Evaluation of Adaptive Responses of Juglans neotropica Diels Progenies Based on Dasometric Traits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Plant Collection
2.2.2. Dasometric Characteristics
2.2.3. Qualitative Characteristics
2.3. Statistical Analysis
3. Results
3.1. Dasometric Characteristics
3.2. Biotic Agents
3.3. Qualitative and Quantitative Characteristics
Cross-Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nieto, V.M.; Rodríguez, J. Juglandaceae (Walnut Family) Jugans andina Triana y Cortés, Juglans colombiensis Dode, Juglans honorei Dode Cedro Negro, Cedro Nogal, Nogal, Nogal Bogotano; Corporación Nacional de Investigación of Forestal: Bogota, Colombia, 2010; pp. 528–529. [Google Scholar]
- Toro, E.; Roldán, I. Estado del arte, propagación y conservación de Juglans neotropica Diels., en zonas andinas. Madera Bosques 2018, 24, 2411560. [Google Scholar] [CrossRef]
- Ramírez, F. Nut length–weight relationships in the endangered Nogal (Juglans neotropica Diels). Genet. Resour. Crop Evol. 2022, 69, 1731–1736. [Google Scholar] [CrossRef]
- Azas, R.D. Evaluación del Efecto de los Tratamientos Pregerminativos en Semillas de Nogal (Juglans neotropica Diels) en el Recinto Pumin Provincia de Bolívar. Bachelor’s Thesis, Universidad de las Fuerzas Armadas, Santo Domingo de los Tsáchilas, Ecuador, 2016. [Google Scholar]
- Mendez, J.M. Manejo de Semillas de 100 Especies Forestales de América Latina; Serie Técnica, Manual Técnico/CATIE No. 41; CATIE: Turrialba, Costa Rica, 2000; p. 209. Available online: http://orton.catie.ac.cr/REPDOC/A4588E/A4588E.PDF (accessed on 5 April 2023).
- Villota-Guerrón, E.L.; Rosero-Chamorro, E.G.; Farias-Mejía, A.A.; Valencia-Valenzuela, X.G.; Carvajal-Benavides, J.G.; Benalcázar-Villalba, S.M. Propiedades Tecnológicas de la Madera de Nogal Juglans neotropica Diels, en la Provincia Carchi Ecuador. Cienc. Lat. 2024, 8, 1543–1573. [Google Scholar] [CrossRef]
- Tropicos. Juglans neotropica Diels. Missouri Botanical Garden. 2017. Available online: https://www.tropicos.org/Name/16700014 (accessed on 16 May 2023).
- Vásquez, R.; Rojas, R.; Monteagudo, A.L.; Valenzuela, L.; Huamantupa, I. Catálogo de los Árboles del Perú; Número Especial; Revista Q’euña: Cusco, Perú, 2018; Volume 9, Available online: https://www.researchgate.net/publication/326096419 (accessed on 12 February 2024).
- Dueñas, D.; Guevara, O.; Santacruz, S. Valoración económica de los bienes y servicios ecosistémicos del bosque protector Jatumpamba-Jorupe. Rev. Geoespacial 2022, 19, 12–32. [Google Scholar]
- Gómez, M.L.; Toro, J.L.; Piedrahita, E. Propagación y Conservación de Especies Arbóreas Nativas; Corporación Autónoma Regional del Centro de Antioquia—CORANTIOQUIA: Medellín, Colombia, 2013; p. 364. [Google Scholar]
- Hassani, D.; Sarikhani, S.; Dastjerdi, R.; Mahmoudi, R.; Soleimani, A.; Vahdati, K. Situation and recent trends on cultivation and breeding of Persian walnut in Iran. Sci. Hortic. 2020, 270, 109369. [Google Scholar] [CrossRef]
- Vahdati, K.; Sarikhani, S.; Arab, M.M.; Leslie, C.A.; Dandekar, A.M.; Aletà, N.; Bielsa, B.; Gradziel, T.M.; Montesinos, Á.; Rubio-Cabetas, M.J.; et al. Advances in Rootstock Breeding of Nut Trees: Objectives and Strategies. Plants 2021, 10, 2234. [Google Scholar] [CrossRef]
- Valverde, A. Estudio y análisis del fruto seco Tocte (Juglans neotrópica) y su aplicación en la pastelería. Bachelor’s Thesis, Universidad de Guayaquil, Guayaquil, Ecuador, 2016. [Google Scholar]
- Azzurra, S.; Lorenza, M.; Llorent-Martínez, E.J.; Gokhan, Z.; Onur, B.; Rumeysa, D.; Arzu, A.; Omotayo, A.; Foluso, O.O.; Adejoke, Y.O.; et al. Assessment of the in-vitro toxicity and in-vivo therapeutic capabilities of Juglans regia on human prostate cancer and prostatic hyperplasia in rats. Food. Biosci. 2024, 57, 103539. [Google Scholar] [CrossRef]
- Mates, L.; Rusu, M.E.; Popa, D.S. Phytochemicals and biological activities of walnut septum: A systematic review. Antioxidants 2023, 12, 604. [Google Scholar] [CrossRef]
