Adaptability and Phenotypic Stability of Early-Maturing Cowpea (Vigna unguiculata (L.) Walp.) Lines in the Peruvian Amazon
Abstract
1. Introduction
2. Materials and Methods
- -
- Yield grain (GY): assessed in balance after harvest.
- -
- Number of pods per plant (NPP): counted on ten randomly selected plants per plot at harvest
- -
- Days to flowering (DF): days from sowing to the point when 50% of plants had at least one open flower.
- -
- Days to 50% maturity (D50M): days from sowing until 50% of pods changed color from green to light green.
- -
- Days to harvest (DH): days from sowing until 95% of pods were fully dry.
3. Results
3.1. Environmental Effects
3.2. Adaptability and Stability Analyses
3.3. Comparative Analysis of Climate Data and Trends
4. Discussion
4.1. Importance of Muyuy, Rafael Belaunde, and San Miguel
4.2. G × E Interaction and Adaptability and Stability Analysis
4.3. Climate Change in the Amazon Region
4.4. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| GY | Grain yield |
| NPP | Number of pods per plant |
| DF | Days to flowering |
| D50M | Days to 50% maturity |
| DH | Days to harvest |
| GGE | Genotype + Genotype-by-Environment interaction |
| AMMI | Additive Main effects and Multiplicative Interaction |
References
- Gondwe, T.; Alamu, E.O.; Mdziniso, P.; Maziya Dixon, B. Cowpea (Vigna unguiculata (L.) Walp) for food security: An evaluation of end-user traits of improved varieties in Swaziland. Sci. Rep. 2019, 9, 15991. [Google Scholar] [CrossRef]
- Singh, B.B. Cowpea [Vigna unguiculata (L.) Walp.]. In Genetic Resources, Chromosome Engineering and Crop Improvement; Singh, R.J.J.P.P., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 138–196. [Google Scholar]
- UNICAMP. Tabela Brasileira de Composição de Alimentos; NEPA–UNICAMP: Campinas, Brazil, 2011. [Google Scholar]
- FAOSTAT. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 1 May 2025).
- Yan, W.; Kang, M.S. GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Matova, P.M.; Gasura, E. Yield and stability of new cowpea varieties in Zimbabwe. Afr. Crop Sci. J. 2018, 26, 277. [Google Scholar] [CrossRef]
- Mekonnen, T.W.; Mekbib, F.; Amsalu, B.; Gedil, M.; Labuschagne, M. Genotype by environment interaction and grain yield stability of drought tolerant cowpea landraces in Ethiopia. Euphytica 2022, 218, 57. [Google Scholar] [CrossRef]
- Mbeyagala, E.K.; Ariko, J.B.; Atimango, A.O.; Amuge, E.S. Yield stability among cowpea genotypes evaluated in different environments in Uganda. Cogent Food Agric. 2021, 7, 1914368. [Google Scholar] [CrossRef]
- Abiriga, F.; Ongom, P.O.; Rubaihayo, P.; Edema, R.; Thanmai, P.; Dramadri, I.; Orawu, M. Harnessing genotype-by-environment interaction to determine adaptability of advanced cowpea lines to multiple environments in Uganda. J. Plant Breed. Crop Sci. 2020, 12, 131–145. [Google Scholar] [CrossRef]
