Comprehensive Metabolomic Profiling of Common Bean (Phaseolus vulgaris L.) Reveals Biomarkers Involved in Viral Disease Detection and Monitoring
Abstract
:1. Introduction
2. Methodology
2.1. Phytohormone and Untargeted Metabolome
2.2. Phytohormone Analysis
3. Results
3.1. Differentially Expressed Metabolites (DEMs)
3.2. Phytohormone Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ojiem, J.O. Improving cultivation practices for common beans. In Achieving Sustainable Cultivation of Grain Legumes Volume 2; Burleigh Dodds Science Publishing: Sawston, UK, 2018; pp. 41–72. [Google Scholar]
- Lisciani, S.; Marconi, S.; Le Donne, C.; Camilli, E.; Aguzzi, A.; Gabrielli, P.; Gambelli, L.; Kunert, K.; Marais, D.; Vorster, B.J. Legumes and common beans in sustainable diets: Nutritional quality, environmental benefits, spread and use in food preparations. Front. Nutr. 2024, 11, 1385232. [Google Scholar]
- Farrow, A.; Muthoni Andriatsitohaina, R. Atlas of common bean production in Africa. CIAT Publication. 2020. Available online: https://www.researchgate.net/profile/Rachel-Andriatsitohaina/publication/348860193_Bean_Research_and_Development_in_Sub_Saharan_Africa/links/60136f38a6fdcc071b9d13d0/Bean-Research-and-Development-in-Sub-Saharan-Africa.pdf (accessed on 2 April 2025).
- Abobatta, W.F.; El-Hashash, E.F.; Hegab, R.H. Challenges and opportunities for the global cultivation and adaption of legumes. J. Appl. Biotechnol. Bioeng. 2021, 8, 160–172. [Google Scholar]
- Singh, H.S.; Lamani, K. Chapter-14 Bean Common Mosaic Necrosis Virus. Viral Dis. Veg. Fruit Crops 2024, 33, 191. [Google Scholar]
- Satrio, R.D.; Fendiyanto, M.H.; Miftahudin, M. Tools and Techniques Used at Global Scale Through Genomics, Transcriptomics, Proteomics, and Metabolomics to Investigate Plant Stress Responses at the Molecular Level. In Molecular Dynamics of Plant Stress and Its Management; Springer: Berlin/Heidelberg, Germany, 2024; pp. 555–607. [Google Scholar]
- Sharma, V.; Gupta, P.; Kagolla, P.; Hangargi, B.; Veershetty, A.; Ramrao, D.P.; Suresh, S.; Narasanna, R.; Naik, G.R.; Kumar, A. Metabolomics intervention towards better understanding of plant traits. Cells 2021, 10, 346. [Google Scholar] [CrossRef]
- Castro-Moretti, F.R.; Gentzel, I.N.; Mackey, D.; Alonso, A.P. Metabolomics as an emerging tool for the study of plant–pathogen interactions. Metabolites 2020, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Vo, K.T.X.; Rahman, M.M.; Rahman, M.M.; Trinh, K.T.T.; Kim, S.T.; Jeon, J.-S. Proteomics and metabolomics studies on the biotic stress responses of rice: An update. Rice 2021, 14, 30. [Google Scholar]
- Maia, M.; Ferreira, A.E.; Nascimento, R.; Monteiro, F.; Traquete, F.; Marques, A.P.; Cunha, J.; Eiras-Dias, J.E.; Cordeiro, C.; Figueiredo, A. Integrating metabolomics and targeted gene expression to uncover potential biomarkers of fungal/oomycetes-associated disease susceptibility in grapevine. Sci. Rep. 2020, 10, 15688. [Google Scholar] [CrossRef]