- Jang, Y.G.; Ko, E.B.; Choi, K.C. Gallic acid, a phenolic acid, hinders the progression of prostate cancer by inhibition of histone deacetylase 1 and 2 expression. J. Nutr. Biochem. 2020, 84, 108444. [Google Scholar] [CrossRef]
- Akpamou, G.K.; Adjossou, K.; Egbelou, H.; Akoete, K.K.; Hounkpati, K.; Kokou, K. Flora, Structure and Carbon Sequestration of Vegetation in the Southeast of the Mono Biosphere Reserve in Togo Amidst Environmental Challenges. Open J. For. 2024, 14, 155–181. [Google Scholar] [CrossRef]
- Palacios-Herrera, B.; Pereira-Lorenzo, S.; Pucha-Cofrep, D. Natural and Artificial Occurrence, Structure, and Abundance of Juglans neotropica Diels in Southern Ecuador. Agronomy 2023, 13, 2531. [Google Scholar] [CrossRef]
- Chusquillo, L.A. Diseño de un Proceso para la Obtención de Compuestos Fenólicos del Pericarpio de la Semilla del Nogal (Juglans netropica Diels) y Extracción del Aceite de la Nuez. Bachelor’s Thesis, Escuela Politécnica Nacional, Quito, Ecuador, 2014. [Google Scholar]
- Hurtado, E. Evaluación de la Actividad Gastroprotectora del Extracto Hidroalcohólico de las Hojas de Juglans neotropica Diels “Nogal Peruano”. Bachelor’s Thesis, Universidad Nacional Mayor de San Marcos, Lima, Perú, 2014. [Google Scholar]
- Masías, K. Caracterización de las Propiedades Tintóreas del Extracto de Nogal (Juglans neotropica Diels) Proveniente de la Cuenca Alta del Río Zaña. Bachelor’s Thesis, Universidad Nacional Agraria La Molina, Lima, Perú, 2007. [Google Scholar]
- Álvarez, H.; Vilema, G.; Gómez, C.; García, J.C. Estudio fenológico de Juglans neotropica Diels. En Imbabura—Ecuador. Bosques Latid. Cero 2023, 13, 23–33. [Google Scholar] [CrossRef]
- Gallagher, G. The IUCN Red List of Threatened Species. IUCN Red List of Threatened Species. 2018. Available online: https://www.iucnredlist.org/e (accessed on 12 February 2024).
- Ministerio de Ambiente y Desarrollo Sostenible. Lista de Especies Silvestres Amenazadas de la Diversidad Biológica Continental y Marino-Costera de Colombia; Resolución 1912 de 2017 Expedida por el Ministerio de Ambiente y Desarrollo Sostenible, v2.5; Dataset/Checklist; Ministerio de Ambiente y Desarrollo Sostenible: Bogota, Colombia, 2020. [CrossRef]
- Ramos-Veintimilla, R.A.; Murillo-Gamboa, O.; Gallo, L.A. Potencial de mejoramiento genético en Juglans neotropica Diels, a los 10 meses de edad en Tunshi, Chimborazo. In Proceedings of the VI Congreso Internacional De La Ciencia, Tecnología, Emprendimiento e Innovación, Riobamba, Ecuador, 24–28 June 2019; pp. 562–575. [Google Scholar] [CrossRef]
- Acosta-Hernández, C.C.; Luna-Rodríguez, M.; Noa-Carrazana, J.C.; Galindo-González, J.; Vázquez-Torres, S.M.; Morales-Romero, Z.; Iglesias-Andreu, L.G. Caracterización morfológica y dasométrica de la especie amenazada Juglans pyriformis Liebm. Rev. Chapingo 2011, 17, 59–67. [Google Scholar] [CrossRef]
- Martínez-Pérez, D.; Partida-Sedas, J.G.; Pérez-Portilla, E. Especies vegetales para biocombustibles en sistemas agrícolas diversificados en Veracruz, México. Rev. Bras. Agroecol. 2009, 4, 3438–4342. [Google Scholar]
- Aleta, N.; Ninot, A.; Voltas, J. Caracterización del comportamiento agroforestal de doce genotipos del nogal (Juglans sp) en dos localidades de Cataluña. Investigación Agraria. Sist. Recur. For. 2003, 12, 39–50. [Google Scholar]
- Fady, B.; Ducci, F.; Aleta, N.; Becquey, J.; Díaz-Vázquez, R.; Fernández-Llópez, F.; Jay-Allemand, C.; Lefe’vre, F.; Ninot, A.; Panetsos, K.; et al. Walnut demonstrates strong genetic variability for adaptive and wood quality traits in a network of juvenile field tests across Europe. Kluwer Academic Publishers. New For. 2003, 25, 211–225. [Google Scholar] [CrossRef]
