Dominant Morphotypes of Native Arbuscular Mycorrhizal Fungi from Coffee Plantations and Their Propagation with Trap Plants
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Morphotypes and Abundance of the AMF Spores
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- SIAP (Servicio de Información Agroalimentaria y Pesquera). Panorama Agroalimentario. Available online: https://drive.google.com/file/d/1FWHntHMgjw_uOse_MsOF9jZQDAm_FOD9/view (accessed on 10 December 2023).
- Fairetrade International. Available online: https://www.fairtrade.net/ (accessed on 1 April 2023).
- Moguel, P.; Toledo, V.M. Biodiversity conservation in traditional coffee systems of Mexico. Biol. Conserv. 1999, 13, 11–21. [Google Scholar] [CrossRef]
- Geissert, D.; Ibañez, A. Calidad y ambiente fisicoquímico de los suelos. In Agroecosistemas Cafetaleros del Estado de Veracruz Biodiversidad, Manejo y Conservación; Manson, R.H., Hernández, V., Gallina, O.S., Mehltreter, K., Eds.; Instituto de Ecología: Mexico City, Mexico, 2008; pp. 15–44. [Google Scholar]
- Rodríguez-Eugenio, N.; McLaughlin, M.; Pennock, D. La Contaminación del Suelo: Una Realidad Oculta; FAO: Italia, Roma, 2019; p. 144. [Google Scholar]
- Spatafora, J.W.; Chang, Y.; Benny, G.L.; Lazarus, K.; Smith, M.E.; Berbee, M.L.; Bonito, G.; Corradi, N.; Grigoriev, I.; Gryganskyi, A.; et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Micología 2016, 108, 1028–1046. [Google Scholar] [CrossRef] [PubMed]
- Porcel, R.; Aroca, R.; Ruiz-Lozano, J.M. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron. Sustain. Dev. 2012, 32, 181–200. [Google Scholar] [CrossRef]
- Pérez-Moncada, U.A.; Gómez, M.R.; Serralde-Ordoñez, D.P.; Peñaranda-Rolón, A.M.; Wilches-Ortiz, W.A.; Ramírez, L.; Rengifo-Estrada, G.A. Hongos formadores de micorrizas arbusculares (HFMA) como estrategia para reducir la absorción de cadmio en plantas de cacao (Theobroma cacao). Terra Latinoam. 2019, 37, 121–130. [Google Scholar] [CrossRef]
- Mohamed, I.; Eid, K.E.; Abbas, M.H.H.; Salem, A.A.; Ahmed, N.; Ali, M.; Shah, G.M.; Fang, C. Use of plant growth promoting Rhizobacteria (PGPR) and mycorrhizae to improve the growth and nutrient utilization of common bean in a soil infected with white rot fungi. Ecotoxicol. Environ. Saf. 2019, 171, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.V.; Pedroso, D.D.F.; Curi, N.; Carneiro, M.A.C. Do different arbuscular mycorrhizal fungi affect the formation and stability of soil aggregates? Cienc. Agrotecnologia 2019, 43, e003519. [Google Scholar] [CrossRef]
- Muñoz, M.G. Análisis de Expresión de Genes de Respuesta al Estrés Hídrico en Plantas de Sorghum bicolor (L.) Moench en Presencia y Ausencia de Asociaciones con Hongos Micorrízicos. Doctoral Dissertation, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico, 2018. [Google Scholar]
- Singh, A.K.; Chen, C.; Wu, J.; Yang, B.; Zakari, S.; Jiang, X.J.; Singh, N.; Liu, W. The role of glomalin in mitigation of multiple soil degradation problems. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1–35. [Google Scholar] [CrossRef]
- Lehmann, E.F.; Leifheit, A.; Rillig, M.C. Mycorrhizas and soil aggregation. In Mycorrhizal Mediation of Soil: Fertility, Structure and Carbon Storage; Johnson, N.C., Gehring, C., Jansa, J., Eds.; Elsevier: New York, NY, USA, 2017; pp. 241–262. [Google Scholar]
- Parihar, M.; Rakshit, A.; Meena, V.S.; Gupta, V.K.; Rana, K.; Choudhary, M.; Jatav, H.S. The potential of arbuscular mycorrhizal fungi in C cycling: A review. Arch. Microbiol. 2019, 202, 1581–1596. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Cruz, M.A.; Schwentesius, R.R.; Meraz, A.M.d.R.; Lobato, G.A.; Gómez, T. Agricultura, Apicultura y Ganadería Orgánicas de México-2005-Situación–Retos–Tendencias, 1st ed.; PIAI-CIESTAAM: Texcoco, Mexico, 2005; pp. 1–65. [Google Scholar]
- Oehl, F.; Sieverding, E.; Ineichen, K.; Maeder, P.; Wiemken, A.; Boller, T. Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. Agric. Ecosyst. Environ. 2009, 134, 257–268. [Google Scholar] [CrossRef]
- Quiroz, A.C. Estrategias de Gestión Para la Producción Sustentable de Café Diferenciado en Jilotepec, Veracruz. Master’s Dissertation, Universidad Veracruzana, Veracruz, Mexico, 2023. [Google Scholar]
- NORMA Oficial Mexicana NOM-021-SSA1-2021, Salud Ambiental. Criterio Para Evaluar la Calidad del Aire Ambiente, con Respecto al Monóxido de Carbono (CO). Valores Normados para la Concentración de Monóxido de Carbono (CO) en el Aire ambiente, Como Medida de Protección a la Salud de la Población. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5634084&fecha=29/10/2021#gsc.tab=0 (accessed on 26 April 2023).
