Safety and Immunogenicity of a Single Dose of BNT162b2 COVID-19 mRNA Vaccine in a Warfarin-Treated Protein S Deficient Patient: A Case Report and Literature Review
Abstract
1. Introduction
2. Case Description
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ten Kate, M.K.; van der Meer, J. Protein S deficiency: A clinical perspective. Haemophilia 2008, 14, 1222–1228. [Google Scholar] [CrossRef] [PubMed]
- Stoichitoiu, L.E.; Pinte, L.; Balea, M.I.; Nedelcu, V.; Badea, C.; Baicus, C. Anticoagulant protein S in COVID-19: Low activity, and associated with outcome. Rom. J. Intern. Med. 2020, 58, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Lemke, G.; Silverman, G.J. Blood clots and TAM receptor signalling in COVID-19 pathogenesis. Nat. Rev. Immunol. 2020, 20, 395–396. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cao, W.; Jiang, W.; Xiao, M.; Li, Y.; Tang, N.; Liu, Z.; Yan, X.; Zhao, Y.; Li, T.; et al. Profile of natural anticoagulant, coagulant factor and anti-phospholipid antibody in critically ill COVID-19 patients. J. Thromb. Thrombolysis 2020, 50, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Gierula, M.; Ahnstrom, J. Anticoagulant protein S-New insights on interactions and functions. J. Thromb. Haemost. 2020, 18, 2801–2811. [Google Scholar] [CrossRef] [PubMed]
- Pilli, V.S.; Plautz, W.; Majumder, R. The Journey of Protein S from an Anticoagulant to a Signaling Molecule. JSM Biochem. Mol. Biol. 2016, 3, 1014. [Google Scholar] [PubMed]
- Van der Meer, J.H.; van der Poll, T.; van ‘t Veer, C. TAM receptors, Gas6, and protein S: Roles in inflammation and hemostasis. Blood 2014, 123, 2460–2469. [Google Scholar] [CrossRef] [PubMed]
- Lumbroso, D.; Soboh, S.; Maimon, A.; Schif-Zuck, S.; Ariel, A.; Burstyn-Cohen, T. Macrophage-Derived Protein S Facilitates Apoptotic Polymorphonuclear Cell Clearance by Resolution Phase Macrophages and Supports Their Reprogramming. Front. Immunol. 2018, 9, 358. [Google Scholar] [CrossRef] [PubMed]
- Carrera Silva, E.A.; Chan, P.Y.; Joannas, L.; Errasti, A.E.; Gagliani, N.; Bosurgi, L.; Jabbour, M.; Perry, A.; Smith-Chakmakova, F.; Mucida, D.; et al. T cell-derived protein S engages TAM receptor signaling in dendritic cells to control the magnitude of the immune response. Immunity 2013, 39, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Ruzicka, J.A. Identification of the antithrombotic protein S as a potential target of the SARS-CoV-2 papain-like protease. Thromb. Res. 2020, 196, 257–259. [Google Scholar] [CrossRef] [PubMed]
- Lemke, G. Biology of the TAM receptors. Cold Spring Harb. Perspect. Biol. 2013, 5, a009076. [Google Scholar] [CrossRef] [PubMed]
- Abu Jabal, K.; Ben-Amram, H.; Beiruti, K.; Batheesh, Y.; Sussan, C.; Zarka, S.; Edelstein, M. Impact of age, ethnicity, sex and prior infection status on immunogenicity following a single dose of the BNT162b2 mRNA COVID-19 vaccine: Real-world evidence from healthcare workers, Israel, December 2020 to January 2021. Eurosurveillance 2021, 26, 2100096. [Google Scholar] [CrossRef]
- Hirotsu, Y.; Amemiya, K.; Sugiura, H.; Shinohara, M.; Takatori, M.; Mochizuki, H.; Omata, M. Robust Antibody Responses to the BNT162b2 mRNA Vaccine Occur Within a Week After the First Dose in Previously Infected Individuals and After the Second Dose in Uninfected Individuals. Front. Immunol. 2021, 12, 722766. [Google Scholar] [CrossRef]
