Safety and Immunogenicity of a Single Dose of BNT162b2 COVID-19 mRNA Vaccine in a Warfarin-Treated Protein S Deficient Patient: A Case Report and Literature Review
Abstract
:1. Introduction
2. Case Description
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ten Kate, M.K.; van der Meer, J. Protein S deficiency: A clinical perspective. Haemophilia 2008, 14, 1222–1228. [Google Scholar] [CrossRef] [PubMed]
- Stoichitoiu, L.E.; Pinte, L.; Balea, M.I.; Nedelcu, V.; Badea, C.; Baicus, C. Anticoagulant protein S in COVID-19: Low activity, and associated with outcome. Rom. J. Intern. Med. 2020, 58, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Lemke, G.; Silverman, G.J. Blood clots and TAM receptor signalling in COVID-19 pathogenesis. Nat. Rev. Immunol. 2020, 20, 395–396. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cao, W.; Jiang, W.; Xiao, M.; Li, Y.; Tang, N.; Liu, Z.; Yan, X.; Zhao, Y.; Li, T.; et al. Profile of natural anticoagulant, coagulant factor and anti-phospholipid antibody in critically ill COVID-19 patients. J. Thromb. Thrombolysis 2020, 50, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Gierula, M.; Ahnstrom, J. Anticoagulant protein S-New insights on interactions and functions. J. Thromb. Haemost. 2020, 18, 2801–2811. [Google Scholar] [CrossRef] [PubMed]
- Pilli, V.S.; Plautz, W.; Majumder, R. The Journey of Protein S from an Anticoagulant to a Signaling Molecule. JSM Biochem. Mol. Biol. 2016, 3, 1014. [Google Scholar] [PubMed]
- Van der Meer, J.H.; van der Poll, T.; van ‘t Veer, C. TAM receptors, Gas6, and protein S: Roles in inflammation and hemostasis. Blood 2014, 123, 2460–2469. [Google Scholar] [CrossRef] [PubMed]
- Lumbroso, D.; Soboh, S.; Maimon, A.; Schif-Zuck, S.; Ariel, A.; Burstyn-Cohen, T. Macrophage-Derived Protein S Facilitates Apoptotic Polymorphonuclear Cell Clearance by Resolution Phase Macrophages and Supports Their Reprogramming. Front. Immunol. 2018, 9, 358. [Google Scholar] [CrossRef] [PubMed]
- Carrera Silva, E.A.; Chan, P.Y.; Joannas, L.; Errasti, A.E.; Gagliani, N.; Bosurgi, L.; Jabbour, M.; Perry, A.; Smith-Chakmakova, F.; Mucida, D.; et al. T cell-derived protein S engages TAM receptor signaling in dendritic cells to control the magnitude of the immune response. Immunity 2013, 39, 160–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruzicka, J.A. Identification of the antithrombotic protein S as a potential target of the SARS-CoV-2 papain-like protease. Thromb. Res. 2020, 196, 257–259. [Google Scholar] [CrossRef] [PubMed]
- Lemke, G. Biology of the TAM receptors. Cold Spring Harb. Perspect. Biol. 2013, 5, a009076. [Google Scholar] [CrossRef] [PubMed]
- Abu Jabal, K.; Ben-Amram, H.; Beiruti, K.; Batheesh, Y.; Sussan, C.; Zarka, S.; Edelstein, M. Impact of age, ethnicity, sex and prior infection status on immunogenicity following a single dose of the BNT162b2 mRNA COVID-19 vaccine: Real-world evidence from healthcare workers, Israel, December 2020 to January 2021. Eurosurveillance 2021, 26, 2100096. [Google Scholar] [CrossRef]
- Hirotsu, Y.; Amemiya, K.; Sugiura, H.; Shinohara, M.; Takatori, M.; Mochizuki, H.; Omata, M. Robust Antibody Responses to the BNT162b2 mRNA Vaccine Occur Within a Week After the First Dose in Previously Infected Individuals and After the Second Dose in Uninfected Individuals. Front. Immunol. 2021, 12, 722766. [Google Scholar] [CrossRef]