- Kusi, F.; Amoah, R.A.; Attamah, P.; Alhassan, S.N.; Yahaya, D.; Awuku, F.J.; Nbonyine, J.A.; Amegbor, I.K.; Mensah, G.; Sugri, I.; et al. Genotype x environment interaction effect on grain yield of cowpea (Vigna unguiculata (L.) Walp) in Deciduous forest and Sudan savanna ecologies of Ghana. PLoS ONE 2025, 20, e0314464. [Google Scholar] [CrossRef]
- Alves, S.M.; Júnior, J.Â.N.M.; Marques, M.R.; Silva, K.J.D.; Olibone, D. Adaptability, stability, and agronomic performance of cowpea lines in Mato Grosso, Brazil. Rev. Bras. Cienc. Agrar. 2020, 15, 1–7. [Google Scholar] [CrossRef]
- Araújo, M.D.S.; Aragão, W.F.L.D.; Santos, S.P.D.; Freitas, T.K.T.; Saraiva, V.D.C.; Damasceno-Silva, K.J.; Dias, L.A.D.S.; Rocha, M.D.M. Evaluation of adaptability and stability for iron, zinc and protein content in cowpea genotypes using GGE biplot approach. Heliyon 2022, 8, e11832. [Google Scholar] [CrossRef]
- Rolim, R.R.; Nascimento, N.F.F.D.; Nascimento, M.F.; Araújo, H.F.P.D. Genotype x environment interaction and stability in landraces of cowpea under dryland conditions. Rev. Caatinga 2023, 36, 339–348. [Google Scholar] [CrossRef]
- Arguelho, S.B.D.; Silva, M.L.D.; Teodoro, P.E.; Teodoro, L.P.R.; Arevalo, A.C.M.; Ceccon, G. Adaptability and yield stability of cowpea genotypes in Mato Grosso do Sul. Crop Breed. Appl. Biotechnol. 2023, 23, e467023410. [Google Scholar] [CrossRef]
- Santos, A.D.; Ceccon, G.; Rodrigues, E.V.; Teodoro, P.E.; Corrêa, A.M.; Torres, F.E.; Alvarez, R.D.C.F. Selection of cowpea genotypes for Mato Grosso do Sul via GGE Biplot and linear regression. Biosci. J. 2017, 33, 631–638. [Google Scholar] [CrossRef]
- Sousa, M.B.E.; Damasceno-Silva, K.J.; Rocha, M.D.M.; Júnior, J.Â.N.D.M.; Lima, L.R.L. Genotype by environment interaction in cowpea lines using GGE biplot method. Rev. Caatinga 2018, 31, 64–71. [Google Scholar] [CrossRef]
- Santos, A.D.; Torres, F.E.; Rodrigues, E.V.; Pantaleão, A.D.A.; Teodoro, L.P.R.; Bhering, L.L.; Teodoro, P.E. Nonlinear regression and multivariate analysis used to study the phenotypic stability of cowpea genotypes. HortScience 2019, 54, 1682–1685. [Google Scholar] [CrossRef]
- Cruz, D.P.D.; Gravina, G.D.A.; Vivas, M.; Entringer, G.C.; Rocha, R.S.; Jaeggi, M.E.P.D.C.; Gravina, L.M.; Pereira, I.M.; Júnior, A.T.D.A.; Moraes, R.D.; et al. Analysis of the phenotypic adaptability and stability of strains of cowpea through the GGE Biplot approach. Euphytica 2020, 216, 160. [Google Scholar] [CrossRef]
- Goa, Y.; Mohammed, H.; Worku, W.; Urage, E. Genotype by environment interaction and yield stability of cowpea (Vigna unguiculata (L.) Walp.) genotypes in moisture limited areas of Southern Ethiopia. Heliyon 2022, 8, e09013. [Google Scholar] [CrossRef] [PubMed]
