | 0% | None | Oxygen therapy, Steroids (hydrocortisone and dexamethasone) |
Szwebel et al. [13] | 1/0 | Day 65 and 66 post symptoms onset | 2 units daily | 70 Days | Asymptomatic after 70 days | 0% | None | Oxygen therapy, dexamethasone, oral prednisone, lopinavir/ritonavirm tocilizumab |
Wright et al. [14] | 1/0 | NA | 1 (200 mL) | 1 month | Asymptomatic after 1 month and improvement of bilateral pulmonary infiltrates | 0% | None | Azithromycin and HCQ, oxygen therapy and supportive care |
Tremblay et al. [8] | 24/0 | Median time: 3 days between doses | 2 (250 mL) | NA | 13 patients were discharged home, 1 patient still hospitalized, and 10 patients died | 41.7% | 3 patients had FNHTR | Oxygen therapy and HCQ or azithromycin or remdesiviror tocilizumab or combination |
Thompson et al. [15] | 143/823 | NA | - | Significantly improved 30-day mortality | 13.3% vs. 24.8% | None | Corticosteroids, remdesivir, tocilizumab, and HCQ | |
Luetkens et al. [16] | 1/0 | NA | 1 (200 mL) | 6 days | Asymptomatic at approximately 6 days from onset | 0% | None | Oxygen therapy |
Moore et al. [17] | 1/0 | Day 88 post illness onset | 1 (200 mL) | 97 days | Asymptomatic at approximately 97 days from onset | 0% | None | Metoprolol for heart rate regulation and apixaban for anticoagulation |
Malsy et al. [18] | 1/0 | Day 85 post illness onset | Two-course of 6 units (2 units/day administered every other day | 140 days | Asymptomatic at approximately 140 days from onset | 0% | None | Remdesivir |
Rnjak et al. [2] | 1/0 | Day 48, 49, 54, 55, 56, 57, 105 and 109 post illness onset | 8 (~200 mL) | 129 days | Afebrile with regression of pneumonia at 129 days from onset | 0% | None | Oxygen therapy, remdesivir and steroids |
Balashov et al. [19] | 1/0 | Day 146 post HSCT | 3 (10 mL/kg) | 4 months | Complete viral clearance, full resolution of the lung lesions on CT | 0% | None | Tocilizumab and methylprednisolone |
Biernat et al. [20] | 23/22 | Day 2–3 after diagnosis | 1–2 (200–250 mL) | Day 14 | Milder infection, less severe and faster resolution of symptoms, viral clearance | 13.0% vs. 41.0% | None | Oxygen therapy, mechanical ventilation, HCQ, Dexamethasone, Remdesivir, Tocilizumab, Lopinavir/Ritonavir |
Çınar et al. [21] | 1/0 | Day 5 post symptoms onset | 2 (200 mL) | Day 7 | Improved dyspnea and fever resolution, viral clearance | 0% | None | Tocilizumab and favipiravir |
Dell’Isola et al. [22] | 1/0 | Day 10 post admission | 3 (10 mL/kg) | Day 18 | Viral clearance | 0% | None | Remdesivir and prednisone |
Ferrari et al. [23] | 7/0 | NA | 3 (210 mL) | Day 2 | COVID-19 symptoms resolved, viral clearance, radiological improvement | 0% | None | Corticosteroid, HCQ, low-molecular-weight heparin, and antibiotics |
NA | Day 2 | COVID-19 symptoms resolved, viral clearance, radiological improvement | Corticosteroid, HCQ, low-molecular-weight heparin, and antibiotics | |||||
NA | Day 3 | COVID-19 symptoms resolved, radiological improvement | Corticosteroid, HCQ, low-molecular-weight heparin and antibiotics | |||||
NA | Day 7 | COVID-19 symptoms resolved, viral clearance | Corticosteroid, HCQ, low-molecular-weight heparin, and antibiotics | |||||
NA | N/A | COVID-19 symptoms resolved, viral clearance, radiological improvement | Corticosteroid, HCQ, low-molecular-weight heparin, and antibiotics | |||||
NA | Day 7 | COVID-19 symptoms resolved, viral clearance, radiological improvement | Corticosteroid, HCQ, low-molecular-weight heparin, and antibiotics | |||||
NA | Day 7 | COVID-19 symptoms resolved, viral clearance, radiological improvement | Corticosteroid, HCQ, low-molecular-weight heparin, and antibiotics | |||||
Hueso et al. [24] | 15/0 | Day 0 + 1 (2 units each) | 4 (200–220 mL) | Day 2 | Fever resolved, and COVID-19 symptoms resolved after 2 weeks, decrease in RNAemia within 7–14 days | 5.9% | None | Remdesivir and tocilizumab |
Jeyaraman et al. [25] | 33/0 | 4 days apart (range: 2–25 days) | 1–2 (200 mL) | Day 3 | Fever resolved | 45.5% | None | HCQ, remdesivir, favipiravir, other broad-spectrum antibiotics, steroids (methylprednisolone or dexamethasone), tocilizumab and oxygen support |
Karatas et al. [26] | 1/0 | Day 40 post admission | 1 | Day 34 | Persistent SARS-CoV-2 viral shedding for 74 days | 0% | None | HCQ and azithromycin |
Oliva et al. [27] | 6/0 | 51 post infection | 3 (300 mL) | 3–9 days | 5 survived and 1 death | 20% | 1 Transient sinustachycardia | anti-CD20 drugs with different anti-viral medications for each patient |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shibeeb, S.; Ajaj, I.; Al-Jighefee, H.; Abdallah, A.M. Effectiveness of Convalescent Plasma Therapy in COVID-19 Patients with Hematological Malignancies: A Systematic Review. Hematol. Rep. 2022, 14, 377-388. https://doi.org/10.3390/hematolrep14040052
Shibeeb S, Ajaj I, Al-Jighefee H, Abdallah AM. Effectiveness of Convalescent Plasma Therapy in COVID-19 Patients with Hematological Malignancies: A Systematic Review. Hematology Reports. 2022; 14(4):377-388. https://doi.org/10.3390/hematolrep14040052
Chicago/Turabian StyleShibeeb, Sapha, Ilham Ajaj, Hadeel Al-Jighefee, and Atiyeh M. Abdallah. 2022. "Effectiveness of Convalescent Plasma Therapy in COVID-19 Patients with Hematological Malignancies: A Systematic Review" Hematology Reports 14, no. 4: 377-388. https://doi.org/10.3390/hematolrep14040052
APA StyleShibeeb, S., Ajaj, I., Al-Jighefee, H., & Abdallah, A. M. (2022). Effectiveness of Convalescent Plasma Therapy in COVID-19 Patients with Hematological Malignancies: A Systematic Review. Hematology Reports, 14(4), 377-388. https://doi.org/10.3390/hematolrep14040052