Biotechnological and Genomic Applications in the Conservation of Native Blueberries in Natural Habitats
Abstract
1. Introduction
2. Genetic Diversity and Conservation of Native Blueberries
3. Biotechnology Applied to Conservation
4. Genomic and Molecular Tools
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Uchendu, E.E.; Reed, B.M. Desiccation Tolerance and Cryopreservation of In Vitro Grown Blueberry and Cranberry Shoot Tips. Acta Hortic. 2009, 810, 567–574. [Google Scholar] [CrossRef]
- Salgotra, R.K.; Chauhan, B.S. Genetic Diversity, Conservation, and Utilization of Plant Genetic Resources. Genes 2023, 14, 174. [Google Scholar] [CrossRef]
- Swarup, S.; Cargill, E.J.; Crosby, K.; Flagel, L.; Kniskern, J.; Glenn, K.C. Genetic Diversity Is Indispensable for Plant Breeding to Improve Crops. Crop Sci. 2021, 61, 839–852. [Google Scholar] [CrossRef]
- Song, G.-Q. Blueberry (Vaccinium corymbosum L.). In Agrobacterium Protocols; Wang, K., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2015; Volume 1224, pp. 121–131. ISBN 978-1-4939-1657-3. [Google Scholar]
- Nin, S.; Benelli, C.; Petrucci, W.A.; Turchi, A.; Pecchioli, S.; Gori, M.; Giordani, E. In Vitro Propagation and Conservation of Wild Bilberry (Vaccinium myrtillus L.) Genotypes Collected in the Tuscan Apennines (Italy). J. Berry Res. 2019, 9, 411–430. [Google Scholar] [CrossRef]
- Sedlak, J.; Paprstein, F. In vitro Multiplication of Highbush Blueberry (Vaccinium corymbosum L.) Cultivars. Acta Hortic. 2009, 810, 575–580. [Google Scholar] [CrossRef]
- Fuentes, L.; Figueroa, C.R.; Valdenegro, M.; Vinet, R. Patagonian Berries: Healthy Potential and the Path to Becoming Functional Foods. Foods 2019, 8, 289. [Google Scholar] [CrossRef] [PubMed]
- Yavorska, N.Y.; Lobachevska, O.V.; Khorkavtsiv, Y.D.; Kyyak, N.Y. Microclonal Propagation of The Varieties of Highbush Blueberry Vaccinium corymbosum L. Biotechnol. Acta 2016, 9, 30–37. [Google Scholar] [CrossRef]
- Bravo-Ruíz, I.N.; González-Arnao, M.T.; Hernández-Ramírez, F.; López-Domínguez, J.; Cruz-Cruz, C.A. Types of Temporary Immersion Systems Used in Commercial Plant Micropropagation. In Micropropagation Methods in Temporary Immersion Systems; Ramírez-Mosqueda, M.A., Cruz-Cruz, C.A., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2024; Volume 2759, pp. 9–24. ISBN 978-1-0716-3653-4. [Google Scholar]
- Basu, A. Role of Berry Bioactive Compounds on Lipids and Lipoproteins in Diabetes and Metabolic Syndrome. Nutrients 2019, 11, 1983. [Google Scholar] [CrossRef] [PubMed]
- Saini, H.; Thakur, R.; Gill, R.; Tyagi, K.; Goswami, M. CRISPR/Cas9-Gene Editing Approaches in Plant Breeding. GM Crops Food 2023, 14, 1–17. [Google Scholar] [CrossRef]
- Bhatt, D.S.; Debnath, S.C. Genetic Diversity of Blueberry Genotypes Estimated by Antioxidant Properties and Molecular Markers. Antioxidants 2021, 10, 458. [Google Scholar] [CrossRef]
- Cardoso, J.C.; Sheng Gerald, L.T.; Teixeira Da Silva, J.A. Micropropagation in the Twenty-First Century. In Plant Cell Culture Protocols; Loyola-Vargas, V.M., Ochoa-Alejo, N., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2018; Volume 1815, pp. 17–46. ISBN 978-1-4939-8593-7. [Google Scholar]
- Allendorf, F.W. Genetics and the Conservation of Natural Populations: Allozymes to Genomes. Mol. Ecol. 2017, 26, 420–430. [Google Scholar] [CrossRef]