- Bahadori, M.; Tofighi, H. A modified Walkley-Black method based on spectrophotometric procedure. Commun. Soil Sci. Plant Anal. 2016, 47, 213–220. [Google Scholar] [CrossRef]
- Bremner, J.M. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Bray, R.; Kurtz, L. Determination of total, organic and available forms of phosphorus in soil. Soil Sci. 1945, 59, 39–45. [Google Scholar] [CrossRef]
- Metson, A.J.; Blakemore, L.C.; Rhoades, D.A. Methods for the Determination of Soil Organic Carbon: A Review, and Application to New Zealand Soils. N. Z. J. Sci. 1979, 22, 205–228. [Google Scholar]
- Gerdemann, J.; Nicolson, T.H. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 1963, 46, 235–244. [Google Scholar] [CrossRef]
- Invam (International Culture Collection of Vesicular Arbuscular Mycorrhizal Fungi). Available online: http://invam.caf.wvu.edu/ (accessed on 10 January 2024).
- Redecker, D.; Schüßler, A.; Stockinger, H.; Stürmer, S.L.; Morton, J.B.; Walker, C. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 2013, 23, 515–531. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Trejo, D.; Zulueta, R.; Lara, L. Manual de Prácticas Para el Estudio de la Simbiosis Micorrizógena Arbuscular, 1st ed.; Universidad Veracruzana: Veracruz, Mexico, 2008; pp. 1–137. [Google Scholar]
- McGonigle, T.P.; Miller, M.H.; Evans, D.G.; Fairchild, G.L.; Swan, J.A. A new method which gives an objective measure of colonization of roots by vesicular—Arbuscular mycorrhizal fungi. New Phytol. 1990, 115, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Martín, F.; Rivera-Espinosa, R.A.; Hernández-Jiménez, A.; Herrera-Peraza, R.A.; Fernández-Suárez, K. Inoculación de hongos micorrízicos arbusculares y diferentes relaciones suelo: Humus de lombriz sobre el crecimiento del cafeto (Coffea arabica L.) cv. Catuaí bajo la etapa de vivero. Rev. Chapingo Ser. Hortic. 2005, 11, 175–184. [Google Scholar] [CrossRef]
- Quiñones-Aguilar, E.E.; Hernández-Cuevas, L.V.; López Pérez, L.; Rincón-Enríquez, G. Efectividad de hongos micorrízicos arbusculares nativos de rizósfera de Agave como promotores de crecimiento de papaya. Terra Latinoam. 2019, 37, 163–174. [Google Scholar] [CrossRef]
- Bertolini, V.; Montaño, N.M.; Chimal, E.; Varela, L.; Gómez, J.; Martínez, J.M. Abundancia y riqueza de hongos micorrizógenos arbusculares en cafetales de Soconusco, Chiapas, México. Rev. Biol. Trop. 2018, 66, 91–105. [Google Scholar] [CrossRef]
- Öpik, M.; Moora, M.; Liira, J.; Zobel, M. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J. Ecol. 2006, 94, 778–790. [Google Scholar] [CrossRef]
- Oehl, F.; Sieverding, E.; Ineichen, K.; Mäder, P.; Boller, T.; Wiemken, A. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl. Environ. Microbiol. 2003, 69, 2816–2824. [Google Scholar] [CrossRef] [PubMed]
- Hart, M.M.; Reader, R.J. Host plant benefit from association with arbuscular mycorrhizal fungi: Variation due to differences in size of mycelium. Biol. Fertil. Soils 2002, 36, 357–366. [Google Scholar] [CrossRef]