- Eyre, D.W.; Lumley, S.F.; Wei, J.; Cox, S.; James, T.; Justice, A.; Jesuthasan, G.; O’Donnell, D.; Howarth, A.; Hatch, S.B.; et al. Quantitative SARS-CoV-2 anti-spike responses to Pfizer-BioNTech and Oxford-AstraZeneca vaccines by previous infection status. Clin. Microbiol. Infect. 2021, 27, 1516.e7–1516.e14. [Google Scholar] [CrossRef] [PubMed]
- Salvaggio, M.; Fusina, F.; Albani, F.; Salvaggio, M.; Beschi, R.; Ferrari, E.; Costa, A.; Agnoletti, L.; Facchi, E.; Natalini, G. Antibody Response after BNT162b2 Vaccination in Healthcare Workers Previously Exposed and Not Exposed to SARS-CoV-2. J. Clin. Med. 2021, 10, 4204. [Google Scholar] [CrossRef] [PubMed]
- Peeters, M.J.W.; Dulkeviciute, D.; Draghi, A.; Ritter, C.; Rahbech, A.; Skadborg, S.K.; Seremet, T.; Carnaz Simoes, A.M.; Martinenaite, E.; Halldorsdottir, H.R.; et al. MERTK Acts as a Costimulatory Receptor on Human CD8(+) T Cells. Cancer Immunol. Res. 2019, 7, 1472–1484. [Google Scholar] [CrossRef] [PubMed]
- Cabezon, R.; Carrera-Silva, E.A.; Florez-Grau, G.; Errasti, A.E.; Calderon-Gomez, E.; Lozano, J.J.; Espana, C.; Ricart, E.; Panes, J.; Rothlin, C.V.; et al. MERTK as negative regulator of human T cell activation. J. Leukoc. Biol. 2015, 97, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Kater, A.P.; Peppelenbosch, M.P.; Brandjes, D.P.; Lumbantobing, M. Dichotomal effect of the coumadin derivative warfarin on inflammatory signal transduction. Clin. Diagn. Lab. Immunol. 2002, 9, 1396–1397. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Anwar, A.; Keating, A.K.; Joung, D.; Sather, S.; Kim, G.K.; Sawczyn, K.K.; Brandao, L.; Henson, P.M.; Graham, D.K. Mer tyrosine kinase (MerTK) promotes macrophage survival following exposure to oxidative stress. J. Leukoc. Biol. 2009, 86, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Bruserud, O.; Lundin, K. The effect of drugs used in anticoagulation therapy on T lymphocyte activation in vitro. II. Warfarin inhibits T lymphocyte activation. J. Clin. Lab. Immunol. 1987, 23, 169–173. [Google Scholar] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cucunawangsih, C.; Wijaya, R.S.; Lugito, N.P.H.; Suriapranata, I. Safety and Immunogenicity of a Single Dose of BNT162b2 COVID-19 mRNA Vaccine in a Warfarin-Treated Protein S Deficient Patient: A Case Report and Literature Review. Hematol. Rep. 2022, 14, 373-376. https://doi.org/10.3390/hematolrep14040051
Cucunawangsih C, Wijaya RS, Lugito NPH, Suriapranata I. Safety and Immunogenicity of a Single Dose of BNT162b2 COVID-19 mRNA Vaccine in a Warfarin-Treated Protein S Deficient Patient: A Case Report and Literature Review. Hematology Reports. 2022; 14(4):373-376. https://doi.org/10.3390/hematolrep14040051
Chicago/Turabian StyleCucunawangsih, Cucunawangsih, Ratna Sari Wijaya, Nata Pratama Hardjo Lugito, and Ivet Suriapranata. 2022. "Safety and Immunogenicity of a Single Dose of BNT162b2 COVID-19 mRNA Vaccine in a Warfarin-Treated Protein S Deficient Patient: A Case Report and Literature Review" Hematology Reports 14, no. 4: 373-376. https://doi.org/10.3390/hematolrep14040051
APA StyleCucunawangsih, C., Wijaya, R. S., Lugito, N. P. H., & Suriapranata, I. (2022). Safety and Immunogenicity of a Single Dose of BNT162b2 COVID-19 mRNA Vaccine in a Warfarin-Treated Protein S Deficient Patient: A Case Report and Literature Review. Hematology Reports, 14(4), 373-376. https://doi.org/10.3390/hematolrep14040051