- Aleme, M.; Mengistu, G.; Tulu, D.; Dejene, M.; Temteme, S.; Feyissa, F. Stability analysis of dry matter and seed yield of cowpea [Vigna unguiculata (L.) walp.] genotypes in humid and lowland areas of southwestern Ethiopia. Ecol. Genet. Genom. 2024, 33, 100295. [Google Scholar] [CrossRef]
- Nassir, A.L.; Olayiwola, M.O.; Olagunju, S.O.; Adewusi, K.M.; Jinadu, S.S. Genotype × environment analysis of cowpea grain production in the forest and derived savannah cultivation ecologies. Agro-Science 2021, 20, 20–24. [Google Scholar] [CrossRef]
- Araméndiz-Tatis, H.; Camacho, M.M.E.; Ayala, C. Adaptation and stability of cowpea (Vigna unguiculata (L.) Walp) bean cultivars in the tropical dry forest of Colombia. Aust. J. Crop Sci. 2019, 13, 1009–1016. [Google Scholar] [CrossRef]
- Hendrie, F.N.; Francisco, R.F.F.; Valdenir, Q.R.; Regina, L.F.G. Grain yield adaptability and stability of blackeyed cowpea genotypes under rainfed agriculture in Brazil. Afr. J. Agric. Res. 2014, 9, 255–261. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar]
- Mohammed, S.B.; Ongom, P.O.; Togola, A.; Boukar, O. Enhancing Cowpea Tolerance to Elevated Temperature: Achievements, Challenges and Future Directions. Agronomy 2024, 14, 513. [Google Scholar] [CrossRef]
- Warrag, M.O.A.; Hall, A.E. Reproductive responses of cowpea (Vigna unguiculata (L.) Walp.) to heat stress. II. Responses to night air temperature. Field Crops Res. 1984, 8, 17–33. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis; Page, A.L., Ed.; Soil Science Society of America (SSSA): Madison, WI, USA, 1982. [Google Scholar]
- Pimentel-Gomes, F. Curso de Estatística Experimental; FEALQ: Piracicaba, Brazil, 2023; p. 451. [Google Scholar]
- Annicchiarico, P. Cultivar adaptation and recommendation from alfalfa trials in Northern Italy. J. Genet. Breed. 1992, 46, 269–278. [Google Scholar]
- Gauch, H.G., Jr. Statistical Analysis of Yield Trials by AMMI and GGE. Crop Sci. 2006, 46, 1488–1500. [Google Scholar] [CrossRef]
- Cruz, C.D. GENES: A software package for analysis in experimental statistics and quantitative genetics. Acta Sci. Agron. 2013, 35, 271–276. [Google Scholar] [CrossRef]
- Olivoto, T.; Lúcio, A.D.C. metan: An R package for multi-environment trial analysis. Methods Ecol. Evol. 2020, 11, 783–789. [Google Scholar] [CrossRef]
- Zhang, X.; Vincent, L.A.; Hogg, W.D.; Niitsoo, A. Temperature and precipitation trends in Canada during the 20th century. Atmos. Ocean. 2000, 38, 395–429. [Google Scholar] [CrossRef]
- Bronaugh, D.W.; Schoeneberg, A. Zyp: Zhang + Yue-Pilon Trends Package, Version 0.10-1 CRAN. Available online: https://CRAN.R-project.org/package=zyp (accessed on 1 October 2025).
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 1 October 2025).
- Pohlert, T. Trend: Non-Parametric Trend Tests and Change-Point Detection. R Package Version 1.1.6. Available online: https://CRAN.R-project.org/package=trend (accessed on 1 October 2025).