- Obsie, E.Y.; Qu, H.; Drummond, F. Wild Blueberry Yield Prediction Using a Combination of Computer Simulation and Machine Learning Algorithms. Comput. Electron. Agric. 2020, 178, 105778. [Google Scholar] [CrossRef]
- Maxted, N.; Ford-Lloyd, B.V.; Hawkes, J.G. Complementary Conservation Strategies. In Plant Genetic Conservation; Maxted, N., Ford-Lloyd, B.V., Hawkes, J.G., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 15–39. ISBN 978-0-412-63730-8. [Google Scholar]
- Mengist, M.F.; Bostan, H.; Young, E.; Kay, K.L.; Gillitt, N.; Ballington, J.; Kay, C.D.; Ferruzzi, M.G.; Ashrafi, H.; Lila, M.A.; et al. High-Density Linkage Map Construction and Identification of Loci Regulating Fruit Quality Traits in Blueberry. Hortic. Res. 2021, 8, 169. [Google Scholar] [CrossRef]
- Vega-Polo, P.; Cobo, M.M.; Argudo, A.; Gutierrez, B.; Rowntree, J.; De Lourdes Torres, M. Characterizing the Genetic Diversity of the Andean Blueberry (Vaccinium floribundum Kunth.) across the Ecuadorian Highlands. PLoS ONE 2020, 15, e0243420. [Google Scholar] [CrossRef]
- Sepúlveda, J.; Rondón González, F.; Soto Sedano, J.C.; Velasco, G.P.; Mosquera, T.; Delgado, M.C.; Ligarreto Moreno, G.A.; Magnitskiy, S.; Miranda, Y.; Garzón Gutiérrez, L.N. SNP Analysis Reveals Novel Insights into the Genetic Diversity of Colombian Vaccinium meridionale. Genes 2025, 16, 675. [Google Scholar] [CrossRef] [PubMed]
- Tineo, D.; Bustamante, D.E.; Calderon, M.S.; Huaman, E. Exploring the Diversity of Andean Berries from Northern Peru Based on Molecular Analyses. Heliyon 2022, 8, e08839. [Google Scholar] [CrossRef]
- Debnath, S.C.; Bhatt, D.; Goyali, J.C. DNA-Based Molecular Markers and Antioxidant Properties to Study Genetic Diversity and Relationship Assessment in Blueberries. Agronomy 2023, 13, 1518. [Google Scholar] [CrossRef]
- Arbizu, C.I.; Blas, R.H. New Proposals to Strengthen the Boom of Agriculture in Peru: Massive Use of Genetic Resources and Development of Modern Breeding Programs. Peruv. Agric. Res. 2021, 3, 35–39. [Google Scholar] [CrossRef]
- Schmitz, S.; Barrios, R.; Dempewolf, H.; Guarino, L.; Lusty, C.; Muir, J. Crop Diversity, Its Conservation and Use for Better Food Systems. In Science and Innovations for Food Systems Transformation; Von Braun, J., Afsana, K., Fresco, L.O., Hassan, M.H.A., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 545–552. ISBN 978-3-031-15702-8. [Google Scholar]
- Delgado-Paredes, G.E.; Vásquez-Díaz, C.; Esquerre-Ibañez, B.; Bazán-Sernaqué, P.; Rojas-Idrogo, C. In Vitro Tissue Culture in Plants Propagation and Germplasm Conservation of Economically Important Species in Peru. Sci. Agropecu. 2021, 12, 337–349. [Google Scholar] [CrossRef]
- Priyanka, V.; Kumar, R.; Dhaliwal, I.; Kaushik, P. Germplasm Conservation: Instrumental in Agricultural Biodiversity—A Review. Sustainability 2021, 13, 6743. [Google Scholar] [CrossRef]
- Fernández, A.; León-Lobos, P.; Contreras, S.; Ovalle, J.F.; Sershen; Van Der Walt, K.; Ballesteros, D. The Potential Impacts of Climate Change on Ex Situ Conservation Options for Recalcitrant-Seeded Species. Front. For. Glob. Change 2023, 6, 1110431. [Google Scholar] [CrossRef]
- Chudetsky, A.; Rodin, S.; Zarubina, L.; Kuznetsova, I.; Tyak, G. Clonal Micropropagation and Peculiarities of Adaptation to Ex Vitro Conditions of Forest Berry Plants of the Genus Vaccinium. Food Process. Tech. Technol. 2022, 52, 570–581. [Google Scholar] [CrossRef]
