Comparative Analysis of Plasma Technologies for Plant Growth Enhancement and Microbial Control: A Systematic Optimization Study
Abstract
1. Introduction
2. Results
2.1. Plasma Treatment and Its Influence on Plant Chlorophyll Contents
2.2. Effect of Plasma Treatment on the Growth of Arabidopsis Roots
2.3. Plasma Treatment and Its Impact on Microbial Growth
2.4. Microbial Quantification to Validate the Influence of Plasma on Plant–Microbe Interaction
2.5. Chlorophyll Estimation to Validate the Influence of Plasma on Plant–Microbe Interaction
3. Discussion
4. Materials and Methods
4.1. Characteristics and Surface Sterilization of Arabidopsis Seeds
4.2. Estimation of Chlorophyll Content
4.3. Measurement of Arabidopsis Root Length
4.4. Microbial Quantification Assay
4.5. Plasma Treatment and Parameters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017. [Google Scholar]
- Pretty, J.; Bharucha, Z.P. Sustainable intensification in agricultural systems. Ann. Bot. 2014, 114, 1571–1596. [Google Scholar] [CrossRef]
- Randeniya, L.K.; de Groot, G.J. Non-thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination and other benefits: A review. Plasma Process. Polym. 2015, 12, 608–623. [Google Scholar] [CrossRef]
- Adhikari, B.; Adhikari, M.; Park, G. The effects of plasma on plant growth, development, and sustainability. Appl. Sci. 2020, 10, 6045. [Google Scholar] [CrossRef]
- Davis, K.R. Arabidopsis thaliana as a model system for studying plant-pathogen interactions. In Signal Molecules in Plants and Plant-Microbe Interactions; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Pushpangathan, C.; Moosvi, A.R. Earth observation techniques for assessing the vegetation health conditions of major cropping seasons in Kalaburagi District, Karnataka, India. Themat. J. Geogr. 2019, 8, 122–132. [Google Scholar]
- Gogoi, K.; Gogoi, H.; Borgohain, M.; Saikia, R.; Chikkaputtaiah, C.; Hiremath, S.; Basu, U. The molecular dynamics between reactive oxygen species (ROS), reactive nitrogen species (RNS) and phytohormones in plant’s response to biotic stress. Plant Cell Rep. 2024, 43, 263. [Google Scholar] [CrossRef]
- Shetty, N.P.; Jørgensen, H.J.L.; Jensen, J.D.; Collinge, D.B. Roles of reactive oxygen species in interactions between plants and pathogens. Eur. J. Plant Pathol. 2008, 121, 267–280. [Google Scholar] [CrossRef]
- Vishwakarma, K.; Kumar, N.; Shandilya, C.; Mohapatra, S.; Bhayana, S.; Varma, A. Revisiting plant–microbe interactions and microbial consortia application for enhancing sustainable agriculture: A review. Front. Microbiol. 2020, 11, 560406. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.; He, Y.; Qiu, T.; Guo, N.; Han, X.; Wang, X. Research advances in the molecular mechanisms of plant microtubules in regulating hypocotyl elongation. Chin. Bull. Bot. 2021, 56, 363–371. [Google Scholar]
- Mendes, R.; Garbeva, P.; Raaijmakers, J.M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 2013, 37, 634–663. [Google Scholar] [CrossRef]
- Compant, S.; Samad, A.; Faist, H.; Sessitsch, A. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J. Adv. Res. 2019, 19, 29–37. [Google Scholar] [CrossRef]
- Puač, N.; Gherardi, M.; Shiratani, M. Plasma agriculture: A rapidly emerging field. Plasma Process. Polym. 2018, 15, 1700174. [Google Scholar] [CrossRef]