- Alizoti, P.; Bastien, J.C.; Chakraborty, D.; Klisz, M.M.; Kroon, J.; Neophytou, C.; Schueler, S.; Loo, M.V.; Westergren, M.; Konnert, M.; et al. Non-Native Forest Tree Species in Europe: The Question of Seed Origin in Afforestation. Forests 2022, 13, 273. Available online: https://www.researchgate.net/publication/358435118_Non-Native_Forest_Tree_Species_in_Europe_The_Question_of_Seed_Origin_in_Afforestation#fullTextFileContent (accessed on 10 March 2024). [CrossRef]
- Fady, B.; Aravanopoulos, F.; Benavides, R.; González-Martínez, S.; Grivet, D.; Lascoux, M.; Lindner, M.; Rellstab, C.; Valladares, F.; Vinceti, B. Genetics to the rescue: Managing forests sustainably in a changing world. Tree Genet. Genomes 2020, 16, 80. [Google Scholar] [CrossRef]
- López, O. Estudios de Economía Forestal en el Marco de la Misión de Crecimiento Verde en Colombia; Resumen Ejecutivo; INFOANDINA, Global Green Growth Institute, Gobierno de Colombia: Bogota, Colombia, 2018; pp. 1–38. [Google Scholar]
- Murillo, O.; Espitia, M.; Castillo, C. Fuentes Semilleras para la Producción Forestal, 1st ed.; Editorial Domar, S.A.S.: Bogota, Colombia, 2012; p. 184. [Google Scholar]
- Murillo, O. and Guevara, V. Estado de los Recursos Genéticos Forestales de Costa Rica; MINAET/FAO/CONAGEBIO: San Jose, Costa Rica, 2013; p. 143. [Google Scholar]
- Resende, M.V. Software Selegen-REML/BLUP: A useful tool for plant breeding. Crop Breed. Appl. Biotechnol. 2016, 16, 330–339. [Google Scholar] [CrossRef]
- Yuan, H.; Niu, S.; Zhou, X.; Du, Q.; Li, Y.; Li, W. Evaluation of seed production in a first-generation seed orchard of Chinese pine (Pinus tabuliformis). J. For. Res. 2016, 27, 1003–1008. [Google Scholar] [CrossRef]
- Stewart, J.F.; Will, R.; Crane, B.S.; Nelson, C.D. Occurrence of shortleaf x loblolly pine hybrids in shortleaf pine orchards: Implications for ecosystem restoration. For. Sci. 2017, 63, 225–231. [Google Scholar] [CrossRef]
- Montagna, T.; Silva, J.; Bernardi, A.; Steiner, F.; Buzzi, V.; Busarello Lauterjung, M.; Mantovani, A.; Reis, M. Landscape Genetics and Genetic Conservation of Two Keystone Species from Ombrophilous Dense Forest: Euterpe edulis and Ocotea catharinensis. For. Sci. 2018, 64, 618–630. [Google Scholar] [CrossRef]
- Teixeira, J.C.; Huber, C.D. The inflated significance of neutral genetic diversity in conservation genetics. Proc. Natl. Acad. Sci. USA 2021, 118, e2015096118. [Google Scholar] [CrossRef] [PubMed]
- Vera-Vélez, R.; Grijalva-Olmedo, J.; Ramos-Veintimilla, R.; Sigcha-Morales, F.; Limongi-Andrade, R. Respuesta de tres especies maderables de rápido crecimiento a diferentes bioclimas en Ecuador. Trop. Subtrop. Agroecosyst. 2024, 27, 1–10. [Google Scholar] [CrossRef]
- 96Fernández-García, P.; Vallejo-Seco, G.; Livacic-Rojas, P.; Tuero-Herrero, E. Validez Estructurada para una investigación cuasi-experimental de calidad. Se cumplen 50 años de la presentación en sociedad de los diseños cuasi-experimentales. Ann. Psicol. 2014, 30, 756–771. [Google Scholar] [CrossRef]
- Ladrach, W. Manejo Práctico de Plantaciones Forestales en el Trópico y Subtrópico; Editorial Tecnológica de Costa Rica: Cartago, Costa Rica, 2010. [Google Scholar]
- Flores, C.; López, J.; Valencia, S. Manual Técnico para el Establecimeineto de Ensayos de Procedencia y/o Progenie; Comisión Nacional Forestal, CONAFOR: Mexico, City, México, 2014. [Google Scholar]
- Hernández-Salas, J.; Aguirre-Calderón, O.; Alanís-Rodríguezm, E.; Jiménez-Pérez, J.; Treviño-Garza, E.; González-Tagle, M.; Luján-Álvarez, C.; Olivas-García, J.; Domínguez-Pereda, L. Dinámica del crecimiento de un bosque templado bajo manejo en el noroeste de México. Madera Bosques 2018, 24, 24211767. [Google Scholar] [CrossRef]
- Galindo, M.P. Contribuciones a la representación simultánea de datos multidimensionales. Bachelor’s Thesis, Universidad de Salamanca, Valencia, España, 1985. [Google Scholar]
- Galindo, M.P. Una alternativa de representación simultánea. HJ Biplot Qüestiió 1986, 10, 13–23. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.r-project.org (accessed on 15 February 2024).