- Arias, R.M.; Heredia, G.; Sosa, V.; Fuentes-Ramírez, L.E. Diversity and abundance of arbuscular mycorrhizal fungi spores under different coffee production systems and in a tropical montane cloud forest patch in Veracruz, Mexico. Agrofor. Syst. 2012, 85, 179–193. [Google Scholar] [CrossRef]
- Posada, R.H.; Sánchez, M.; Heredia, G.; Sieverding, E. Effects of soil physical and chemical parameters, and farm management practices on arbuscular mycorrhizal fungi communities and diversities in coffee plantations in Colombia and Mexico. Agrofor. Syst. 2018, 92, 555–574. [Google Scholar] [CrossRef]
- Bertolini, V.; Montaño, N.M.; Salazar, B.L.; Chimal, E.; Varela, L. Diversidad de hongos micorrizógenos arbusculares en plantaciones de café (Coffea arabica) del volcán Tacaná, Chiapas, México. Act. Bot. Mex. 2020, 127, 1–16. [Google Scholar] [CrossRef]
- Robles-González, K.K.; Álvarez-Solís, J.D.; Bertolini, V.; Pérez-Luna, Y.C. Diversidad y propagación de hongos micorrízicos arbusculares nativos de un cafetal orgánico en Chiapas, México. Rev. Fitotec. Mex. 2023, 46, 147. [Google Scholar] [CrossRef]
- Prates Júnior, P.; Moreira, B.C.; da Silva, M.d.C.S.; Veloso, T.G.R.; Stürmer, S.L.; Fernandes, R.B.A.; Mendonça, E.D.S.; Kasuya, M.C.M. Agroecological coffee management increases arbuscular mycorrhizal fungi diversity. PLoS ONE 2019, 14, e0209093. [Google Scholar] [CrossRef] [PubMed]
- Urgiles-Gómez, N.; Avila-Salem, M.E.; Loján, P.; Encalada, M.; Hurtado, L.; Araujo, S.; Cornejo, P. Plant growth-promoting microorganisms in coffee production: From isolation to field application. Agronomy 2021, 11, 1531. [Google Scholar] [CrossRef]
- Mahdi, S.S.; Hassan, G.; Samoon, S.; Rather, H.; Dar, S.A.; Zehra, B. Bio-fertilizers in organic agriculture. J. Phytol. 2010, 2, 42–54. [Google Scholar]
- de Souza, T.A.F.; Freitas, H. Arbuscular mycorrhizal fungal community assembly in the Brazilian tropical seasonal dry forest. Ecol. Process. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Peña-Venegas, C.P.; Cardona, G.I.; Arguelles, J.H.; Arcos, A.L. Micorrizas arbusculares del sur de la amazonia colombiana y su relación con algunos factores fisicoquímicos y biológicos del suelo. Acta Amaz. 2007, 37, 327–336. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Anderson, K.; Morton, J.B. Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia 2023, 135, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Kanwal, S.; Bano, A.; Malik, R.N. Role of arbuscular mycorrhizal fungi in phytoremediation of heavy metals and effects on growth and biochemical activities of wheat (Triticum aestivum L.) plants in Zn contaminated soils. AJB 2016, 15, 872–883. [Google Scholar] [CrossRef]
- Kormanik, P.P.; McGraw, A.C. Quantification of vesicular-arbuscular mycorrhizae in plant roots. In Methods and Principles of Mycorrhizal Research; Schenck, N., Ed.; American Phytopathological Society: St. Paul, MN, USA, 1982; pp. 37–45. [Google Scholar]
