Characterization of TaMYB Transcription Factor Genes Revealed Possible Early-Stage Selection for Heat Tolerance in Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification and Characterization of MYB TF Genes in Wheat
2.2. Selection of Key TaMYB Genes for Expression Analysis
2.3. Plant Materials and Heat Stress Treatment
2.3.1. Seedling Stage Heat Treatment
2.3.2. Post-Anthesis Heat Treatment
2.3.3. Statistical Analysis
- (1)
- Root depth heat damage index (RD_HDI) = (root depth under control condition − root depth under HS condition)/root depth under control condition.
- (2)
- Thousand-kernel weight heat damage index (TKW_HDI) = (TKW under control condition -TKW under HS condition)/TKW under control condition.
2.4. RT-qPCR Expression Analysis at Seedling and Grain-Filling Stage
3. Results
3.1. Identification and Characterization of TaMYB TF Genes
3.2. Chromosomal Distribution and Gene Duplication of TaMYB TF Genes
3.3. In Silico Expression Profiling of TaMYB TF Genes
3.4. Morphological Response of Wheat Genotypes Under HS
3.5. Quantitative Gene Expression Analysis Using RT-qPCR
3.5.1. Differential Gene Expression at Seedling Stage
3.5.2. Differential Gene Expression at Grain-Filling Stage
3.5.3. Differential Expression Pattern of TaMYB TF Genes in Contrasting Wheat Genotypes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poor, P.; Nawaz, K.; Gupta, R.; Ashfaque, F.; Khan, M.I.R. Ethylene Involvement in the Regulation of Heat Stress Tolerance in Plants. Plant Cell Rep. 2022, 41, 675–698. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Lin, H.; Lin, H. Diverse Roles of MYB Transcription Factors in Plants. J. Integr. Plant Biol. 2025, 1–24. [Google Scholar] [CrossRef]
- Asseng, S.; Foster, I.A.N.; Turner, N.C. The Impact of Temperature Variability on Wheat Yields. Glob. Change Biol. 2011, 17, 997–1012. [Google Scholar] [CrossRef]
- Xie, C.; Mosjidis, J.A. Seedling-Selection Effects on Morphological Traits of Mature Plants in Red Clover. Theor. Appl. Genet. 1995, 91, 1032–1036. [Google Scholar] [CrossRef]
- Lu, L.; Liu, H.; Wu, Y.; Yan, G. Wheat Genotypes Tolerant to Heat at Seedling Stage Tend to Be Also Tolerant at Adult Stage: The Possibility of Early Selection for Heat Tolerance Breeding. Crop J. 2022, 10, 1006–1013. [Google Scholar] [CrossRef]
- EI-Daim, I.A.; Bejai, S.; Meijer, J. Improved Heat Stress Tolerance of Wheat Seedlings by Bacterial Seed Treatment. Plant Soil 2014, 379, 337–350. [Google Scholar] [CrossRef]
- Mishra, S.; Spaccarotella, K.; Gido, J.; Samanta, I.; Chowdhary, G. Effects of Heat Stress on Plant-Nutrient Relations: An Update on Nutrient Uptake, Transport, and Assimilation. Int. J. Mol. Sci. 2023, 24, 15670. [Google Scholar] [CrossRef]
- Samalova, M.; Gahurova, E.; Hejatko, J. Expansin-Mediated Developmental and Adaptive Responses: A Matter of Cell Wall Biomechanics? Quant. Plant Biol. 2022, 3, e11. [Google Scholar] [CrossRef]
- González-García, M.P.; Conesa, C.M.; Lozano-Enguita, A.; Baca-González, V.; Simancas, B.; Navarro-Neila, S.; Sánchez-Bermúdez, M.; Salas-González, I.; Caro, E.; Castrillo, G.; et al. Temperature Changes in the Root Ecosystem Affect Plant Functionality. Plant Commun. 2023, 4, 100514. [Google Scholar] [CrossRef]