- Bassil, N.; Bidani, A.; Nyberg, A.; Hummer, K.; Rowland, L.J. Microsatellite Markers Confirm Identity of Blueberry (Vaccinium spp.) Plants in the USDA-ARS National Clonal Germplasm Repository Collection. Genet. Resour. Crop Evol. 2020, 67, 393–409. [Google Scholar] [CrossRef]
- Brown, A.H.D. Core Collections: A Practical Approach to Genetic Resources Management. Genome 1989, 31, 818–824. [Google Scholar] [CrossRef]
- Kotni, P.; van Hintum, T.; Maggioni, L.; Oppermann, M.; Weise, S. EURISCO Update 2023: The European Search Catalogue for Plant Genetic Resources, a Pillar for Documentation of Genebank Material. Nucleic Acids Res. 2023, 51, D1465–D1469. [Google Scholar] [CrossRef] [PubMed]
- Odong, T.L.; Jansen, J.; Van Eeuwijk, F.A.; Van Hintum, T.J.L. Quality of Core Collections for Effective Utilisation of Genetic Resources Review, Discussion and Interpretation. Theor. Appl. Genet. 2013, 126, 289–305. [Google Scholar] [CrossRef]
- Lagneaux, E.; Jansen, M.; Quaedvlieg, J.; Zuidema, P.A.; Anten, N.P.R.; García Roca, M.R.; Corvera-Gomringer, R.; Kettle, C.J. Diversity Bears Fruit: Evaluating the Economic Potential of Undervalued Fruits for an Agroecological Restoration Approach in the Peruvian Amazon. Sustainability 2021, 13, 4582. [Google Scholar] [CrossRef]
- Radomir, A.-M.; Stan, R.; Florea, A.; Ciobotea, C.-M.; Bănuță, F.M.; Negru, M.; Neblea, M.A.; Sumedrea, D.I. Overview of the Success of In Vitro Culture for Ex Situ Conservation and Sustainable Utilization of Endemic and Subendemic Native Plants of Romania. Sustainability 2023, 15, 2581. [Google Scholar] [CrossRef]
- Ogwu, M.C.; Osawaru, M.E.; Ahana, C.M. Challenges in Conserving and Utilizing Plant Genetic Resources (PGR). Int. J. Genet. Mol. Biol. 2014, 6, 16–23. [Google Scholar] [CrossRef]
- Pathirana, R.; Carimi, F. Management and Utilization of Plant Genetic Resources for a Sustainable Agriculture. Plants 2022, 11, 2038. [Google Scholar] [CrossRef]
- Volk, G.M.; Namuth-Covert, D.; Byrne, P.F. Training in Plant Genetic Resources Management: A Way Forward. Crop Sci. 2019, 59, 853–857. [Google Scholar] [CrossRef]
- Arista Bustamante, J.P.; Leiva Espinosa, S.T.; Guerrero Abad, J.C.; Collazos Silva, R. Efecto de Las Citoquininas En La Multiplicación in Vitro de Cuatro Variedades de Vaccinium corymbosum, a Partir de Segmentos Nodales Effect of Cytokinins on the in Vitro Multiplication of Four Varieties of Vaccinium corymbosum. Rev. Científica UNTRM Cienc. Nat. E Ing. 2020, 2, 55. [Google Scholar] [CrossRef]
- Manzanero, B.R.; Kulkarni, K.P.; Vorsa, N.; Reddy, U.K.; Natarajan, P.; Elavarthi, S.; Iorizzo, M.; Melmaiee, K. Genomic and Evolutionary Relationships among Wild and Cultivated Blueberry Species. BMC Plant Biol. 2023, 23, 126. [Google Scholar] [CrossRef]
- Ruzić, D.; Vujović, T.; Cerović, R.; Ostrolucka, M.G.; Gajdosova, A. Micropropagation In Vitro of Highbush Blueberry (Vaccinium corymbosum L.). Acta Hortic. 2012, 2, 265–272. [Google Scholar] [CrossRef]
- Arencibia, A.D.; Vergara, C.; Quiroz, K.; Carrasco, B.; Bravo, C.; Garcia-Gonzales, R. An Approach for Micropropagation of Blueberry (Vaccinium corymbosum L.) Plants Mediated by Temporary Immersion Bioreactors (TIBs). AJPS 2013, 04, 1022–1028. [Google Scholar] [CrossRef]