- Almeida, A.L.G.; Mingotte, F.L.C.; Coelho, A.P.; Lemos, L.B.; Melo, F.B.; Prado, R.M. Agronomic performance of cowpea cultivars (Vigna unguiculata (L.) Walp) under application of limestone doses. Rev. Bras. Cienc. Agrar. 2021, 16, 1–10. [Google Scholar] [CrossRef]
- Souza, L.H.; Novais, R.F.; Alvarez V., V.H.; Villani, E.M.D.A. Efeito do pH do solo rizosférico e não rizosférico de plantas de soja inoculadas com Bradyrhizobium japonicum na absorção de boro, cobre, ferro, manganês e zinco. R. Bras. Ci. Solo 2010, 34, 1641–1652. [Google Scholar] [CrossRef]
- Santos, A.D.; Ceccon, G.; Teodoro, P.E.; Corrêa, A.M.; Alvarez, R.D.C.F.; Silva, J.F.D.; Alves, V.B. Adaptability and stability of erect cowpea genotypes via REML/BLUP and GGE Biplot. Bragantia 2016, 75, 299–306. [Google Scholar] [CrossRef]
- Owusu, E.Y.; Karikari, B.; Kusi, F.; Haruna, M.; Amoah, R.A.; Attamah, P.; Adazebra, G.; Sie, E.K.; Issahaku, M. Genetic variability, heritability and correlation analysis among maturity and yield traits in Cowpea (Vigna unguiculata (L) Walp) in Northern Ghana. Heliyon 2021, 7, e07890. [Google Scholar] [CrossRef] [PubMed]



| Characteristics | Unit | Environments | ||
|---|---|---|---|---|
| San Miguel | Rafael Belaunde | Muyuy | ||
| Clay | (%) | 34.1 | 16.1 | 34.6 |
| Silt | (%) | 57.3 | 23.3 | 52.6 |
| Sand | (%) | 8.6 | 60.6 | 12.8 |
| pH H2O | 5.7 | 7.2 | 5.5 | |
| P | mg/kg | 18.2 | 7.5 | 13.9 |
| H+ + Al3+ | cmolc/dm3 | 0.5 | 0.3 | 0.3 |
| K+ | cmolc/dm3 | 0.2 | 0.1 | 0.1 |
| Ca2+ | cmolc/dm3 | 9.3 | 5.1 | 18.2 |
| Mg2+ | cmolc/dm3 | 2.9 | 0.5 | 3.0 |
| ECEC | cmolc/dm3 | 12.8 | 6.0 | 21.6 |
| M | % | 3.9 | 5.0 | 1.4 |
| Organic Carbon | % | 0.9 | 0.3 | 0.8 |
| N | % | 0.1 | 0.0 | 0.1 |
| Bulk density | g/cm3 | 1.3 | 1.5 | 0.0 |
| Mean Square | ||||||
|---|---|---|---|---|---|---|
| FV | GL | Yield Grain (kg/ha) | Number of Pods per Plant | Days to Flowering | Days to 50% Maturity | Days to Harvest |
| Environment (E) | 2 | 1,564,786.7 ** | 1109.9 ** | 1.7 ** | 30.5 ** | 27.7 ** |
| Block/E | 3 | 24,993.0 ns | 73.9 * | 1.4 * | 4.0 * | 18.0 ** |
| Genotype (G) | 11 | 8971.4 ns | 34.0 ns | 9.9 ** | 25.0 ** | 10.1 ** |
| G × E | 22 | 8490.9 ns | 15.2 ns | 0.8 * | 3.6 ** | 2.2 * |
| Error | 33 | 22,705.7 | 17.7 | 0.4 | 1.1 | 1.1 |
| Total | 71 | |||||
| Mean | 815.38 | 33.25 | 43.19 | 62.32 | 69.47 | |
| CV (%) | 18.82 | 12.66 | 1.39 | 1.66 | 1.50 | |
| Environment | Yield Grain (kg/ha) | Number of Pods per Plant | Days to Flowering | Days to 50% Maturity | Days to Harvest |
|---|---|---|---|---|---|
| Muyuy | 1027.8 a | 40.2 a | 43.5 a | 63.3 a | 70.7 a |
| Rafael Belaunde | 532.1 c | 26.6 c | 43.1 b | 62.6 b | 69.2 b |
| San Miguel | 886.3 b | 33.0 b | 43.0 b | 61.1 c | 68.6 b |