- Li, S.; Chang, X.; Wang, C.; Jing, R. Mapping QTLs for Seedling Traits and Heat Tolerance Indices in Common Wheat. Acta Bot. Boreali-Occident. Sin. 2012, 32, 1525–1533. [Google Scholar]
- Reynolds, M.; Manes, Y.; Izanloo, A.; Langridge, P. Phenotyping Approaches for Physiological Breeding and Gene Discovery in Wheat. Ann. Appl. Biol. 2009, 155, 309–320. [Google Scholar] [CrossRef]
- Magar, M.M.; Liu, H.; Yan, G. Genome-Wide Analysis of AP2/ERF Superfamily Genes in Contrasting Wheat Genotypes Reveals Heat Stress-Related Candidate Genes. Front. Plant Sci. 2022, 13, 853086. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.U.; Chattha, M.U.; Khan, I.; Chattha, M.B.; Barbanti, L.; Aamer, M.; Iqbal, M.M.; Nawaz, M.; Mahmood, A.; Ali, A.; et al. Heat Stress in Cultivated Plants: Nature, Impact, Mechanisms, and Mitigation Strategies—A Review. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2020, 155, 211–234. [Google Scholar] [CrossRef]
- Pradhan, S.; Babar, M.A.; Bai, G.; Khan, J.; Shahi, D.; Avci, M.; Guo, J.; McBreen, J.; Asseng, S.; Gezan, S.; et al. Genetic Dissection of Heat-Responsive Physiological Traits to Improve Adaptation and Increase Yield Potential in Soft Winter Wheat. BMC Genom. 2020, 21, 315. [Google Scholar] [CrossRef]
- Saini, N.; Nikalje, G.C.; Zargar, S.M.; Suprasanna, P. Molecular Insights into Sensing, Regulation and Improving of Heat Tolerance in Plants. Plant Cell Rep. 2022, 41, 799–813. [Google Scholar] [CrossRef]
- Kollist, H.; Zandalinas, S.I.; Sengupta, S.; Nuhkat, M.; Kangasjarvi, J.; Mittler, R. Rapid Responses to Abiotic Stress: Priming the Landscape for the Signal Transduction Network. Trends Plant Sci. 2019, 24, 25–37. [Google Scholar] [CrossRef]
- Kumar, S.; Kumari, P.; Kumar, U.; Grover, M.; Singh, A.K.; Singh, R.; Sengar, R.S. Molecular Approaches for Designing Heat Tolerant Wheat. J. Plant Biochem. Biotechnol. 2013, 22, 359–371. [Google Scholar] [CrossRef]
- Lal, M.K.; Tiwari, R.K.; Gahlaut, V.; Mangal, V.; Kumar, A.; Singh, M.P.; Paul, V.; Kumar, S.; Singh, B.; Zinta, G. Physiological and Molecular Insights on Wheat Responses to Heat Stress. Plant Cell Rep. 2022, 41, 501–518. [Google Scholar] [CrossRef]
- Liao, C.; Zheng, Y.; Guo, Y. MYB30 Transcription Factor Regulates Oxidative and Heat Stress Responses through ANNEXIN-Mediated Cytosolic Calcium Signaling in Arabidopsis. New Phytolologist 2017, 216, 163–177. [Google Scholar] [CrossRef]
- Mariyam, S.; Kumar, V.; Roychoudhury, A.; Ghodake, G.S.; Muneer, S.; Duhan, J.S.; Ahmad, F.; Sharma, R.K.; Singh, J.; Seth, C.S. Functional Diversification and Mechanistic Insights of MYB Transcription Factors in Mediating Plant Growth and Development, Secondary Metabolism, and Stress Responses. J. Plant Growth Regul. 2025. [Google Scholar] [CrossRef]
- Ambawat, S.; Sharma, P.; Yadav, N.R.; Yadav, R.C. MYB Transcription Factor Genes as Regulators for Plant Responses: An Overview. Physiol. Mol. Biol. Plants 2013, 19, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Martin, C. Multifunctionality and Diversity within the Plant MYB-Gene Family. Plant Mol. Biol. 1999, 41, 577–585. [Google Scholar] [CrossRef]