- Eyre, D.W.; Lumley, S.F.; Wei, J.; Cox, S.; James, T.; Justice, A.; Jesuthasan, G.; O’Donnell, D.; Howarth, A.; Hatch, S.B.; et al. Quantitative SARS-CoV-2 anti-spike responses to Pfizer-BioNTech and Oxford-AstraZeneca vaccines by previous infection status. Clin. Microbiol. Infect. 2021, 27, 1516.e7–1516.e14. [Google Scholar] [CrossRef] [PubMed]
- Salvaggio, M.; Fusina, F.; Albani, F.; Salvaggio, M.; Beschi, R.; Ferrari, E.; Costa, A.; Agnoletti, L.; Facchi, E.; Natalini, G. Antibody Response after BNT162b2 Vaccination in Healthcare Workers Previously Exposed and Not Exposed to SARS-CoV-2. J. Clin. Med. 2021, 10, 4204. [Google Scholar] [CrossRef] [PubMed]
- Peeters, M.J.W.; Dulkeviciute, D.; Draghi, A.; Ritter, C.; Rahbech, A.; Skadborg, S.K.; Seremet, T.; Carnaz Simoes, A.M.; Martinenaite, E.; Halldorsdottir, H.R.; et al. MERTK Acts as a Costimulatory Receptor on Human CD8(+) T Cells. Cancer Immunol. Res. 2019, 7, 1472–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabezon, R.; Carrera-Silva, E.A.; Florez-Grau, G.; Errasti, A.E.; Calderon-Gomez, E.; Lozano, J.J.; Espana, C.; Ricart, E.; Panes, J.; Rothlin, C.V.; et al. MERTK as negative regulator of human T cell activation. J. Leukoc. Biol. 2015, 97, 751–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kater, A.P.; Peppelenbosch, M.P.; Brandjes, D.P.; Lumbantobing, M. Dichotomal effect of the coumadin derivative warfarin on inflammatory signal transduction. Clin. Diagn. Lab. Immunol. 2002, 9, 1396–1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anwar, A.; Keating, A.K.; Joung, D.; Sather, S.; Kim, G.K.; Sawczyn, K.K.; Brandao, L.; Henson, P.M.; Graham, D.K. Mer tyrosine kinase (MerTK) promotes macrophage survival following exposure to oxidative stress. J. Leukoc. Biol. 2009, 86, 73–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruserud, O.; Lundin, K. The effect of drugs used in anticoagulation therapy on T lymphocyte activation in vitro. II. Warfarin inhibits T lymphocyte activation. J. Clin. Lab. Immunol. 1987, 23, 169–173. [Google Scholar] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cucunawangsih, C.; Wijaya, R.S.; Lugito, N.P.H.; Suriapranata, I. Safety and Immunogenicity of a Single Dose of BNT162b2 COVID-19 mRNA Vaccine in a Warfarin-Treated Protein S Deficient Patient: A Case Report and Literature Review. Hematol. Rep. 2022, 14, 373-376. https://doi.org/10.3390/hematolrep14040051
Cucunawangsih C, Wijaya RS, Lugito NPH, Suriapranata I. Safety and Immunogenicity of a Single Dose of BNT162b2 COVID-19 mRNA Vaccine in a Warfarin-Treated Protein S Deficient Patient: A Case Report and Literature Review. Hematology Reports. 2022; 14(4):373-376. https://doi.org/10.3390/hematolrep14040051
Chicago/Turabian StyleCucunawangsih, Cucunawangsih, Ratna Sari Wijaya, Nata Pratama Hardjo Lugito, and Ivet Suriapranata. 2022. "Safety and Immunogenicity of a Single Dose of BNT162b2 COVID-19 mRNA Vaccine in a Warfarin-Treated Protein S Deficient Patient: A Case Report and Literature Review" Hematology Reports 14, no. 4: 373-376. https://doi.org/10.3390/hematolrep14040051
APA StyleCucunawangsih, C., Wijaya, R. S., Lugito, N. P. H., & Suriapranata, I. (2022). Safety and Immunogenicity of a Single Dose of BNT162b2 COVID-19 mRNA Vaccine in a Warfarin-Treated Protein S Deficient Patient: A Case Report and Literature Review. Hematology Reports, 14(4), 373-376. https://doi.org/10.3390/hematolrep14040051