- Peterson, C.J.; Ribeiro, G.H.P.D.M.; Negrón-Juárez, R.; Marra, D.M.; Chambers, J.Q.; Higuchi, N.; Lima, A.; Cannon, J.B. Critical wind speeds suggest wind could be an important disturbance agent in Amazonian forests. Forestry 2019, 92, 444–459. [Google Scholar] [CrossRef]
- Cueva, A. Estimación del Turno Biológico de Corta para Juglans neotropica Diels) a Través de Métodos Dendrocronológicos en dos Ecosistemas Forestales Andinos de la Provincia de Loja. Bachelor’s Thesis, Universidad de Loja, Loja, Ecuador, 2018. [Google Scholar]
- Fierro, A. Caracterización Dasométrica de Familias de Junglans neotropica Diels Recolectadas en la Provincia de Tungurahua. Bachelor’s Thesis, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador, 2023. [Google Scholar]
- Loewe, V.; Bozo, A.; Jaime, N. Evaluación de aprovechamiento y propuesta de clasificación de madera de desecho de nogal Común (Juglans regia). C. I. For. 2021, 27, 43–54. [Google Scholar] [CrossRef]
- Zanuttini, R.; Cremonini, C.; Brunetti, M.; Berti, S. Caratterizzazione del tondame di noce e ciliegio. Sherwood 2006, 120, 7–13. [Google Scholar]
- Resende, M.D.V. Genética Quantitativa e de Populações; Suprema, Visconde do Rio Branco, Viçosa: Minas Gerais, Brasil, 2015. [Google Scholar]
- Bonfim de Oliveira, S.D.; Gomes de Farias, S.G.; Resende, R.T.; Cardoso, C.R.; Bezerra e Silva, R.; Tambarussi, E.V. Genetic variability and ex situ conservation strategies for the neotropical tree Parkia platycephala Benth. Cienc. For. 2023, 33, e64058. [Google Scholar] [CrossRef]
- Kubota, T.Y.K.; Moraes, M.A.; Silva, E.C.B.; Pupin, S.; Aguiar, A.V.; Moraes, M.L.T.; Freitas, M.L.M.; Sato, A.S.; Machado, J.A.R.; Sebbenn, A.M. Genetic variability of silvicultural traits in opened-pollinated progenies of Balfourodendron riedelianum (Engler). Sci. For. 2015, 43, 407–415. [Google Scholar]
- Aguiar, B.I.; Freitas, M.L.M.; Tavares, Y.R.; Tambarussi, E.V.; Zanatto, B.; Gandara, F.B.; Paludeto, J.G.Z.; Silva, D.Y.B.O.; Silva, J.R.; Moraes, M.L.T.; et al. Genetic control of silvicultural traits in Balfourodendron riedelianum (ENGL.) ENGL. Silvae Genética 2019, 68, 73–78. [Google Scholar] [CrossRef]
- Murillo, O.; de Resende, M.D.V.; Badilla, Y.; Gamboa, J.P. Genotype by environment interaction and teak (Tectona grandis L.f.) selection in Costa Rica. Silvae Genet. 2019, 68, 116–121. [Google Scholar] [CrossRef]
- Hernández, W.; Badilla, Y.; Murillo, O. Selección temprana en ensayos clonales de melina (Gmelina arborea Robx.) en Costa Rica. Agron. Mesoam. 2021, 32, 93–106. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, D.; Moya, R.; Murillo, O. Effect of stem height in variation of bark, heartwood, sapwood and physical properties of wood in Dipteryx panamensis Pittier in a provenance/progeny test. Cienc. Florestais 2022, 32, 141–162. [Google Scholar] [CrossRef]
- Čavlović, J.; Kremer, D.; Božić, M.; Teslak, K.; Vedriš, M.; Goršić, E. Stand growth models for more intensive management of Juglans nigra: A case study in Croatia. Scand. J. For. Res. 2010, 25, 138–147. [Google Scholar] [CrossRef]