- Allwood, J.W.; Williams, A.; Uthe, H.; van Dam, N.M.; Mur, L.A.; Grant, M.R.; Pétriacq, P. Unravelling plant responses to stress—The importance of targeted and untargeted metabolomics. Metabolites 2021, 11, 558. [Google Scholar] [CrossRef]
- Kumar, R.; Bohra, A.; Pandey, A.K.; Pandey, M.K.; Kumar, A. Metabolomics for plant improvement: Status and prospects. Front. Plant Sci. 2017, 8, 1302. [Google Scholar]
- Singh, D.P.; Bisen, M.S.; Shukla, R.; Prabha, R.; Maurya, S.; Reddy, Y.S.; Singh, P.M.; Rai, N.; Chaubey, T.; Chaturvedi, K.K. Metabolomics-driven mining of metabolite resources: Applications and prospects for improving vegetable crops. Int. J. Mol. Sci. 2022, 23, 12062. [Google Scholar] [CrossRef]
- Fang, C.; Luo, J.; Wang, S. The diversity of nutritional metabolites: Origin, dissection, and application in crop breeding. Front. Plant Sci. 2019, 10, 1028. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Zhu, S.; Schultze-Kraft, R.; Liu, G.; Chen, Z. Dissection of crop metabolome responses to nitrogen, phosphorus, potassium, and other nutrient deficiencies. Int. J. Mol. Sci. 2022, 23, 9079. [Google Scholar] [CrossRef] [PubMed]
- Zenda, T.; Liu, S.; Dong, A.; Li, J.; Wang, Y.; Liu, X.; Wang, N.; Duan, H. Omics-facilitated crop improvement for climate resilience and superior nutritive value. Front. Plant Sci. 2021, 12, 774994. [Google Scholar]
- Sun, W.; Chen, Z.; Hong, J.; Shi, J. Promoting human nutrition and health through plant metabolomics: Current status and challenges. Biology 2020, 10, 20. [Google Scholar] [CrossRef]
- Muthubharathi, B.C.; Gowripriya, T.; Balamurugan, K. Metabolomics: Small molecules that matter more. Mol. Omics 2021, 17, 210–229. [Google Scholar] [CrossRef]
- Awad, K.; Maghraby, A.S.; Abd-Elshafy, D.N.; Bahgat, M.M. Carbohydrates Metabolic Signatures in Immune Cells: Response to Infection. Front. Immunol. 2022, 13, 912899. [Google Scholar] [CrossRef]
- Manchester, M.; Anand, A. Metabolomics: Strategies to define the role of metabolism in virus infection and pathogenesis. Adv. Virus Res. 2017, 98, 57–81. [Google Scholar]
- Purdy, J.G. Pathways to understanding virus-host metabolism interactions. Curr. Clin. Microbiol. Rep. 2019, 6, 34–43. [Google Scholar] [CrossRef]
- Fan, K. Metabolomics: Insights into Plant-Pathogen, Symbiont, and Endophyte Interactions Unveiling Chemical Communications. Metabolomics 2024, 9, 4. [Google Scholar]
- Dash, S.P.; Dipankar, P.; Burange, P.S.; Rouse, B.T.; Sarangi, P.P. Climate change: How it impacts the emergence, transmission, resistance and consequences of viral infections in animals and plants. Crit. Rev. Microbiol. 2021, 47, 307–322. [Google Scholar]
- Zhao, S.; Li, Y. Current understanding of the interplays between host hormones and plant viral infections. PLoS Pathog. 2021, 17, e1009242. [Google Scholar] [CrossRef] [PubMed]