- Correia, S.; Matos, M.; Leal, F. Advances in Blueberry (Vaccinium Spp.) In Vitro Culture: A Review. Horticulturae 2024, 10, 533. [Google Scholar] [CrossRef]
- Rache Cardenal, L.Y.; Pacheco Maldonado, J.C. Propagación in Vitro de Plantas Adultas de Vaccinium meridionale (Ericaceae). Acta Bot. Bras. 2010, 24, 1086–1095. [Google Scholar] [CrossRef]
- Jiménez-Bonilla, V.; Abdelnour-Esquivel, A. Protocolo de Micropropagación de Arándano Nativo de Costa Rica (Vaccinium consanguinium). TM 2018, 31, 146. [Google Scholar] [CrossRef]
- Schuchovski, C.S.; Biasi, L.A. In Vitro Establishment of ‘Delite’ Rabbiteye Blueberry Microshoots. Horticulturae 2019, 5, 24. [Google Scholar] [CrossRef]
- Angulo, A.B.; Castillo Matamoros, R.; Gómez-Alpízar, L. Micropropagación de Cuatro Cultivares de Arándano (Vaccinium spp.) a Partir de Segmentos Foliares de Dos Procedencias. Agron. Costarric. 2015, 39, 7–23. [Google Scholar]
- Ghoussaini, M.; Mountjoy, E.; Carmona, M.; Peat, G.; Schmidt, E.M.; Hercules, A.; Fumis, L.; Miranda, A.; Carvalho-Silva, D.; Buniello, A.; et al. Open Targets Genetics: Systematic Identification of Trait-Associated Genes Using Large-Scale Genetics and Functional Genomics. Nucleic Acids Res. 2021, 49, D1311–D1320. [Google Scholar] [CrossRef]
- Wang, L.-Y.; Li, Y.-D.; Sun, H.-Y.; Liu, H.-G.; Tang, X.-D.; Wang, Q.-C.; Zhang, Z.-D. An Efficient Droplet-Vitrification Cryopreservation for Valuable Blueberry Germplasm. Sci. Hortic. 2017, 219, 60–69. [Google Scholar] [CrossRef]
- Nagel, M.; Pence, V.; Ballesteros, D.; Lambardi, M.; Popova, E.; Panis, B. Plant Cryopreservation: Principles, Applications, and Challenges of Banking Plant Diversity at Ultralow Temperatures. Annu. Rev. Plant Biol. 2024, 75, 797–824. [Google Scholar] [CrossRef]
- Roque-Borda, C.A.; Kulus, D.; Vacaro De Souza, A.; Kaviani, B.; Vicente, E.F. Cryopreservation of Agronomic Plant Germplasm Using Vitrification-Based Methods: An Overview of Selected Case Studies. IJMS 2021, 22, 6157. [Google Scholar] [CrossRef]
- Gaidamashvili, M.; Khurtsidze, E.; Kutchava, T.; Lambardi, M.; Benelli, C. Efficient Protocol for Improving the Development of Cryopreserved Embryonic Axes of Chestnut (Castanea Sativa Mill.) by Encapsulation–Vitrification. Plants 2021, 10, 231. [Google Scholar] [CrossRef]
- Dhungana, S.A.; Kunitake, H.; Niino, T.; Yamamoto, S.; Fukui, K.; Tanaka, D.; Maki, S.; Matsumoto, T. Cryopreservation of Blueberry Shoot Tips Derived from in Vitro and Current Shoots Using D Cryo-Plate Technique. Plant Biotechnol. 2017, 34, 1–5. [Google Scholar] [CrossRef]
- Benelli, C.; Carvalho, L.S.O.; El Merzougui, S.; Petruccelli, R. Two Advanced Cryogenic Procedures for Improving Stevia Rebaudiana (Bertoni) Cryopreservation. Plants 2021, 10, 277. [Google Scholar] [CrossRef]
- Fu, Y.-B. Assessing Genetic Distinctness and Redundancy of Plant Germplasm Conserved Ex Situ Based on Published Genomic SNP Data. Plants 2023, 12, 1476. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Ji, S.; Wei, B.; Cheng, S.; Wang, Y.; Hao, J.; Wang, S.; Zhou, Q. Transcriptome Analysis of Postharvest Blueberries (Vaccinium corymbosum ‘Duke’) in Response to Cold Stress. BMC Plant Biol. 2020, 20, 80. [Google Scholar] [CrossRef] [PubMed]