- Haider, S.; Iqbal, J.; Naseer, S.; Shaukat, M.; Abbasi, B.A.; Yaseen, T.; Zahra, S.A.; Mahmood, T. Unfolding Molecular Switches in Plant Heat Stress Resistance: A Comprehensive Review. Plant Cell Rep. 2022, 41, 775–798. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, J.; Ghosal, D.; Wienand, U.; Peterson, P.A.; Saedler, H. The Regulatory C1 Locus of Zea Mays Encodes a Protein with Homology to Myb Proto-oncogene Products and with Structural Similarities to Transcriptional Activators. EMBO J. 1987, 6, 3553–3558. [Google Scholar] [CrossRef]
- Katiyar, A.; Smita, S.; Lenka, S.K.; Rajwanshi, R.; Chinnusamy, V.; Bansal, K.C. Genome-Wide Classification and Expression Analysis of MYB Transcription Factor Families in Rice and Arabidopsis. BMC Genom. 2012, 13, 544. [Google Scholar] [CrossRef]
- Azameti, M.K.; Ranjan, A.; Singh, P.K.; Gaikwad, K.; Singh, A.K.; Dalal, M.; Arora, A.; Rai, V.; Padaria, J.C. Transcriptome Profiling Reveals the Genes and Pathways Involved in Thermo-Tolerance in Wheat (Triticum aestivum L.) Genotype Raj 3765. Sci. Rep. 2022, 12, 14831. [Google Scholar] [CrossRef]
- Feng, C.; Andreasson, E.; Maslak, A.; Mock, H.P.; Mattsson, O.; Mundy, J. Arabidopsis MYB68 in Development and Responses to Environmental Cues. Plant Sci. 2004, 167, 1099–1107. [Google Scholar] [CrossRef]
- Wu, Z.; Li, T.; Liu, X.; Yuan, G.; Hou, H.; Teng, N. A Novel R2R3-MYB Transcription Factor LlMYB305 from Lilium Longiflorum Plays a Positive Role in Thermotolerance via Activating Heat-Protective Genes. Environ. Exp. Bot. 2021, 184, 104399. [Google Scholar] [CrossRef]
- Deeba, F.; Sultana, T.; Javaid, B.; Mahmood, T.; Naqvi, S.M.S. Molecular Characterization of a MYB Protein from Oryza Sativa for Its Role in Abiotic Stress Tolerance. Braz. Arch. Biol. Technol. 2017, 60, e17160352. [Google Scholar] [CrossRef]
- El-kereamy, A.; Bi, Y.M.; Ranathunge, K.; Beatty, P.H.; Good, A.G.; Rothstein, S.J. The Rice R2R3-MYB Transcription Factor OsMYB55 Is Involved in the Tolerance to High Temperature and Modulates Amino Acid Metabolism. PLoS ONE 2012, 7, e52030. [Google Scholar] [CrossRef]
- Meng, X.; Wang, J.R.; Wang, G.D.; Liang, X.Q.; Li, X.D.; Meng, Q.W. An R2R3-MYB Gene, LeAN2, Positively Regulated the Thermo-Tolerance in Transgenic Tomato. J. Plant Physiol. 2015, 175, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Yang, B.; Xian, B.; Chen, B.; Yan, J.; Chen, Q.; Gao, S.; Zhao, P.; Han, F.; Xu, J.; et al. The R2R3-MYB Transcription Factor BnaMYB111L from Rapeseed Modulates Reactive Oxygen Species Accumulation and Hypersensitive-like Cell Death. Plant Physiol. Biochem. 2020, 147, 280–288. [Google Scholar] [CrossRef]