- Di Carli, M.; Benvenuto, E.; Donini, M. Recent insights into plant–virus interactions through proteomic analysis. J. Proteome Res. 2012, 11, 4765–4780. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Samota, M.K.; Choudhary, M.; Choudhary, M.; Pandey, A.K.; Sharma, A.; Thakur, J. How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. Physiol. Mol. Biol. Plants 2022, 28, 485–504. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.I.; Rao, G.P.; Bhat, A.I.; Rao, G.P. Mechanical Sap Transmission; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 1-07-160333-7. [Google Scholar]
- Ramabulana, A.-T.; Petras, D.; Madala, N.E.; Tugizimana, F. Metabolomics and molecular networking to characterize the chemical space of four Momordica plant species. Metabolites 2021, 11, 763. [Google Scholar] [CrossRef]
- Böcker, S.; Letzel, M.C.; Lipták, Z.; Pervukhin, A. SIRIUS: Decomposing isotope patterns for metabolite identification. Bioinformatics 2009, 25, 218–224. [Google Scholar] [CrossRef]
- Ludwig, M.; Fleischauer, M.; Dührkop, K.; Hoffmann, M.A.; Böcker, S. De novo molecular formula annotation and structure elucidation using SIRIUS 4. Comput. Methods Data Anal. Metabolomics 2020, 2104, 185–207. [Google Scholar]
- Shi, S.-H.; Lee, S.-S.; Zhu, Y.-M.; Jin, Z.-Q.; Wu, F.-B.; Qiu, C.-W. Comparative Metabolomic Profiling Reveals Key Secondary Metabolites Associated with High Quality and Nutritional Value in Broad Bean (Vicia faba L.). Molecules 2022, 27, 8995. [Google Scholar] [CrossRef]
- Liu, J.; Liu, J.; Zhang, P.; Wang, Q.; Li, L.; Xie, H.; Li, H.; Wang, H.; Cheng, S.; Qin, P. Elucidating the Differentiation Synthesis Mechanisms of Differently Colored Resistance Quinoa Seedings Using Metabolite Profiling and Transcriptome Analysis. Metabolites 2023, 13, 1065. [Google Scholar] [CrossRef]
- Battezzati, A.; Riso, P. Amino Acids:: Fuel, Building Blocks for Proteins, and Signals; Elsevier: Amsterdam, The Netherlands, 2002; Volume 18, pp. 773–774. ISBN 0899-9007. [Google Scholar]
- Brosnan, J.; Rooyackers, O. The importance of amino acids as independent metabolites, signalling molecules and as building blocks for protein. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 47–48. [Google Scholar]
- Nguyen, H. Bacterial and viral diseases affecting soybean production Glen L. Hartman, USDA-ARS and University of Illinois, USA. In Achieving Sustainable Cultivation of Soybeans Volume 2; Burleigh Dodds Science Publishing: Sawston, UK, 2018; pp. 43–62. [Google Scholar]
- Dwivedi, A.K.; Singh, V.; Anwar, K.; Pareek, A.; Jain, M. Integrated transcriptome, proteome and metabolome analyses revealed secondary metabolites and auxiliary carbohydrate metabolism augmenting drought tolerance in rice. Plant Physiol. Biochem. 2023, 201, 107849. [Google Scholar]
- Rehan, M. Biosynthesis of diverse class flavonoids via shikimate and phenylpropanoid pathway. In Bioactive Compounds-Biosynthesis, Characterization and Applications; IntechOpen: London, UK, 2021; Volume 75392. [Google Scholar]
- Batsale, M.; Bahammou, D.; Fouillen, L.; Mongrand, S.; Joubès, J.; Domergue, F. Biosynthesis and functions of very-long-chain fatty acids in the responses of plants to abiotic and biotic stresses. Cells 2021, 10, 1284. [Google Scholar] [CrossRef] [PubMed]