- Smrke, T.; Veberic, R.; Hudina, M.; Zitko, V.; Ferlan, M.; Jakopic, J. Fruit Quality and Yield of Three Highbush Blueberry (Vaccinium corymbosum L.) Cultivars Grown in Two Planting Systems under Different Protected Environments. Horticulturae 2021, 7, 591. [Google Scholar] [CrossRef]
- Bell, D.J.; Rowland, L.J.; Polashock, J.J.; Drummond, F.A. Suitability of EST-PCR Markers Developed in Highbush Blueberry for Genetic Fingerprinting and Relationship Studies in Lowbush Blueberry and Related Species. J. Am. Soc. Hortic. Sci. 2008, 133, 701–707. [Google Scholar] [CrossRef]
- Carvalho, M.; Matos, M.; Crespí, A.; Lopes, V.R.; Carnide, V. Genetic Diversity and Identification of Vaccinium Species Through Microsatellite Analysis. Plants 2024, 13, 3488. [Google Scholar] [CrossRef]
- Yang, H.; Chen, J.; Wang, Y.; Tian, X.; Zheng, Y.; Jin, Z.; Hao, J.; Xue, Y.; Ding, S.; Zong, C. Determination of the Genetic Diversity and Population Structure of Vaccinium Uliginosum in Northeast China Based on the Chloroplast matK Gene and EST-SSRseq Molecular Markers. Genet. Resour. Crop Evol. 2024, 71, 1035–1052. [Google Scholar] [CrossRef]
- Beers, L.; Rowland, L.J.; Drummond, F. Genetic Diversity of Lowbush Blueberry throughout the United States in Managed and Non-Managed Populations. Agriculture 2019, 9, 113. [Google Scholar] [CrossRef]
- Toth, K.; Salo, H.M.; Kinnunen, S.; Miettunen, T.-M.; Alakärppä, E.; Suokas, M.; Benevenuto, J.; Munoz, P.; Häggman, H.; Jokipii-Lukkari, S. DNA Extraction Optimization and Authentication of Vaccinium Berries and Their Products by High-Resolution DNA Melting Analysis. Food Control 2024, 162, 110432. [Google Scholar] [CrossRef]
- López, K.E.R.; Armijos, C.E.; Parra, M.; Torres, M.D.L. The First Complete Chloroplast Genome Sequence of Mortiño (Vaccinium floribundum) and Comparative Analyses with Other Vaccinium Species. Horticulturae 2023, 9, 302. [Google Scholar] [CrossRef]
- Manzoor, I.; Samantara, K.; Bhat, M.S.; Farooq, I.; Bhat, K.M.; Mir, M.A.; Wani, S.H. Advances in Genomics for Diversity Studies and Trait Improvement in Temperate Fruit and Nut Crops under Changing Climatic Scenarios. Front. Plant Sci. 2023, 13, 1048217. [Google Scholar] [CrossRef] [PubMed]
- Fahrenkrog, A.M.; Matsumoto, G.; Toth, K.; Jokipii-Lukkari, S.; Salo, H.M.; Häggman, H.; Benevenuto, J.; Munoz, P. Chloroplast Genome Assemblies and Comparative Analyses of Major Vaccinium Berry Crops. bioRxiv 2022. [Google Scholar] [CrossRef]
- Qiao, X.; Gu, Q.; Ye, R.; Cai, J.; Zhu, N. The Complete Chloroplast Genome of Vaccinium oxycoccos (Ericaceae). Mitochondrial DNA Part B 2023, 8, 942–947. [Google Scholar] [CrossRef]
- Pucker, B.; Irisarri, I.; De Vries, J.; Xu, B. Plant Genome Sequence Assembly in the Era of Long Reads: Progress, Challenges and Future Directions. Quant. Plant Biol. 2022, 3, e5. [Google Scholar] [CrossRef]
- Ge, C.; Dong, G.; Jiang, Y.; Tian, L.; Yu, H.; Zeng, Q. The Complete Chloroplast Genome of Vaccinium henryi Hemsl. 1889 (Ericaceae). Mitochondrial DNA Part B 2025, 10, 37–41. [Google Scholar] [CrossRef]