- Michler, C.H.; Pijut, P.M.; Jacobs, D.F.; Meilan, R.; Woeste, K.E.; Ostry, M.E. Improving disease resistance of butternut (Juglans cinerea), a threatened fine hardwood: A case for single-tree selection through genetic improvement and deployment. Tree Physiol. 2006, 26, 121–128. [Google Scholar] [CrossRef]
- Ortega, H. Estudio del Ataque de Gretchena garai Miller en Nogal (Juglans neotropica Diels) en Plantación Sola y Asociada con Cuatro Especies Forestales en dos Sitios. Bachelor’s Thesis, Universidad Técnica del Norte, Ibarra, Ecuador, 2007. [Google Scholar]
- Montenegro, M.; Pozo, E. Control Integrado del Barrenador (Gretchena sp) del Nogal (Juglans neotropica Diels). Bachelor’s Thesis, Universidad Técnica del Norte Ibarra, Ibarra, Ecuador, 1993. [Google Scholar]
- Dema, J.; Zaw, Z.; Fan, Z.X.; Panthi, S.; Fu, P.L. Sensibilidad climática específica del sitio de la anchura de los anillos de los árboles y las características anatómicas de los vasos de Juglans regia L. en Bután, Himalaya. Glob. Ecology. Conserv. 2024, 53, 03023. [Google Scholar]
- Oelkers, R.C.; Andreu-Hayles, L.; D’Arrigo, R.; Pacheco-Solana, A.; Rodriguez-Caton, M.; Fuentes, A.; Santos, G.M.; Tejedor, E.; Ferrero, M.E.; Maldonado, C. Aumento reciente del crecimiento de Juglans boliviana endémica de los Andes tropicales, Dendrochronologia 2023, 79, 126090. Dendrochronologia 2023, 79, 126090. [Google Scholar] [CrossRef]
- Rossi, F.S.; Rossi, A.A.B.; Dardengo, J.F.E.; Brauwers, L.R.; Silva, M.L.; Sebbenn, A.M. Genetic diversity in natural populations of Mauritia flexuosa (Arecaceae) using ISSR markers. Sci. For. 2014, 42, 631–639. [Google Scholar]
- León, N.; Murillo, O.; Badilla, Y.; Ávila, C.; Murillo, R. Expected genetic gain and genotype by environment interaction in almond (Dipteryx panamensis Pittier Rec. and Mell in Costa Rica. Silvae Genet. 2017, 66, 9–13. [Google Scholar] [CrossRef]
- Quesada, S.; Alfaro, C.; Murillo, O.; Badilla, Y.; Luján, R. Evaluación del comportamiento de clones de Tectona grandis L.f. en suelos vertisoles de la Península de Nicoya, Costa Rica. Kurú 2018, 16, 24–34. [Google Scholar] [CrossRef]
- Kageyama, P.Y.; Sebbenn, A.M.; Ribas, L.A.; Gandara, F.B.; Castellen, M.; Perecim, M.B.; Vencovsky, R. Diversidade genética em espécies arbóreas tropicais de diferentes estágios sucessionais por marcadores genéticos. Sci. For. 2003, 64, 93–107. [Google Scholar]
- Jiménez, A.; Jiménez, D.; Badilla, Y.; Murillo, O. Manejo de una unidad de conservación ex situ de Swietenia macrophylla de diecisiete años de edad ubicado en el CATIE, Turrialba, Costa Rica. In Proceedings of the XII. Simposio Internacional Manejo Sostenible de Recursos Forestales, Los Chiles, Costa Rica, 22–24 November 2023; Facultad Ciencias Forestales y Agropecuarias, Universidad Pinar del Río: Pinar del Rio, Cuba, 2023. [Google Scholar]
- Ye, L.; Shavvon, R.S.; Qi, H.; Wu, H.; Fan, P.; Shalizi, M.N.; Khurram, S.; Davletbek, M.; Turuspekov, Y.; Liu, J. Perspectivas Genéticas Poblacionales Sobre la conservación del nogal común (Juglans regia) en Asia Central. Plant Diversity. 2024. Available online: https://www.sciencedirect.com/science/article/pii/S2468265924000842 (accessed on 18 August 2024).