- Bourke, P.; Ziuzina, D.; Boehm, D.; Cullen, P.J.; Keener, K. The potential of cold plasma for safe and sustainable food production. Trends Biotechnol. 2018, 36, 615–626. [Google Scholar] [CrossRef]
- Sivachandiran, L.; Khacef, A. Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: Combined effect of seed and water treatment. RSC Adv. 2017, 7, 1822–1832. [Google Scholar] [CrossRef]
- Veerana, M.; Mumtaz, S.; Rana, J.N.; Javed, R.; Panngom, K.; Ahmed, B.; Akter, K.; Choi, E.H. Recent advances in non-thermal plasma for seed germination, plant growth, and secondary metabolite synthesis: A promising frontier for sustainable agriculture. Plasma Chem. Plasma Process. 2024, 44, 2263–2302. [Google Scholar] [CrossRef]
- Konchekov, E.M.; Gusein-Zade, N.; Burmistrov, D.E.; Kolik, L.V.; Dorokhov, A.S.; Izmailov, A.Y.; Shokri, B.; Gudkov, S.V. Advancements in plasma agriculture: A review of recent studies. Int. J. Mol. Sci. 2023, 24, 15093. [Google Scholar] [CrossRef]
- Rajan, A.; Boopathy, B.; Radhakrishnan, M.; Rao, L.; Schlüter, O.K.; Tiwari, B.K. Plasma processing: A sustainable technology in agri-food processing. Sustain. Food Technol. 2023, 1, 9–49. [Google Scholar] [CrossRef]
- Karthik, C.; Pillai, R.R.; Moreno, G.H.; Sikder, P.; Ambalavanan, N.; Thomas, V. Plasma/Ozone Induced PolyNaSS Graft-Polymerization onto PEEK Biomaterial for Bio-integrated Orthopedic Implants. JOM 2024, 76, 5662–5674. [Google Scholar] [CrossRef]
- Šerá, B.; Scholtz, V.; Jirešová, J.; Khun, J.; Julák, J.; Šerý, M. Effects of non-thermal plasma treatment on seed germination and early growth of leguminous plants—A review. Plants 2021, 10, 1616. [Google Scholar] [PubMed]
- Attri, P.; Ishikawa, K.; Okumura, T.; Koga, K.; Shiratani, M. Plasma agriculture from laboratory to farm: A review. Processes 2020, 8, 1002. [Google Scholar] [CrossRef]
- Pańka, D.; Jeske, M.; Łukanowski, A.; Baturo-Cieśniewska, A.; Prus, P.; Maitah, M.; Maitah, K.; Malec, K.; Rymarz, D.; Muhire, J.d.D.; et al. Can cold plasma be used for boosting plant growth and plant protection in sustainable plant production? Agronomy 2022, 12, 841. [Google Scholar] [CrossRef]
- Tamošiūnė, I.; Gelvonauskienė, D.; Ragauskaitė, L.; Koga, K.; Shiratani, M.; Baniulis, D. Cold plasma treatment of Arabidopsis thaliana (L.) seeds modulates plant-associated microbiome composition. Appl. Phys. Express 2020, 13, 076001. [Google Scholar] [CrossRef]
- Mohan, B.; Karthik, C.; Thingujam, D.; Pajerowska-Mukhtar, K.M.; Thomas, V.; Mukhtar, M.S. Plasma Optimization as a Novel Tool to Explore Plant–Microbe Interactions in Climate Smart Agriculture. Microorganisms 2025, 13, 146. [Google Scholar] [CrossRef]
- Misra, N.; Schlüter, O.; Cullen, P. Plasma in food and agriculture. In Cold Plasma in Food and Agriculture; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–16. [Google Scholar]
- Ekanayake, U.M.; Seo, D.H.; Faershteyn, K.; O’Mullane, A.P.; Shon, H.; MacLeod, J.; Golberg, D.; Ostrikov, K. Atmospheric-pressure plasma seawater desalination: Clean energy, agriculture, and resource recovery nexus for a blue planet. Sustain. Mater. Technol. 2020, 25, e00181. [Google Scholar] [CrossRef]
- Brandenburg, R.; Bogaerts, A.; Bongers, W.; Fridman, A.; Fridman, G.; Locke, B.R.; Miller, V.; Reuter, S.; Schiorlin, M.; Verreycken, T.; et al. White paper on the future of plasma science in environment, for gas conversion and agriculture. Plasma Process. Polym. 2019, 16, 1700238. [Google Scholar] [CrossRef]