- Colle, M.; Leisner, C.P.; Wai, C.M.; Ou, S.; Bird, K.A.; Wang, J.; Wisecaver, J.H.; Yocca, A.E.; Alger, E.I.; Tang, H.; et al. Haplotype-Phased Genome and Evolution of Phytonutrient Pathways of Tetraploid Blueberry. GigaScience 2019, 8, giz012. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Hulse-Kemp, A.M.; Babiker, E.; Staton, M. High-Quality Reference Genome and Annotation Aids Understanding of Berry Development for Evergreen Blueberry (Vaccinium darrowii). Hortic. Res. 2021, 8, 228. [Google Scholar] [CrossRef] [PubMed]
- Zeng, T.; He, Z.; He, J.; Lv, W.; Huang, S.; Li, J.; Zhu, L.; Wan, S.; Zhou, W.; Yang, Z.; et al. The Telomere-to-Telomere Gap-Free Reference Genome of Wild Blueberry (Vaccinium duclouxii) Provides Its High Soluble Sugar and Anthocyanin Accumulation. Hortic. Res. 2023, 10, uhad209. [Google Scholar] [CrossRef]
- Albuja-Quintana, M.; Pozo, G.; Gordillo-Romero, M.; Armijos, C.E.; Torres, M.D.L. Genome Report: First Reference Genome of Vaccinium floribundum Kunth, an Emblematic Andean Species. G3: Genes Genomes Genet. 2024, 14, jkae136. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Garcia, L.; Garcia-Ortega, L.F.; González-Rodríguez, M.; Delaye, L.; Iorizzo, M.; Zalapa, J. Chromosome-Level Genome Assembly of the American Cranberry (Vaccinium macrocarpon Ait.) and Its Wild Relative Vaccinium microcarpum. Front. Plant Sci. 2021, 12, 633310. [Google Scholar] [CrossRef]
- Yocca, A.E.; Platts, A.; Alger, E.; Teresi, S.; Mengist, M.F.; Benevenuto, J.; Ferrão, L.F.V.; Jacobs, M.; Babinski, M.; Magallanes-Lundback, M.; et al. Blueberry and Cranberry Pangenomes as a Resource for Future Genetic Studies and Breeding Efforts. Hortic. Res. 2023, 10, uhad202. [Google Scholar] [CrossRef]
- López, J.O.S. Caracterización de la Diversidad Genética del Arándano e Identificación de Zonas Potenciales Para Su Cultivo en la Provincia de Chachapoyas, Amazonas; Universidad Nacional Toribio Rodriguez de Mendoza: Chachapoyas, Amazonas, Peru, 2019. [Google Scholar]
- Frankham, R. Stress and Adaptation in Conservation Genetics. J. Evol. Biol. 2005, 18, 750–755. [Google Scholar] [CrossRef]
- Stange, M.; Barrett, R.D.H.; Hendry, A.P. The Importance of Genomic Variation for Biodiversity, Ecosystems and People. Nat. Rev. Genet. 2021, 22, 89–105. [Google Scholar] [CrossRef]
- Amancah, E.; Mercado, W.; Gómez-Pando, L.; Escalante, R.; Sotomayor, D.A. Integrating in Situ Conservation of Plant Genetic Resources with Ex Situ Conservation Management: Involving Custodian Farmers, Benefits and Their Willingness to Accept Compensation. Sci. Agropecu. 2023, 14, 447–464. [Google Scholar] [CrossRef]
- Silvestri, L.C. Conservación de La Diversidad Genética En El Perú: Desafíos En La Implementación Del Régimen de Acceso a Recursos Genéticos y Distribución de Beneficios. Rev. Peru. De Biol. 2016, 23, 73–79. [Google Scholar] [CrossRef]
- Dauphin, B.; Rellstab, C.; Wüest, R.O.; Karger, D.N.; Holderegger, R.; Gugerli, F.; Manel, S. Re-Thinking the Environment in Landscape Genomics. Trends Ecol. Evol. 2023, 38, 261–274. [Google Scholar] [CrossRef]
- Feng, W.-K.; Wang, C.-H.; Ju, Y.-W.; Chen, Z.-X.; Wu, X.; Fang, D.-L. Identifying the Biological Characteristics of Anthracnose Pathogens of Blueberries (Vaccinium corymbosum L.) in China. Forests 2024, 15, 117. [Google Scholar] [CrossRef]
- Rellstab, C.; Gugerli, F.; Eckert, A.J.; Hancock, A.M.; Holderegger, R. A Practical Guide to Environmental Association Analysis in Landscape Genomics. Mol. Ecol. 2015, 24, 4348–4370. [Google Scholar] [CrossRef]