- Shahi, S.R.; Qi, H.L.; Mafakheri, M.; Fan, P.Z.; Wu, H.Y.; Bazdid-Vahdati, F.; Al-Shmgani, H.S.; Wang, Y.-H.; Liu, J. Unravelling the genetic diversity and population structure of common walnut in the Iranian Plateau. BMC Plant Biol. 2023, 23, 201. [Google Scholar]
- Yuan, X.Y.; Sun, Y.W.; Bai, X.R.; Dang, M.; Feng, X.J.; Zulfiqar, S.; Zhao, P. Population Structure, Genetic Diversity, and Gene Introgression of Two Closely Related Walnuts (Juglans regia and J. sigillata) in Southwestern China Revealed by EST-SSR Markers. Forests 2018, 9, 646. [Google Scholar] [CrossRef]
- Medina, J.; Quizhpe, W.; Déleg, J.; Gonzalez, K.; Aguirre, Z.; Aguirre, N.; Montaño, L.; Benítez, Á. Are Juglans neotropica Plantations Useful as a Refuge of Bryophytes Diversity in Tropical Areas? Life 2021, 11, 434. [Google Scholar] [CrossRef]
- Einollahi, F.; Khadivi, A. Morphological and pomological assessments of seedling-originated walnut (Juglans regia L.) trees to select the promising late-leafing genotypes. BMC Plant Biol. 2024, 24, 253. [Google Scholar] [CrossRef]
Provenance | No. | Progeny Code | Geographical Location | No. Trees | |
---|---|---|---|---|---|
Latitude | Longitude | ||||
Bolivar | 1 | BSM | 1°48′52.6″ S | 79°4′9.6″ W | 15 |
2 | BJ41 | 1°49′10.1″ S | 79°3’53.6″ W | 18 | |
3 | BJ42 | 1°48′59.1″ S | 79°4’12.5″ W | 3 | |
4 | BJ44 | 1°42′26.0″ S | 79°2′39.0″ W | 9 | |
5 | BJ45 | 1°48′19.0″ S | 79°3′58.0″ W | 12 | |
6 | BJ47 | 1°42′11.9″ S | 79°2′38.7″ W | 16 | |
7 | BJ48 | 1°48′26.2″ S | 79°6′5.4″ W | 3 | |
Chimborazo | 1 | ChAG | 2°14′25.6″ S | 78°48′5.8″ W | 3 |
2 | ChG | 1°36′13.5″ S | 78°39′30.3″ W | 7 | |
3 | ChGST | 1°36′13.5″ S | 78°39′30.3″ W | 5 | |
4 | ChRC | 1°39′48.0″ S | 78°39′16.0″ W | 6 | |
5 | ChJ50 | 1°38′13.8″ S | 78°36′56.7″ W | 7 | |
6 | ChL1 | 2°11′59.2″ S | 78°50′50.7″ W | 20 | |
7 | ChL10 | 1°43′36.1″ S | 78°36′22.9″ W | 5 | |
8 | ChL12 | 1°54’49.2″ S | 78°38’32.4″ W | 16 | |
9 | ChL14 | 1°54’39.8″ S | 78°38’32.0″ W | 18 | |
10 | ChL16 | 2°12′6.6″ S | 78°50′54.6″ W | 8 | |
11 | ChL17 | 2°13′39.0″ S | 78°53′35.0″ W | 8 | |
12 | ChL19 | 1°39’26.0″ S | 78°34’6.7″ W | 5 | |
13 | ChL2 | 1°39’28.4″ S | 78°34’2.4″ W | 16 | |
14 | ChL21 | 1°43’38.4″ S | 78°35’18.5″ W | 18 | |
15 | ChL22 | 1°39’13.5″ S | 78°42’37.8″ W | 11 | |
16 | ChL23 | 1°38′33.2″ S | 78°33′32.6″ W | 14 | |
17 | ChL25 | 1°40′19.6″ S | 78°39′34.4″ W | 10 | |
18 | ChL27 | 1°39′35.0″ S | 78°40′49.0″ W | 14 | |
19 | ChL32 | 1°40′27.2″ S | 78°38′25.9″ W | 11 | |
20 | ChL35 | 1°36′8.8″ S | 78°31′29.6″ W | 7 | |
21 | ChL4 | 1°43′28.3″ S | 78°36′17.4″ W | 13 | |
22 | ChL5 | 1°43′19.1″ S | 78°36′1.6″ W | 8 | |
23 | ChL7 | 1°43′28.3″ S | 78°36′17.4″ W | 4 | |
Tungurahua | 1 | TJ13 | 1°12′17.0″ S | 78°32′13.7″ W | 10 |
2 | TJ14 | 1°0′0.0″ S | 78°35′21.0″ W | 13 | |
3 | TJ15 | 1°16′47.0″ S | 78°36′58.6″ W | 5 | |
4 | TJ16 | 1°18′21.3″ S | 78°36′13.1″ W | 8 | |
5 | TJ18 | 1°15′35.5″ S | 78°40′43.2″ W | 6 | |
6 | TJ19 | 1°19′47.6″ S | 78°37′54.9″ W | 8 | |