- Adamovich, I.; Baalrud, S.D.; Bogaerts, A.; Bruggeman, P.J.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J.G.; Favia, P.; et al. The 2017 Plasma Roadmap: Low temperature plasma science and technology. J. Phys. D Appl. Phys. 2017, 50, 323001. [Google Scholar] [CrossRef]
- Jia, S.; Zhang, N.; Ji, H.; Zhang, X.; Dong, C.; Yu, J.; Yan, S.; Chen, C.; Liang, L. Effects of atmospheric cold plasma treatment on the storage quality and chlorophyll metabolism of postharvest tomato. Foods 2022, 11, 4088. [Google Scholar] [CrossRef]
- Karimi, J.; Bansal, S.A.; Kumar, V.; Pasalari, H.; Badr, A.A.; Nejad, Z.J. Effect of cold plasma on plant physiological and biochemical processes: A review. Biologia 2024, 79, 3475–3487. [Google Scholar] [CrossRef]
- Mildaziene, V.; Ivankov, A.; Sera, B.; Baniulis, D. Biochemical and physiological plant processes affected by seed treatment with non-thermal plasma. Plants 2022, 11, 856. [Google Scholar] [CrossRef] [PubMed]
- Sayahi, K.; Sari, A.H.; Hamidi, A.; Nowruzi, B.; Hassani, F. Application of cold argon plasma on germination, root length, and decontamination of soybean cultivars. BMC Plant Biol. 2024, 24, 59. [Google Scholar] [CrossRef]
- Shivakumar, N.; Bagade, N.; Lal, V.S.; Rajanikanth, B.S. Effects of Non-Thermal Plasma on Germination, Root and Shoot Length of Tomato Seeds and Ginger Rhizome. Plant Tissue Cult. Biotechnol. 2024, 34, 141–152. [Google Scholar] [CrossRef]
- Li, Y.; Wang, T.; Meng, Y.; Qu, G.; Sun, Q.; Liang, D.; Hu, S. Air atmospheric dielectric barrier discharge plasma induced germination and growth enhancement of wheat seed. Plasma Chem. Plasma Process. 2017, 37, 1621–1634. [Google Scholar] [CrossRef]
- Zhou, R.; Zhou, R.; Zhang, X.; Zhuang, J.; Yang, S.; Bazaka, K.; Ostrikov, K. Effects of atmospheric-pressure N2, He, air, and O2 microplasmas on mung bean seed germination and seedling growth. Sci. Rep. 2016, 6, 32603. [Google Scholar] [CrossRef]
- Małajowicz, J.; Khachatryan, K.; Oszczęda, Z.; Karpiński, P.; Fabiszewska, A.; Zieniuk, B.; Krysowaty, K. The Effect of Plasma-Treated Water on Microbial Growth and Biosynthesis of Gamma-Decalactones by Yarrowia lipolytica Yeast. Int. J. Mol. Sci. 2023, 24, 15204. [Google Scholar] [CrossRef]
- Šimončicová, J.; Kryštofová, S.; Medvecká, V.; Ďurišová, K. Technical applications of plasma treatments: Current state and perspectives. Appl. Microbiol. Biotechnol. 2019, 103, 5117–5129. [Google Scholar] [CrossRef]
- Vandervoort, K.G.; Brelles-Marino, G. Plasma-mediated inactivation of Pseudomonas aeruginosa biofilms grown on borosilicate surfaces under continuous culture system. PLoS ONE 2014, 9, e108512. [Google Scholar] [CrossRef]
- Mohanram, S.; Kumar, P. Rhizosphere microbiome: Revisiting the synergy of plant-microbe interactions. Ann. Microbiol. 2019, 69, 307–320. [Google Scholar] [CrossRef]
- Šimek, M.; Homola, T. Plasma-assisted agriculture: History, presence, and prospects—A review. Eur. Phys. J. D 2021, 75, 210. [Google Scholar] [CrossRef]
- Zhang, S.; Rousseau, A.; Dufour, T. Promoting lentil germination and stem growth by plasma activated tap water, demineralized water and liquid fertilizer. RSC Adv. 2017, 7, 31244–31251. [Google Scholar] [CrossRef]
- Sera, B.; Spatenka, P.; Sery, M.; Vrchotova, N.; Hruskova, I. Influence of plasma treatment on wheat and oat germination and early growth. IEEE Trans. Plasma Sci. 2010, 38, 2963–2968. [Google Scholar] [CrossRef]