| Site | Mean | Ij | Class |
|---|---|---|---|
| Grain yield—GY (kg ha−1) | |||
| San Miguel | 886.25 | 70.87 | Favorable |
| Rafael Belaunde | 532.08 | −283.29 | Unfavorable |
| Muyuy | 1027.79 | 212.41 | Favorable |
| Number of pods per plant—NPP | |||
| San Miguel | 32.96 | −0.29 | Unfavorable |
| Rafael Belaunde | 26.60 | −6.65 | Unfavorable |
| Muyuy | 40.19 | 6.94 | Favorable |
| Days to flowering—DF † | |||
| San Miguel | 43.00 | −0.19 | Favorable |
| Rafael Belaunde | 43.08 | −0.11 | Favorable |
| Muyuy | 43.50 | 0.31 | Unfavorable |
| Days to 50% maturity—D50M † | |||
| San Miguel | 61.08 | −1.24 | Favorable |
| Rafael Belaunde | 62.58 | 0.26 | Unfavorable |
| Muyuy | 63.29 | 0.97 | Unfavorable |
| Days to harvest—DH † | |||
| San Miguel | 68.58 | −0.89 | Favorable |
| Rafael Belaunde | 69.17 | −0.31 | Favorable |
| Muyuy | 70.67 | 1.19 | Unfavorable |
| Lines | Yield Grain (kg ha−1) † | Number of Pods per Plant | Days to Flowering | Days to 50% Maturity | Days to Harvest |
|---|---|---|---|---|---|
| CAR 3002 | 780.6 | 35.2 | 42.5 de | 62.3 c | 69.8 a |
| CAR 3003 | 753.4 | 36.2 | 40.7 f | 60.5 e | 68.0 b |
| CAR 3004 | 778.6 | 34.0 | 42.2 e | 61.0 de | 70.3 a |
| CAR 3005 | 825.5 | 35.3 | 45.0 a | 65.0 ab | 70.0 a |
| CAR 3006 | 799.0 | 31.9 | 42.0 e | 64.3 b | 68.0 b |
| CAR 3009 | 845.7 | 31.3 | 45.0 a | 62.0 cd | 70.3 a |
| CAR 3010 | 897.5 | 34.2 | 43.3 c | 61.0 de | 70.3 a |
| CAR 3013 | 852.7 | 33.2 | 44.2 b | 64.7 ab | 70.2 a |
| CAR 3014 | 799.2 | 27.4 | 44.3 ab | 65.7 a | 70.2 a |
| CAR 3015 | 804.0 | 31.9 | 43.0 cd | 60.0 e | 70.2 a |
| cv. CAU 9 (TM) | 817.6 | 34.9 | 43.2 cd | 60.8 de | 66.3 c |
| cv. Vaina Blanca (TL) | 830.4 | 33.5 | 43.0 cd | 60.5 e | 70.0 a |
| Wi (%) † | ||||||
|---|---|---|---|---|---|---|
| N° | Genotype | GY | NPP | DF * | D50M * | DH * |
| 1 | CAR 3002 | 81.16 | 100.56 | 100.69 | 102.57 | 104.66 |
| 2 | CAR 3003 | 90.61 | 84.57 | 97.58 | 99.03 | 99.70 |
| 3 | CAR 3004 | 67.98 | 86.25 | 101.41 | 100.16 | 102.57 |
| 4 | CAR 3005 | 81.59 | 98.41 | 105.23 | 107.45 | 103.33 |
| 5 | CAR 3006 | 90.68 | 87.96 | 98.23 | 105.68 | 100.27 |
| 6 | CAR 3009 | 95.71 | 88.22 | 105.23 | 99.03 | 102.57 |
| 7 | CAR 3010 | 103.54 | 101.86 | 101.52 | 102.49 | 102.57 |
| 8 | CAR 3013 | 89.40 | 91.62 | 106.02 | 100.94 | 103.83 |
| 9 | CAR 3014 | 85.37 | 53.19 | 106.46 | 111.59 | 102.92 |
| 10 | CAR 3015 | 79.55 | 86.97 | 100.57 | 107.80 | 102.92 |
| 11 | cv. CAU 9 (TM) | 92.80 | 100.80 | 100.12 | 99.18 | 98.63 |
| 12 | cv. Vaina Blanca (TL) | 95.82 | 91.61 | 100.69 | 100.14 | 103.33 |
| Variable | n | Mean (2004) | Mean (2020–2024) | Difference | t | p-Value |
|---|---|---|---|---|---|---|
| Mean Temperature (°C) | 90 | 26.39 | 26.96 | 0.57 | −3.42 | 0.0009 |