7 | TJ20 | 1°14′27.7″ S | 78°38′33.4″ W | 3 | |
8 | TJ22 | 1°18′18.9″ S | 78°36′15.3″ W | 10 | |
9 | TJ23 | 1°10′32.4″ S | 78°32′50.3″ W | 11 | |
10 | TJ24 | 1°19′29.0″ S | 78°37′53.8″ W | 10 | |
11 | TJ37 | 1°12′17.0″ S | 78°32′13.7″ W | 8 | |
12 | TJ8 | 1°13’16.2″ S | 78°32’16.6″ W | 8 | |
13 | TJ9 | 1°14′22.1″ S | 78°38′24.5″ W | 13 | |
14 | TSB | 1°15′11.6″ S | 78°37′32.1″ W | 3 | |
Pichincha | 1 | PQ1 | 0°15’39.1″ S | 78°33’22.2″ W | 5 |
Imbabura | 1 | IICh8 | 0°21’10.0″ N | 78°11’30.0″ W | 8 |
Shapiro–Wilk | Levene Test | ANOVA (p-Value) | ||
---|---|---|---|---|
Provenances | Progenies | |||
DBH | <0.05 | 0.33 | 0.32 | 0.11 ns |
Total Height | <0.05 | 0.10 | 0.79 | 0.06 ns |
MAI Height | <0.05 | 0.24 | 0.92 | 0.01 * |
Living Crown Height | <0.05 | 0.14 | 0.99 | 0.12 ns |
Basal Area | <0.05 | 0.25 | 0.28 | 0.06 ns |
Quadratic Diameter | <0.05 | 0.33 | 0.32 | 0.11 ns |
Volume | <0.05 | 0.84 | 0.60 | 0.04 * |
Family | MAI Height (cm) | Range | Total Height (cm) | Range | Basal Area (m2/ha) | Range | Volume (m3/ha) | Range |
---|---|---|---|---|---|---|---|---|
TJ20 | 85.2 | a | 419.2 | a | 2.7 | a | 8.5 | a |
ChAG | 80.3 | ab | 377.6 | abc | 1.8 | bcd | 5.1 | bcd |
ChRC | 78.1 | abc | 388.9 | ab | 2.7 | a | 8.4 | a |
TJ18 | 71.8 | abcd | 359.2 | abcd | 2.5 | ab | 7.3 | ab |
BJ47 | 70.2 | bcd | 357.2 | abcd | 1.6 | cd | 4.7 | bcd |
ChL14 | 68.0 | bcde | 346.2 | bcde | 1.5 | cd | 4.7 | bcd |
ChL2 | 67.3 | bcde | 342.0 | bcde | 1.7 | cd | 4.7 | bcd |
BSM | 66.1 | bcde | 328.4 | bcde | 1.5 | cd | 4.0 | cd |
TJ13 | 66.0 | bcde | 335.6 | bcde | 2.0 | bc | 5.3 | bc |
TJ14 | 65.6 | bcde | 340.4 | bcde | 1.8 | bcd | 4.6 | bcd |
ChL21 | 65.5 | bcde | 336.0 | bcde | 1.7 | cd | 4.0 | cd |
TJ22 | 65.2 | cde | 332.0 | bcde | 1.7 | cd | 4.4 | bcd |
ChL16 | 64.7 | cde | 325.6 | bcde | 1.5 | cd | 3.6 | cd |
ChL23 | 63.8 | cde | 330.5 | bcde | 1.9 | bcd | 4.6 | bcd |
BJ48 | 63.7 | cde | 328.4 | bcde | 1.8 | bcd | 4.4 | bcd |
BJ45 | 63.7 | cde | 326.4 | bcde | 1.6 | cd | 3.9 | cd |
TJ15 | 63.3 | cde | 316.5 | bcde | 1.6 | cd | 3.9 | cd |
ChJ50 | 62.8 | cde | 319.0 | bcde | 1.5 | cd | 3.8 | cd |
ChL17 | 62.6 | cde | 315.1 | bcde | 1.7 | bcd | 3.9 | cd |
TJ24 | 62.5 | cde | 322.1 | bcde | 1.7 | bcd | 4.5 | bcd |
ChG | 62.5 | cde | 312.7 | bcde | 1.9 | bcd | 4.7 | bcd |
ChL5 | 62.5 | cde | 325.1 | bcde | 1.8 | bcd | 4.9 | bcd |
TSB | 62.3 | cde | 313.8 | bcde | 1.6 | cd | 3.8 | cd |
ChL35 | 62.2 | de | 321.9 | bcde | 1.9 | bcd | 4.4 | bcd |
TJ9 | 62.1 | de | 318.9 | bcde | 1.8 | bcd | 4.4 | bcd |
ChL12 | 62.1 | de | 320.3 | bcde | 1.6 | cd | 3.7 | cd |
ChL1 | 62.0 | de | 323.8 | bcde | 1.6 | cd | 3.6 | cd |
TJ37 | 61.7 | de | 314.4 | bcde | 1.6 | cd | 4.2 | bcd |
ChL32 | 61.2 | de | 315.7 | bcde | 1.5 | cd | 3.7 | cd |
ChL27 | 61.1 | de | 321.5 | bcde | 1.6 | cd | 4.2 | bcd |
ChL25 | 60.5 | de | 312.0 | cde | 1.7 | bcd | 4.3 | bcd |
ChL4 | 60.0 | de | 312.2 | cde | 1.5 | cd | 3.6 | cd |