- González-Bosch, C.; Boorman, E.; Zunszain, P.A.; Mann, G.E. Short-chain fatty acids as modulators of redox signaling in health and disease. Redox Biol. 2021, 47, 102165. [Google Scholar]
- Li, C.; Zha, W.; Li, W.; Wang, J.; You, A. Advances in the biosynthesis of terpenoids and their ecological functions in plant resistance. Int. J. Mol. Sci. 2023, 24, 11561. [Google Scholar] [CrossRef] [PubMed]
- Abdelgaleil, S.A.M.; Gad, H.A.; Ramadan, G.R.; El-Bakry, A.M.; El-Sabrout, A.M. Monoterpenes: Chemistry, insecticidal activity against stored product insects and modes of action—A review. Int. J. Pest Manag. 2024, 70, 267–289. [Google Scholar]
- Qasim, M.; Islam, W.; Rizwan, M.; Hussain, D.; Noman, A.; Khan, K.A.; Ghramh, H.A.; Han, X. Impact of plant monoterpenes on insect pest management and insect-associated microbes. Heliyon 2024, 10, e39120. [Google Scholar] [CrossRef]
- Siddiqui, T.; Sharma, V.; Khan, M.U.; Gupta, K. Terpenoids in Essential Oils: Chemistry, classification, and potential impact on human health and industry. Phytomed. Plus 2024, 4, 100549. [Google Scholar]
- Upadhyay, R.; Saini, R.; Shukla, P.K.; Tiwari, K.N. Role of secondary metabolites in plant defense mechanisms: A molecular and biotechnological insights. Phytochem. Rev. 2024, 24, 953–983. [Google Scholar]
- Shiade, S.R.G.; Zand-Silakhoor, A.; Fathi, A.; Rahimi, R.; Minkina, T.; Rajput, V.D.; Zulfiqar, U.; Chaudhary, T. Plant metabolites and signaling pathways in response to biotic and abiotic stresses: Exploring bio stimulant applications. Plant Stress 2024, 12, 100454. [Google Scholar]
- Pigolev, A.V.; Degtyaryov, E.A.; Miroshnichenko, D.N.; Savchenko, T.V. Prospects for the application of jasmonates, salicylates, and abscisic acid in agriculture to increase plant stress resistance. Sel’skokhozyaistvennaya Biol. 2023, 58, 3–22. [Google Scholar]
- Muhammad Aslam, M.; Waseem, M.; Jakada, B.H.; Okal, E.J.; Lei, Z.; Saqib, H.S.A.; Yuan, W.; Xu, W.; Zhang, Q. Mechanisms of abscisic acid-mediated drought stress responses in plants. Int. J. Mol. Sci. 2022, 23, 1084. [Google Scholar] [CrossRef]
- An, C.; Mou, Z. Salicylic acid and its function in plant immunity F. J. Integr. Plant Biol. 2011, 53, 412–428. [Google Scholar] [PubMed]
- Irkitbay, A.; Madenova, A.K.; Sapakhova, Z.B. The role of salicylic acid in the plant defense mechanism. Bull. Gumilyov Eurasian Natl. Univ. Biosci. Ser. 2022, 140, 83–96. [Google Scholar]
- Wang, Y.; Mostafa, S.; Zeng, W.; Jin, B. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. Int. J. Mol. Sci. 2021, 22, 8568. [Google Scholar] [CrossRef] [PubMed]
- Marquis, V.; Smirnova, E.; Poirier, L.; Zumsteg, J.; Schweizer, F.; Reymond, P.; Heitz, T. Stress- and pathway-specific impacts of impaired jasmonoyl-isoleucine (JA-Ile) catabolism on defense signalling and biotic stress resistance. Plant Cell Environ. 2020, 43, 1558–1570. [Google Scholar] [CrossRef]
- Ma, X.; Yu, X.; Cui, G.; Guo, Z.; Lang, D.; Zhang, X. Methyl jasmonate mitigates osmotic stress by regulating carbon and nitrogen metabolism of Glycyrrhiza uralensis seedlings subjected to salt stress. Acta Physiol. Plant 2023, 45, 96. [Google Scholar] [CrossRef]