- Dykes, J.; Kappenman, K.; Nissen, E.D. Using DNA Barcoding Methods to Identify Wild Huckleberry, Vaccinium membranaceum, as a Classroom Project. Am. Biol. Teach. 2022, 84, 40–44. [Google Scholar] [CrossRef]
- Ensslin, A.; Tschöpe, O.; Burkart, M.; Joshi, J. Fitness Decline and Adaptation to Novel Environments in Ex Situ Plant Collections: Current Knowledge and Future Perspectives. Biol. Conserv. 2015, 192, 394–401. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Z.; Xu, Z.; Wang, L.; Chen, C.; Ren, Z. Overexpression of SlMYB75 Enhances Resistance to Botrytis Cinerea and Prolongs Fruit Storage Life in Tomato. Plant Cell Rep. 2021, 40, 43–58. [Google Scholar] [CrossRef]
- Davis, A.J.S.; Groom, Q.; Adriaens, T.; Vanderhoeven, S.; De Troch, R.; Oldoni, D.; Desmet, P.; Reyserhove, L.; Lens, L.; Strubbe, D. Reproducible WiSDM: A Workflow for Reproducible Invasive Alien Species Risk Maps under Climate Change Scenarios Using Standardized Open Data. Front. Ecol. Evol. 2024, 12, 1148895. [Google Scholar] [CrossRef]
- Ferrão, L.F.V.; Amadeu, R.R.; Benevenuto, J.; De Bem Oliveira, I.; Munoz, P.R. Genomic Selection in an Outcrossing Autotetraploid Fruit Crop: Lessons from Blueberry Breeding. Front. Plant Sci. 2021, 12, 676326. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.G.; Fan, J.-B.; Siao, C.-J.; Berno, A.; Young, P.; Sapolsky, R.; Ghandour, G.; Perkins, N.; Winchester, E.; Spencer, J.; et al. Large-Scale Identification, Mapping, and Genotyping of Single-Nucleotide Polymorphisms in the Human Genome. Science 1998, 280, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Lawniczak, M.K.N.; Durbin, R.; Flicek, P.; Lindblad-Toh, K.; Wei, X.; Archibald, J.M.; Baker, W.J.; Belov, K.; Blaxter, M.L.; Marques Bonet, T.; et al. Standards Recommendations for the Earth BioGenome Project. Proc. Natl. Acad. Sci. USA 2022, 119, e2115639118. [Google Scholar] [CrossRef] [PubMed]
No. | Species | Explant | Regeneration Mode | PGRs + Medium | Reference |
---|---|---|---|---|---|
1 | Vaccinium virgatum (Delite Rabbiteye) | Shoot nodal segments | Shoot proliferation | Zeatin and 2-iP (2.5–50 µM), WPM medium | [44] |
2 | Vaccinium corymbosum L. (Biloxi, Sharp Blue, Brillita) | Young cuttings and nodal segments | Shoot proliferation using TIBs | 2-iP (2–3 mg/L), low sucrose, WPM + CO2 enrichment | [40] |
3 | Vaccinium consanguineum (native to Costa Rica) | Semi-lignified stems and seeds | Shoot proliferation | 6-Benzylaminopurine (BAP) (0–20 mg/L), Zeatin (0–0.5 mg/L), 50% WPM | [43] |
4 | Vaccinium meridionale | Shoot apex | Shoot proliferation | BAP (0–20 mg/L), Zeatin (0–0.5 mg/L), 50% WPM | [42] |
5 | Vaccinium spp. (Sharpblue, Woodard, Bonita, Delite) | Leaf segments from in vitro and field plants | Shoot proliferation and rooting | Thidiazuron (TDZ) (1.5 mg/L), Zeatin (0.5–1 mg/L), IBA (0–8 mg/L), WPM | [45] |
6 | Vaccinium meridionale (Mortiño) | Mini-cuttings | Shoot proliferation and rooting | 2-iP (5 mg/L) for proliferation; IBA (2000 µM) for rooting, WPM | [39] |
7 | Vaccinium corymbosum (Blue Suede) | Shoot segments | Bioreactor-based micropropagation | 2-iP (3–5 mg/L), Zeatin (2 mg/L), WPM | [10] |
No. | Species | Cryopreservation Method | Findings | Reference |
---|---|---|---|---|
1 | Vaccinium corymbosum (cv. Duke) | D cryo-plate + 0.3 M sucrose pretreatment and loading solution (LS) | Significant increase in regeneration (~90%) with pretreatment and LS | [47] |