TJ8 | 59.6 | de | 306.9 | cde | 1.6 | cd | 3.9 | cd |
BJ44 | 59.6 | de | 307.5 | cde | 1.4 | cd | 3.2 | cd |
ChL7 | 59.3 | de | 314.3 | bcde | 1.7 | cd | 4.6 | bcd |
ChL22 | 59.2 | de | 307.2 | cde | 1.7 | bcd | 4.0 | cd |
TJ19 | 58.5 | de | 293.8 | de | 1.4 | cd | 2.3 | cd |
BJ41 | 58.3 | de | 302.5 | cde | 1.7 | bcd | 4.0 | cd |
CHGST | 57.0 | de | 294.3 | de | 1.7 | bcd | 3.5 | cd |
ChL10 | 56.6 | de | 293.1 | de | 1.3 | cd | 3.0 | cd |
TJ23 | 56.3 | de | 297.1 | de | 1.5 | cd | 3.6 | cd |
BJ42 | 55.9 | de | 285.7 | de | 1.2 | cd | 1.9 | d |
TJ16 | 53.7 | e | 269.4 | e | 1.3 | cd | 2.4 | cd |
ChL19 | 52.8 | e | 284.4 | de | 1.1 | d | 3.0 | cd |
Dasometric Characteristics | Mean | SD | Min | Max |
---|---|---|---|---|
Diameter breast height (cm) | 5.7 | 1.1 | 2.9 | 10.1 |
Total height (cm) | 322.3 | 59.9 | 192.0 | 551.0 |
Mean annual increment height (cm) | 63.0 | 12.7 | 33.8 | 114.7 |
Living crown height (cm) | 291.5 | 77.4 | 138.0 | 551.0 |
Basal area (m2/ha) | 1.7 | 0.7 | 0.4 | 5.0 |
Quadratic diameter (cm) | 0.6 | 0.1 | 0.3 | 1.0 |
Volume (m3/ha) | 4.2 | 2.6 | 0.5 | 15.6 |
Provenance | DBH (cm) | MAI Height (cm) | Total Height (cm) | Living Crown Height (cm) | Basal Area (m2/ha) | Volume (m3/ha) |
---|---|---|---|---|---|---|
Bolívar | 5.6 ± 1.0 | 63.5 ± 14.2 | 323.86 ± 66.9 | 292.1 ± 87.3 | 1.6 ± 0.6 | 4.0 ± 2.4 |
Chimborazo | 5.8 ± 1.1 | 63.2 ± 12.0 | 324.8 ± 55.3 | 292.3 ± 75.6 | 1.7 ± 0.7 | 4.2 ± 2.6 |
Imbabura | 5.3 ± 0.9 | 56.8 ± 7.2 | 277.2 ± 36.9 | 251.0 ± 44.8 | 1.4 ± 0.5 | 3.0 ± 1.4 |
Pichincha | 5.0 ± 1.8 | 62.0 ± 26.7 | 302.7 ± 127.1 | 263.2 ± 151.2 | 1.4 ± 1.0 | 3.7 ± 4.9 |
Tungurahua | 5.8 ± 1.2 | 62.7 ± 12.8 | 320.2 ± 61.1 | 293.5 ± 71.9 | 1.7 ± 0.7 | 4.3 ± 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Veintimilla, R.A.; Romero-Cañizares, F.; González-Narváez, M.; Vera-Velez, R.; García-Mora, M. Evaluation of Adaptive Responses of Juglans neotropica Diels Progenies Based on Dasometric Traits. Int. J. Plant Biol. 2025, 16, 26. https://doi.org/10.3390/ijpb16010026
Ramos-Veintimilla RA, Romero-Cañizares F, González-Narváez M, Vera-Velez R, García-Mora M. Evaluation of Adaptive Responses of Juglans neotropica Diels Progenies Based on Dasometric Traits. International Journal of Plant Biology. 2025; 16(1):26. https://doi.org/10.3390/ijpb16010026
Chicago/Turabian StyleRamos-Veintimilla, Raúl Armando, Fernando Romero-Cañizares, Mariela González-Narváez, Roy Vera-Velez, and Mario García-Mora. 2025. "Evaluation of Adaptive Responses of Juglans neotropica Diels Progenies Based on Dasometric Traits" International Journal of Plant Biology 16, no. 1: 26. https://doi.org/10.3390/ijpb16010026
APA StyleRamos-Veintimilla, R. A., Romero-Cañizares, F., González-Narváez, M., Vera-Velez, R., & García-Mora, M. (2025). Evaluation of Adaptive Responses of Juglans neotropica Diels Progenies Based on Dasometric Traits. International Journal of Plant Biology, 16(1), 26. https://doi.org/10.3390/ijpb16010026