- Per, T.S.; Khan, M.I.R.; Anjum, N.A.; Masood, A.; Hussain, S.J.; Khan, N.A. Jasmonates in plants under abiotic stresses: Crosstalk with other phytohormones matters. Environ. Exp. Bot. 2018, 145, 104–120. [Google Scholar]
Metabolic Pathway | Number of Metabolite | Upregulated Metabolites | Downregulated Metabolites |
---|---|---|---|
Alkaloids | 41 | 11 | 11 |
Amino Acids and Peptides | 41 | 4 | 8 |
Carbohydrates | 21 | 0 | 1 |
Fatty Acids | 81 | 16 | 53 |
Polyketides | 35 | 8 | 14 |
Shikimates and Phenylpropanoids | 77 | 1 | 16 |
Terpenoids | 58 | 11 | 28 |
Total | 354 | 51 | 131 |
Phyto Hormone | Standard | Bungoma (p-Value) | Kakamega (p-Value) | Busia (p-Value) | Vihiga (p-Value) |
---|---|---|---|---|---|
Abscissic Acid | Control | 0.0890 | 0.0312 * | 0.0257 * | 0.0792 |
Salicylic Acid (SA) | Control | 0.0073 * | 0.0113 * | 0.0022 * | 0.0022 * |
Jasmonic Acid (JA) | Control | 0.001 * | 0 * | 0.1041 | 0.0003 * |
Jasmonic Acid-Isoleucine-(JA-)IIe | Control | 0.0257 * | 0.0022 * | 0.1212 | 0.0003 * |
JA-Met | Control | 0.0623 | 0.0019 * | 0.6704 | 0.4406 |
JA—Phenylalanine (JA-Phe) | Control | 0.0623 | 0.0005 * | 0.2343 | 0.026 * |
JA-Tryptophan- (JA-Trp) | Control | 0.7850 | 0.5279 | 0.2333 | 0.8891 |
Jasmonic Acid Valine (JA-Val) | Control | 0.1041 | 0.0032 * | 0.2333 | 0.0009 * |
Hydroxyjasmonic Acid (OH-JA) | Control | 0.0539 | 0.0008 * | 0.4274 | 0.008 * |
Jasmonoyl-L-Isoleucine OH-JA-ILE | Control | 0.0452 * | 0.0081 * | 0.4274 | 0.02 * |
Carboxyl Group Of 12-JA (COOH-JA) | Control | 0.0962 | 0.0032 * | 0.0004 * | 0.0007 * |
Oxylipin 12-Oxo-Phytodienoic Acid OPDA | Control | 0.0173 * | 0.8501 | 0.0003 * | 0.3913 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osogo, A.K.; Wekesa, C.; Muyekho, F.N.; Were, H.K.; Okoth, P. Comprehensive Metabolomic Profiling of Common Bean (Phaseolus vulgaris L.) Reveals Biomarkers Involved in Viral Disease Detection and Monitoring. Int. J. Plant Biol. 2025, 16, 43. https://doi.org/10.3390/ijpb16020043
Osogo AK, Wekesa C, Muyekho FN, Were HK, Okoth P. Comprehensive Metabolomic Profiling of Common Bean (Phaseolus vulgaris L.) Reveals Biomarkers Involved in Viral Disease Detection and Monitoring. International Journal of Plant Biology. 2025; 16(2):43. https://doi.org/10.3390/ijpb16020043
Chicago/Turabian StyleOsogo, Aggrey Keya, Clabe Wekesa, Francis N. Muyekho, Hassan Karakacha Were, and Patrick Okoth. 2025. "Comprehensive Metabolomic Profiling of Common Bean (Phaseolus vulgaris L.) Reveals Biomarkers Involved in Viral Disease Detection and Monitoring" International Journal of Plant Biology 16, no. 2: 43. https://doi.org/10.3390/ijpb16020043
APA StyleOsogo, A. K., Wekesa, C., Muyekho, F. N., Were, H. K., & Okoth, P. (2025). Comprehensive Metabolomic Profiling of Common Bean (Phaseolus vulgaris L.) Reveals Biomarkers Involved in Viral Disease Detection and Monitoring. International Journal of Plant Biology, 16(2), 43. https://doi.org/10.3390/ijpb16020043