- Mitra, A.; Li, Y.-F.; Klämpfl, T.G.; Shimizu, T.; Jeon, J.; Morfill, G.E.; Zimmermann, J.L. Inactivation of surface-borne microorganisms and increased germination of seed specimen by cold atmospheric plasma. Food Bioprocess Technol. 2014, 7, 645–653. [Google Scholar] [CrossRef]
- Lindsey, B.E., III; Rivero, L.; Calhoun, C.S.; Grotewold, E.; Brkljacic, J. Standardized method for high-throughput sterilization of Arabidopsis seeds. J. Vis. Exp. 2017, 128, 56587. [Google Scholar]
- Kumar, N.; Mishra, B.K.; Liu, J.; Mohan, B.; Thingujam, D.; Pajerowska-Mukhtar, K.M.; Mukhtar, M.S. Network biology analyses and dynamic modeling of gene regulatory networks under drought stress reveal major transcriptional regulators in Arabidopsis. Int. J. Mol. Sci. 2023, 24, 7349. [Google Scholar] [CrossRef]
- McCormack, M.E.; Liu, X.; Jordan, M.R.; Pajerowska-Mukhtar, K.M. An improved high-throughput screening assay for tunicamycin sensitivity in Arabidopsis seedlings. Front. Plant Sci. 2015, 6, 663. [Google Scholar] [CrossRef]
- Ritchie, R.J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 2006, 89, 27–41. [Google Scholar] [CrossRef]
- Betegón-Putze, I.; González, A.; Sevillano, X.; Blasco-Escámez, D.; Caño-Delgado, A.I. My ROOT: A method and software for the semiautomatic measurement of primary root length in Arabidopsis seedlings. Plant J. 2019, 98, 1145–1156. [Google Scholar] [CrossRef]
- Mohan, B.; Majeed, A.; Thingujam, D.; Burton, S.S.; Cowart, K.E.; Pajerowska-Mukhtar, K.M.; Mukhtar, M.S. Amplicon Sequencing Analysis of Submerged Plant Microbiome Diversity and Screening for ACC Deaminase Production by Microbes. Int. J. Mol. Sci. 2024, 25, 13330. [Google Scholar] [CrossRef] [PubMed]
- Ishiga, Y.; Ishiga, T.; Uppalapati, S.R.; Mysore, K.S. Arabidopsis seedling flood-inoculation technique: A rapid and reliable assay for studying plant-bacterial interactions. Plant Methods 2011, 7, 32. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohan, B.; Karthik, C.; Pushpangathan, C.; Pajerowska-Mukhtar, K.M.; Thomas, V.; Mukhtar, M.S. Comparative Analysis of Plasma Technologies for Plant Growth Enhancement and Microbial Control: A Systematic Optimization Study. Int. J. Plant Biol. 2025, 16, 104. https://doi.org/10.3390/ijpb16030104
Mohan B, Karthik C, Pushpangathan C, Pajerowska-Mukhtar KM, Thomas V, Mukhtar MS. Comparative Analysis of Plasma Technologies for Plant Growth Enhancement and Microbial Control: A Systematic Optimization Study. International Journal of Plant Biology. 2025; 16(3):104. https://doi.org/10.3390/ijpb16030104
Chicago/Turabian StyleMohan, Binoop, Chandrima Karthik, Chippy Pushpangathan, Karolina M. Pajerowska-Mukhtar, Vinoy Thomas, and M Shahid Mukhtar. 2025. "Comparative Analysis of Plasma Technologies for Plant Growth Enhancement and Microbial Control: A Systematic Optimization Study" International Journal of Plant Biology 16, no. 3: 104. https://doi.org/10.3390/ijpb16030104
APA StyleMohan, B., Karthik, C., Pushpangathan, C., Pajerowska-Mukhtar, K. M., Thomas, V., & Mukhtar, M. S. (2025). Comparative Analysis of Plasma Technologies for Plant Growth Enhancement and Microbial Control: A Systematic Optimization Study. International Journal of Plant Biology, 16(3), 104. https://doi.org/10.3390/ijpb16030104