2 | Vaccinium spp. (various cultivars) | V cryo-plate | Improved regrowth with V cryo-plate and optimized dehydration | [49] |
3 | Vaccinium corymbosum (cv. Duke) | Encapsulation-dehydration | High regeneration rate (>80%) after cryopreservation; desiccation tolerance up to 7 h. | [1] |
4 | Vaccinium corymbosum L. (cv. Tifblue) | Modern vitrification and encapsulation | 80–90% regeneration with optimized vitrification techniques | [51] |
5 | Vaccinium corymbosum L. (cv. North Blue) | Droplet vitrification for long-term storage | >90% viability using droplet vitrification method | [52] |
No. | Species | Molecular Markers | Findings/Effects | Reference |
---|---|---|---|---|
1 | Vaccinium ashei | SSR | Cross-species transferability, cultivar/population and species identification in blueberries | [57] |
2 | Vaccinium myrtillus | SSR | Cross-species transferability, cultivar/population and species identification in blueberries | [57] |
3 | Vaccinium floribundum | SSR | Population structure associated with the geological history of the Andean region | [18] |
4 | Vaccinium uliginosum | EST-SSR, SSR | Small amount of genetic exchange between these subgroups | [58] |
5 | Vaccinium angustifolium | EST-PCR | High genetic diversity | [59] |
No. | Species | Genome Type & Assembly Level | Assembly Strategy | Sequencing Platform(s) | Reference |
---|---|---|---|---|---|
1 | Vaccinium corymbosum (cv. Draper) | Nuclear—Chromosome-level (haplotype-phased) | Long-read assembly + Hi-C scaffolding | ONT/PacBio + Hi-C | [67] |
2 | Vaccinium darrowii | Nuclear—Chromosome-level | Long-read assembly + Hi-C | ONT + Hi-C | [68] |
3 | Vaccinium duclouxii | Nuclear—T2T, gap-free | Ultra-long reads + Hi-C/HiFi | ONT UL + Hi-C (+HiFi) | [69] |
4 | Vaccinium floribundum | Nuclear—High-quality reference | Long/short-read hybrid + Hi-C | Illumina/Hi-C | [70] |
5 | Vaccinium macrocarpon | Nuclear—Chromosome-level | Long-/short-read + scaffolding | PacBio/Illumina | [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arista-Fernández, H.S.; Hernández-Amasifuen, A.D.; Pineda-Lázaro, A.J.; Guerrero-Abad, J.C. Biotechnological and Genomic Applications in the Conservation of Native Blueberries in Natural Habitats. Int. J. Plant Biol. 2025, 16, 109. https://doi.org/10.3390/ijpb16030109
Arista-Fernández HS, Hernández-Amasifuen AD, Pineda-Lázaro AJ, Guerrero-Abad JC. Biotechnological and Genomic Applications in the Conservation of Native Blueberries in Natural Habitats. International Journal of Plant Biology. 2025; 16(3):109. https://doi.org/10.3390/ijpb16030109
Chicago/Turabian StyleArista-Fernández, Héctor Stalin, Angel David Hernández-Amasifuen, Alexandra Jherina Pineda-Lázaro, and Juan Carlos Guerrero-Abad. 2025. "Biotechnological and Genomic Applications in the Conservation of Native Blueberries in Natural Habitats" International Journal of Plant Biology 16, no. 3: 109. https://doi.org/10.3390/ijpb16030109
APA StyleArista-Fernández, H. S., Hernández-Amasifuen, A. D., Pineda-Lázaro, A. J., & Guerrero-Abad, J. C. (2025). Biotechnological and Genomic Applications in the Conservation of Native Blueberries in Natural Habitats. International Journal of Plant Biology, 16(3), 109. https://doi.org/10.3390/ijpb16030109