- Yusnizar, Y.; Syafruddin, S.; Hifnalisa, H.; Karim, A.; Fikrinda, F.; Latifurrahmi, L. Propagation of arbuscular mycorrhizal fungi (AMF) spores from arabica coffee (Coffea arabica L.) plantations in Bener Meriah Regency. AGROTEK 2024, 8, 55–61. [Google Scholar] [CrossRef]
- Vallejos-Torres, G.; Saboya, A.; Arévalo, L. Efecto Bioprotector de Micorrizas Arbusculares en la Reducción de Roya (Hemileia vastatrix) en la Región San Martín. Rev. Agrotec. Amaz. 2021, 1, 34–44. [Google Scholar] [CrossRef]
- Del Aguila, K.M.; Vallejos-Torres, G.; Arévalo, L.A.; Becerra, A.G. Inoculación de consorcios micorrícicos arbusculares en Coffea arabica, variedad Caturra en la región San Martín. Inf. Tecnol. 2018, 29, 137–146. [Google Scholar] [CrossRef]
- Selvakumar, G.; Krishnamoorthy, R.; Kim, K.; Sa, T. Propagation technique of arbuscular mycorrhizal fungi isolated from coastal reclamation land. Eur. J. Soil. Biol. 2016, 74, 39–44. [Google Scholar] [CrossRef]
- Douds, D.D., Jr.; Nagahashi, G.; Pfeffer, P.E.; Kayser, W.M.; Reider, C. On-farm production and utilization of arbuscular mycorrhizal fungus inoculum. Can. J. Plant Sci. 2005, 85, 15–21. [Google Scholar] [CrossRef]
- Mohammad, A.; Khan, A.G.; Kuek, C. Improved aeroponic culture of inocula of arbuscular mycorrhizal fungi. Mycorrhiza 2000, 9, 337–339. [Google Scholar] [CrossRef]
- Tajini, F.; Suriyakup, P.; Vailhe, H.; Jansa, J.; Drevon, J.J. Assess suitability of hydroaeroponic culture to establish tripartite symbiosis between different AMF species, beans, and rhizobia. BMC Plant Biol. 2009, 9, 73. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Acosta, E.; Trejo-Aguilar, D.; Ferrera-Cerrato, R.; Rivera-Fernández, A.; González-Chávez, M.C. Arbuscular mycorrhizal fungi in coffee growth (Coffea arabica L.) varieties Garnica, Catimor, Caturra and Catuaí. Agroproductividad 2018, 11, 61–67. [Google Scholar]
- Ruelas-Monjardín, L.C.; Nava-Tablada, M.E.; Cervantes, J.; Barradas, V.L. Importancia ambiental de los agroecosistemas cafetaleros bajo sombra en la zona central montañosa del estado de Veracruz, México. Madera Bosques 2014, 20, 27–40. [Google Scholar] [CrossRef]
Site | Precipitation (mm) | Latitude | Longitude | Elevation (masl) | Temperature (°C) | Management Type | Description |
---|---|---|---|---|---|---|---|
San Isidro | 1636 | 19°36′42.74″ | 96°56′16.01″ | 1230 | 19.4 | Traditional polyculture | Compost and NPK fertilizers applied 2 times/year. Weed management by manual removal. |
Los bambus | 1636 | 19°36′38.07″ | 96°55′40.57″ | 1350 | 19.4 | Traditional polyculture | Compost and NPK fertilizers applied 3–4 times/year. Weed management by manual removal. |
La barranca | 1636 | 19°36′12.15″ | 96°54′44.91″ | 1295 | 19.4 | Traditional polyculture | Compost and NPK fertilizers applied 1 time/year. Weed management by manual removal. |
Tuzamapan | 1125 | 19°38′43.01″ | 96º84′82.25″ | 650 | 27 | Traditional polyculture | Fertilizers are not applied. Weed management by manual removal. |