| Max. Temperature (°C) | 90 | 30.96 | 32.18 | 1.21 | −4.98 | <0.0001 |
| Min. Temperature (°C) | 90 | 21.96 | 22.71 | 0.75 | −6.66 | <0.0001 |
| Sunshine Hours | 92 | 3.72 | 3.96 | 0.25 | −0.73 | 0.4699 |
| Precipitation (mm) | 92 | 3.12 | 5.38 | 2.26 | −2.71 | 0.0081 |
| Relative Humidity (%) | 90 | 93.63 | 87.03 | −6.60 | 20.85 | <0.0001 |
| Variable | Interpolated Data | Effective Number | S | τ | p-Value | Trend per Year |
|---|---|---|---|---|---|---|
| Mean Temperature (°C) | 1 | 21.0 | 10 | 0.048 | 0.7858 | 0.003 |
| Max. Temperature (°C) | 0 | 21.0 | 30 | 0.143 | 0.3812 | 0.028 |
| Min. Temperature (°C) | 0 | 10.4 | 106 | 0.505 | 0.0001 | 0.055 |
| Sunshine Hours | 8 | 21.0 | −118 | −0.562 | 0.0004 | −0.045 |
| Precipitation (mm) | 0 | 21.0 | −2 | −0.010 | 0.9759 | −0.001 |
| Relative Humidity (%) | 1 | 21.0 | 32 | 0.152 | 0.3492 | 0.069 |
| Variable | n | Mean (2005–2007) | Mean (2020–2024) | Difference | t | p-Value |
|---|---|---|---|---|---|---|
| Mean Temperature (°C) | 92 | 27.07 | 26.96 | −0.11 | 0.98 | 0.3277 |
| Max. Temperature (°C) | 92 | 32.04 | 32.15 | 0.12 | −0.88 | 0.3817 |
| Min. Temperature (°C) | 92 | 22.01 | 22.72 | 0.71 | −8.73 | <0.0001 |
| Sunshine Hours | 92 | 5.38 | 3.96 | −1.41 | 5.80 | <0.0001 |
| Precipitation (mm) | 92 | 4.26 | 5.38 | 1.12 | −1.44 | 0.1538 |
| Relative Humidity (%) | 92 | 87.23 | 87.04 | −0.19 | 0.66 | 0.5131 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzales, R.; Ticona-Benavente, C.A.; Ramirez-Chung, J.; Campos-Cedano, J.; Tejada-Alvarado, J.J. Adaptability and Phenotypic Stability of Early-Maturing Cowpea (Vigna unguiculata (L.) Walp.) Lines in the Peruvian Amazon. Int. J. Plant Biol. 2025, 16, 120. https://doi.org/10.3390/ijpb16040120
Gonzales R, Ticona-Benavente CA, Ramirez-Chung J, Campos-Cedano J, Tejada-Alvarado JJ. Adaptability and Phenotypic Stability of Early-Maturing Cowpea (Vigna unguiculata (L.) Walp.) Lines in the Peruvian Amazon. International Journal of Plant Biology. 2025; 16(4):120. https://doi.org/10.3390/ijpb16040120
Chicago/Turabian StyleGonzales, Rodrigo, César Augusto Ticona-Benavente, José Ramirez-Chung, Johnny Campos-Cedano, and José Jesús Tejada-Alvarado. 2025. "Adaptability and Phenotypic Stability of Early-Maturing Cowpea (Vigna unguiculata (L.) Walp.) Lines in the Peruvian Amazon" International Journal of Plant Biology 16, no. 4: 120. https://doi.org/10.3390/ijpb16040120
APA StyleGonzales, R., Ticona-Benavente, C. A., Ramirez-Chung, J., Campos-Cedano, J., & Tejada-Alvarado, J. J. (2025). Adaptability and Phenotypic Stability of Early-Maturing Cowpea (Vigna unguiculata (L.) Walp.) Lines in the Peruvian Amazon. International Journal of Plant Biology, 16(4), 120. https://doi.org/10.3390/ijpb16040120