- Chen, S.; Niu, X.; Guan, Y.; Li, H. Genome-Wide Analysis and Expression Profiles of the MYB Genes in Brachypodium distachyon. Plant Cell Physiol. 2017, 58, 1777–1788. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, G.; Jia, J.; Liu, X.; Kong, X. Molecular Characterization of 60 Isolated Wheat MYB Genes and Analysis of Their Expression during Abiotic Stress. J. Exp. Bot. 2012, 63, 203–214. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, H.; Khurana, N.; Tyagi, A.K.; Khurana, J.P.; Khurana, P. Identification and Characterization of High Temperature Stress Responsive Genes in Bread Wheat (Triticum aestivum L.) and Their Regulation at Various Stages of Development. Plant Mol. Biol. 2011, 75, 35–51. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Chen, R.; Wei, X.; Liu, Y.; Zhao, S.; Yin, X.; Xie, T. Genome-Wide Identification of R2R3-MYB Family in Wheat and Functional Characteristics of the Abiotic Stress Responsive Gene TaMYB344. BMC Genom. 2020, 21, 792. [Google Scholar] [CrossRef]
- Sukumaran, S.; Lethin, J.; Liu, X.; Pelc, J.; Zeng, P.; Hassan, S.; Aronsson, H. Genome-Wide Analysis of MYB Transcription Factors in the Wheat Genome and Their Roles in Salt Stress Response. Cells 2023, 12, 1431. [Google Scholar] [CrossRef]
- Mia, M.S.; Liu, H.; Wang, X.; Zhang, C.; Yan, G. Root Transcriptome Profiling of Contrasting Wheat Genotypes Provides an Insight to Their Adaptive Strategies to Water Deficit. Sci. Rep. 2020, 10, 4854. [Google Scholar] [CrossRef]
- IWGSC; Appels, R.; Eversole, K.; Stein, N.; Feuillet, C.; Keller, B.; Rogers, J.; Pozniak, C.J.; Choulet, F.; Distelfeld, A.; et al. Shifting the Limits in Wheat Research and Breeding Using a Fully Annotated Reference Genome. Science 2018, 361, eaar7191. [Google Scholar] [CrossRef]
- El-Gebali, S.; Mistry, J.; Bateman, A.; Eddy, S.R.; Luciani, A.; Potter, S.C.; Qureshi, M.; Richardson, L.J.; Salazar, G.A.; Smart, A.; et al. The Pfam Protein Families Database in 2019. Nucleic Acids Res. 2019, 47, D427–D432. [Google Scholar] [CrossRef]
- Maruyama, S.; Eveleigh, R.J.M.; Archibald, J.M. Treetrimmer: A Method for Phylogenetic Dataset Size Reduction. BMC Res. Notes 2013, 6, 145. [Google Scholar] [CrossRef]
- Hall, B.G. Building Phylogenetic Trees from Molecular Data with MEGA. Mol. Biol. Evol. 2013, 30, 1229–1235. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME Suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef]
- Hu, B.; Jin, J.; Guo, A.Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An Upgraded Gene Feature Visualization Server. Bioinformatics 2015, 31, 1296–1297. [Google Scholar] [CrossRef]
- Voorrips, R.E. MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Gonzalez, R.H.; Borrill, P.; Lang, D.; Harrington, S.A.; Brinton, J.; Venturini, L.; Davey, M.; Jacobs, J.; van Ex, F.; Pasha, A.; et al. The Transcriptional Landscape of Polyploid Wheat. Science 2018, 361, 6403. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Yang, C.; Wang, J.; Yan, G.; Si, P.; Bai, Q.; Lu, Z.; Zhou, W.; Xu, L. Genome-Wide Identification of MYB Genes and Expression Analysis under Different Biotic and Abiotic Stresses in Helianthus annuus L. Ind. Crops Prod. 2020, 143, 111924. [Google Scholar] [CrossRef]
- Al-Ashkar, I.; Sallam, M.; Ghazy, A.; Ibrahim, A.; Alotaibi, M.; Ullah, N.; Al-Doss, A. Agro-Physiological Indices and Multidimensional Analyses for Detecting Heat Tolerance in Wheat Genotypes. Agronomy 2023, 13, 154. [Google Scholar] [CrossRef]