San Marcos | 1361 | 19°25′34″ | 96°58′08″ | 1099 | 21 | Traditional polyculture | Fertilizers are not applied. Weed management by manual removal. |
Coffee | pH | Available P | Retained P | Organic | Organic | CEC | FC | Bulk Density | Clay | Silt | Sand | Texture | C | N | Soil |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plantations | 1:2 H2O | (mg/Kg) | (%) | Matter (%) | Carbon | 1NpH7 | % Humidity | g/cm3 | (%) | % | Type | ||||
San Isidro | 4.09 | 5.2 | 87.35 | 12.46 | 7.23 | 27.09 | 31.72 | 0.893 | 29.8 | 30.56 | 39.64 | Clay loam | 8.5 | 0.72 | Andisol |
Los bambus | 5.24 | 14.35 | 89.8 | 3.93 | 2.28 | 20.88 | 22.69 | 1.016 | 45.8 | 22.56 | 31.64 | Clay | 2.9 | 0.27 | Andisol |
La barranca | 4.81 | 13.56 | 81.63 | 4.72 | 2.74 | 21.51 | 21.62 | 0.994 | 49.8 | 28.56 | 21.64 | Clay | 3.5 | 0.27 | Andisol |
Tuzamapan | 5.34 | 11.72 | 86.94 | 7.15 | 4.15 | 14.31 | 21.9 | 0.918 | 41.8 | 26.56 | 31.64 | Clay | 4.7 | 0.42 | Vertisol |
San Marcos | 4.97 | 6.62 | 88.72 | 9.99 | 5.79 | 24.12 | 29.06 | 0.899 | 49.8 | 27.56 | 22.64 | Clay | 5.9 | 0.51 | Luvisol |
Morphotypes | Abundance/San Isidro | Abundance/Los Bambus | Abundance/La Barranca | Abundance/Tuzamapan | Abundance/San Marcos | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Initial | Mean ± SE * | Final | Mean ± SE * | Initial | Mean ± SE * | Final | Mean ± SE * | Initial | Mean ± SE * | Final | Mean ± SE * | Initial | Mean ± SE * | Final | Mean ± SE * | Initial | Mean ± SE * | Final | Mean ± SE * | |||||||||||
Glomus sp1 | 16 | 5.3 ± 0.33 | c | 123 | 41 ± 1 | bc | 16 | 5.3 ± 0.7 | b | 140 | 46.7 ± 6.4 | bc | 33 | 11 ± 1.52 | b | 149 | 49.7 ± 0.9 | b | 63 | 21 ± 1.2 | a | 220 | 73.3 ± 2.1 | a | 82 | 27.3 ± 1.2 | a | 247 | 82.3 ± 2.4 | a |
Glomus sp2 | 3 | 1 ± 0 | e | 40 | 13.3 ± 0.7 | de | 3 | 1 ± 0 | cd | 144 | 48 ± 5.5 | bc | 2 | 0.66 ± 0.3 | d | 104 | 34.7 ± 17.3 | bcd | 2 | 1 ± 0 | d | 119 | 39.7 ± 2.6 | cd | 3 | 1.0 ± 0 | ef | 162 | 54 ± 1.5 | b |
Glomus sp3 | 54 | 18 ± 0.6 | a | 328 | 109.3 ± 14.8 | a | 22 | 7.3 ± 1.2 | a | 163 | 54.3 ± 1.9 | ab | 69 | 23 ± 0.6 | a | 233 | 77.6 ± 1.45 | a | 18 | 6 ± 0.6 | c | 114 | 38 ± 1 | d | 35 | 11.7 ± 0.7 | c | 162 | 54 ± 0.6 | b |
Glomus sp4 | 10 | 3.3 ± 0.7 | d | 81 | 27 ± 1.5 | cd | 19 | 6.3 ± 0.3 | ab | 84 | 28 ± 1.5 | d | 4 | 1.3 ± 0.3 | d | 82 | 27.3 ± 3.4 | b–e | 25 | 8.3 ± 0.9 | c | 214 | 71.3 ± 1.2 | a | 20 | 6.7 ± 0.9 | d | 79 | 26.3 ± 0.7 | d |
Rhizophagus clarus | 31 | 10.3 ± 0.9 | b | 163 | 54.3 ± 3.2 | bc | 8 | 2.7 ± 0.3 | cd | 196 | 65.3 ± 2.4 | a | 5 | 1.7 ± 0.7 | d | 28 | 9.3 ± 2.3 | cde | 20 | 6.7 ± 0.3 | c | 151 | 50.3 ± 1.5 | b | 8 | 2.7 ± 0.3 | ef | 27 | 9 ± 1 | e |
Rhizophagus intraradices | 1 | 0.3 ± 0.3 | e | 2 | 0.7 ± 0.7 | e | 1 | 0.3 ± 0.3 | d | 3 | 1 ± 1 | e | 1 | 0.3 ± 0.3 | d | 68 | 2.6 ± 2.6 | cde | 1 | 0.3 ± 0.3 | d | 38 | 12.6 ± 1.3 | e | 2 | 0.7 ± 0.3 | f | 17 | 5.7 ± 0.7 | e |
Acaulospora scrobiculata | 15 | 5 ± 0.57 | c | 124 | 41.3 ± 1.8 | bc | 19 | 6.3 ± 0.7 | ab | 103 | 34.3 ± 1.2 | cd | 13 | 4.3 ± 0.7 | c | 132 | 44 ± 0.6 | bc | 43 | 14.3 ± 0.9 | b | 127 | 42.3 ± 0.3 | cd | 61 | 20.3 ± 0.9 | b | 106 | 35.3 ± 0.9 | c |
Acaulospora sp1 | 1 | 0.3 ± 0.3 | e | 20 | 6.6 ± 6.6 | e | 0 | 0 | d | 0 | 0 | e | 1 | 0.3 ± 0.3 | d | 1 | 0.3 ± 0.3 | e | 26 | 8.6 ± 4.4 | c | 2 | 0.7 ± 0.3 | f | 1 | 0.3 ± 0.3 | f | 3 | 1 ± 1 | f |
Acaulospora sp2 | 3 | 1 ± 0.6 | e | 14 | 4.7 ± 2.9 | e | 2 | 0.7 ± 0.7 | d | 34 | 11.3 ± 11.3 | e | 1 | 0.3 ± 0.3 | d | 2 | 0.7 ± 0.7 | de | 1 | 0.3 ± 0.3 | d | 3 | 1 ± 1 | f | 1 | 0.3 ± 0.3 | f | 5 | 1.7 ± 1.7 | f |
Gigaspora sp1 | 3 | 1 ± 0.6 | e | 23 | 7.6 ± 3.8 | e | 1 | 0.3 ± 0.3 | d | 1 | 0.3 ± 0.3 | e | 1 | 0.3 ± 0.3 | d | 2 | 0.7 ± 0.7 | de | 1 | 0.3 ± 0.3 | d | 2 | 0.7 ± 0.7 | f | 2 | 0.7 ± 0.7 | f | 1 | 0.3 ± 0.3 | f |
TOTAL ** | 136 | 918 | 89 | 867 | 130 | 801 | 195 | 990 | 209 | 809 |
Morphotypes | pH | Retained P % | Clay | Sand | Organic Carbon | Organic Matter (%) |
---|---|---|---|---|---|---|
Glomus sp1 | 0.45 | 0.12 | 0.43 | −0.50 | 0.19 | 0.19 |
Glomus sp2 | 0.82 * | 0.33 | 0.84 * | −0.66 | −0.49 | −0.48 |
Glomus sp3 | −0.97 * | −0.28 | −0.62 | 0.42 | 0.51 | 0.51 |
Glomus sp4 | 0.52 | 0.01 | −0.11 | 0.17 | −0.10 | −0.10 |
Rhizophagus clarus | 0.04 | 0.55 | −0.62 | 0.85 * | −0.03 | −0.03 |
Rhizophagus intraradices | 0.23 | −0.90 * | 0.50 | −0.65 | −0.45 | −0.45 |
Acaulospora scrobiculata | −0.31 | −0.83 * | −0.28 | 0.05 | 0.06 | 0.05 |
Acaulospora sp1 | −0.90 * | 0.09 | −0.90 * | 0.73 | 0.83 * | 0.83 * |
Acaulospora sp2 | 0.09 | 0.62 | −0.15 | 0.44 | −0.29 | −0.28 |
Gigaspora sp1 | 0.91 * | 0.02 | −0.92 * | 0.75 | 0.76 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arias Mota, R.M.; de la Cruz Elizondo, Y.; Ruelas Monjardín, L.C.; Perea-Rojas, Y.d.C. Dominant Morphotypes of Native Arbuscular Mycorrhizal Fungi from Coffee Plantations and Their Propagation with Trap Plants. Int. J. Plant Biol. 2024, 15, 744-756. https://doi.org/10.3390/ijpb15030054
Arias Mota RM, de la Cruz Elizondo Y, Ruelas Monjardín LC, Perea-Rojas YdC. Dominant Morphotypes of Native Arbuscular Mycorrhizal Fungi from Coffee Plantations and Their Propagation with Trap Plants. International Journal of Plant Biology. 2024; 15(3):744-756. https://doi.org/10.3390/ijpb15030054
Chicago/Turabian StyleArias Mota, Rosa María, Yadeneyro de la Cruz Elizondo, Laura Celina Ruelas Monjardín, and Yamel del Carmen Perea-Rojas. 2024. "Dominant Morphotypes of Native Arbuscular Mycorrhizal Fungi from Coffee Plantations and Their Propagation with Trap Plants" International Journal of Plant Biology 15, no. 3: 744-756. https://doi.org/10.3390/ijpb15030054
APA StyleArias Mota, R. M., de la Cruz Elizondo, Y., Ruelas Monjardín, L. C., & Perea-Rojas, Y. d. C. (2024). Dominant Morphotypes of Native Arbuscular Mycorrhizal Fungi from Coffee Plantations and Their Propagation with Trap Plants. International Journal of Plant Biology, 15(3), 744-756. https://doi.org/10.3390/ijpb15030054