- Li, J.; Han, G.; Sun, C.; Sui, N. Research Advances of MYB Transcription Factors in Plant Stress Resistance and Breeding. Plant Signal. Behav. 2019, 14, 1613131. [Google Scholar] [CrossRef]
- Chanwala, J.; Khadanga, B.; Jha, D.K.; Sandeep, I.S.; Dey, N. MYB Transcription Factor Family in Pearl Millet: Genome-Wide Identification, Evolutionary Progression and Expression Analysis under Abiotic Stress and Phytohormone Treatments. Plants 2023, 12, 355. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lin-Wang, K.; Liu, Z.; Allan, A.C.; Qin, S.; Zhang, J.; Liu, Y. Genome-Wide Analysis and Expression Profiles of the StR2R3-MYB Transcription Factor Superfamily in Potato (Solanum tuberosum L.). Int. J. Biol. Macromol. 2020, 148, 817–832. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.C.; Wu, J.; Guan, M.L.; Zhao, C.H.; Geng, P.; Zhao, Q. Arabidopsis MYB4 Plays Dual Roles in Flavonoid Biosynthesis. Plant J. 2020, 101, 637–652. [Google Scholar] [CrossRef] [PubMed]
- Seven, M.; Akdemir, H. DOF, MYB and TCP Transcription Factors: Their Possible Roles on Barley Germination and Seedling Establishment. Gene Expr. Patterns 2020, 37, 119116. [Google Scholar] [CrossRef]
- Firouzian, A.; Shafeinia, A.; Ghaffary, S.M.T.; Mohammadi, V.; Sadat, S. Terminal Heat Tolerance in Bread Wheat Determined by Agronomical Traits and SSR Markers. J. Plant Growth Regul. 2022, 42, 2041–2052. [Google Scholar] [CrossRef]
- Flores, P.C.; Yoon, J.S.; Kim, D.Y.; Seo, Y.W. Transcriptome Analysis of MYB Genes and Patterns of Anthocyanin Accumulation During Seed Development in Wheat. Evol. Bioinforma. 2022, 18, 11769343221093340. [Google Scholar] [CrossRef]
- Kooiker, M.; Drenth, J.; Glassop, D.; McIntyre, C.L.; Xue, G.P. TaMYB13-1, a R2R3 MYB Transcription Factor, Regulates the Fructan Synthetic Pathway and Contributes to Enhanced Fructan Accumulation in Bread Wheat. J. Exp. Bot. 2013, 64, 3681–3696. [Google Scholar] [CrossRef]
- Xiao, Q.; Wang, Y.; Du, J.; Li, H.; Wei, B.; Wang, Y.; Li, Y.; Yu, G.; Liu, H.; Zhang, J.; et al. ZmMYB14 Is an Important Transcription Factor Involved in the Regulation of the Activity of the ZmBT1 Promoter in Starch Biosynthesis in Maize. FEBS J. 2017, 284, 3079–3099. [Google Scholar] [CrossRef]
- Wang, L.; Gao, W.; Wu, X.; Zhao, M.; Qu, J.; Huang, C.; Zhang, J. Genome-Wide Characterization and Expression Analyses of Pleurotus Ostreatus MYB Transcription Factors during Developmental Stages and under Heat Stress Based on de Novo Sequenced Genome. Int. J. Mol. Sci. 2018, 19, 2052. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, H.; Liu, A.; Zhou, X.; Peng, Y.; Li, Z.; Luo, G.; Tian, X.; Chen, X. Microarray Data Uncover the Genome-Wide Gene Expression Patterns in Response to Heat Stress in Rice Post-Meiosis Panicle. J. Plant Biol. 2014, 57, 327–336. [Google Scholar] [CrossRef]
- Heyn, P.; Kalinka, A.T.; Tomancak, P.; Neugebauer, K.M. Introns and Gene Expression: Cellular Constraints, Transcriptional Regulation, and Evolutionary Consequences. Bioessays 2015, 37, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.H.; Seong, H.J.; Yang, W.H.; Jung, W. Growth Responses and Differences in Gene Expression Depending on Cultivation Temperature between Alternative Type Wheat Varieties. J. Crop Sci. Biotechnol. 2019, 23, 47–55. [Google Scholar] [CrossRef]
- Chaudhary, C.; Sharma, N.; Khurana, P. Decoding the Wheat Awn Transcriptome and Overexpressing TaRca1beta in Rice for Heat Stress Tolerance. Plant Mol. Biol. 2021, 105, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Sihag, P.; Kumar, U.; Sagwal, V.; Kapoor, P.; Singh, Y.; Mehla, S.; Balyan, P.; Mir, R.R.; Varshney, R.K.; Singh, K.P.; et al. Effect of Terminal Heat Stress on Osmolyte Accumulation and Gene Expression during Grain Filling in Bread Wheat (Triticum aestivum L.). Plant Genome 2024, 17, e20307. [Google Scholar] [CrossRef]
- Liao, J.L.; Zhou, H.W.; Peng, Q.; Zhong, P.A.; Zhang, H.Y.; He, C.; Huang, Y.J. Transcriptome Changes in Rice (Oryza sativa L.) in Response to High Night Temperature Stress at the Early Milky Stage. BMC Genom. 2015, 16, 18. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Liu, H.C.; Zhang, X.S.; Guo, Q.X.; Bian, S.M.; Wang, J.Y.; Zhai, L.L. VcMYB4a, an R2R3-MYB Transcription Factor from Vaccinium Corymbosum, Negatively Regulates Salt, Drought, and Temperature Stress. Gene 2020, 757, 144935. [Google Scholar] [CrossRef]
- Sakai, M.; Yamagishi, M.; Matsuyama, K. Repression of Anthocyanin Biosynthesis by R3-MYB Transcription Factors in Lily (Lilium spp.). Plant Cell Rep. 2019, 38, 609–622. [Google Scholar] [CrossRef]
- Nakatsuka, T.; Yamada, E.; Saito, M.; Fujita, K.; Nishihara, M. Heterologous Expression of Gentian MYB1R Transcription Factors Suppresses Anthocyanin Pigmentation in Tobacco Flowers. Plant Cell Rep. 2013, 32, 1925–1937. [Google Scholar] [CrossRef]
- Fang, Q.; Wang, Q.; Mao, H.; Xu, J.; Wang, Y.; Hu, H.; He, S.; Tu, J.; Cheng, C.; Tian, G.; et al. AtDIV2, an R-R-Type MYB Transcription Factor of Arabidopsis, Negatively Regulates Salt Stress by Modulating ABA Signaling. Plant Cell Rep. 2018, 37, 1499–1511. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magar, M.M.; Liu, H.; Yan, G. Characterization of TaMYB Transcription Factor Genes Revealed Possible Early-Stage Selection for Heat Tolerance in Wheat. Int. J. Plant Biol. 2025, 16, 41. https://doi.org/10.3390/ijpb16020041
Magar MM, Liu H, Yan G. Characterization of TaMYB Transcription Factor Genes Revealed Possible Early-Stage Selection for Heat Tolerance in Wheat. International Journal of Plant Biology. 2025; 16(2):41. https://doi.org/10.3390/ijpb16020041
Chicago/Turabian StyleMagar, Manu Maya, Hui Liu, and Guijun Yan. 2025. "Characterization of TaMYB Transcription Factor Genes Revealed Possible Early-Stage Selection for Heat Tolerance in Wheat" International Journal of Plant Biology 16, no. 2: 41. https://doi.org/10.3390/ijpb16020041
APA StyleMagar, M. M., Liu, H., & Yan, G. (2025). Characterization of TaMYB Transcription Factor Genes Revealed Possible Early-Stage Selection for Heat Tolerance in Wheat. International Journal of Plant Biology, 16(2), 41. https://doi.org/10.3390/ijpb16020041