Discriminating among Alternative Dressing Solutions for Cereal Seed Treatment: Effect on Germination and Seedling Vigor of Durum Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
- A liquid fungicide, commercially known as VIBRANCE GOLD by SYNGENTA, at the dose of 200 mL per 100 kg seed, which contains 4.63% Sedaxane, 2.32% Fludioxonil, 2.32% Difenoconazole;
- A liquid NPK organic fertilizer containing 3% N, 4% P2O5, 3% K2O, free amino acids (e.g., phenylalanine, methionine, tyrosine, proline, etc.), humic and fulvic acids (hereinafter referred to as NPK);
- Zinc (hereinafter referred to as Zn), derived from a commercial product containing chelated Zinc with ethylenediamine tetra-acetic acid (EDTA, 9% Zn);
- An experimental product containing a mixture of aqueous extracts from the seaweed Codium fragile (10 g of dried alga per 1 L of distilled water) and the plant species Opuntia ficus-barbarica (50 g of fresh puree of prickly pear per 1 L of distilled water). Hereinafter referred to as SWEO;
- Distilled water.
2.2. Measured Traits
- Final germination percentage: (germinated seeds/total seeds) × 100, after 8 days;
- Germination curves.
- Main root’s length (cm), measured by a ruler;
- Length of the coleoptile (cm), measured by a ruler;
- Mean dry biomass of the roots (weight, mg). For each replicate, the roots were separated from the seeds, dried for 48 h at 60 °C and then the total biomass was divided by the number of germinated seeds;
- Mean dry biomass of the coleoptile (weight, mg). For each replicate, the coleoptiles were separated from the seeds, dried for 48 h at 60 °C and then the total biomass was divided by the number of germinated seeds.
2.3. Statistical Analysis:
3. Results
3.1. Final Germination Percentage and Median Germination Time (T50)
3.2. Length of the Main Root
3.3. Root Biomass
3.4. Coleoptile Length
3.5. Dry Biomass of the Coleoptile
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pedrini, S.; Merritt, D.J.; Stevens, J.; Dixon, K. Seed Coating: Science or Marketing Spin? Trends Plant Sci. 2017, 22, 106–116. [Google Scholar] [CrossRef] [PubMed]
- TeKrony, D.M.; Egli, D.B. Relationship of Seed Vigor to Crop Yield: A Review. Crop Sci. 1991, 31, 816–822. [Google Scholar] [CrossRef]
- Marcos-Filho, J. Seed Vigor Testing: An Overview of the Past, Present and Future Perspective. Sci. Agric. 2015, 72, 363–374. [Google Scholar] [CrossRef]
- Costa, C.J.; Meneghello, G.E.; Jorge, M.H.A.; Costa, E. The Importance of Physiological Quality of Seeds for Agriculture. Colloq. Agrar. 2021, 17, 102–119. [Google Scholar] [CrossRef]
- Zinsmeister, J.; Leprince, O.; Buitink, J. Molecular and Environmental Factors Regulating Seed Longevity. Biochem. J. 2020, 477, 305–323. [Google Scholar] [CrossRef] [PubMed]
- Zaheer, M.S.; Ali, H.H.; Soufan, W.; Iqbal, R.; Habib-Ur-rahman, M.; Iqbal, J.; Israr, M.; El Sabagh, A. Potential Effects of Biochar Application for Improving Wheat (Triticum aestivum L.) Growth and Soil Biochemical Properties under Drought Stress Conditions. Land 2021, 10, 1125. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Debaeke, P.; Steinberg, C.; You, M.P.; Barbetti, M.J.; Aubertot, J.-N. Abiotic and Biotic Factors Affecting Crop Seed Germination and Seedling Emergence: A Conceptual Framework. Plant Soil 2018, 432, 1–28. [Google Scholar] [CrossRef]
- Alemu, G. Review on the Effect of Seed Source and Size on Grain Yield of Bread Wheat (Tritium aestivum L.). J. Ecol. Nat. Resour. 2019, 3, 000155. [Google Scholar] [CrossRef]
- Halmer, P. Seed Technology and Seed Enhancement. Acta Hortic. 2008, 771, 17–26. [Google Scholar] [CrossRef]
- Isman, M.B.; Paluch, G. Needles in the Haystack: Exploring Chemical Diversity of Botanical Insecticides. In Green Trends in Insect Control; Lopez, O., Fernandez-Bolanos, J., Eds.; The Royal Society of Chemistry: London, UK, 2011; ISBN 978-1-84973-149-2. [Google Scholar]
- Albers, C.N.; Bollmann, U.E.; Badawi, N.; Johnsen, A.R. Leaching of 1,2,4-Triazole from Commercial Barley Seeds Coated with Tebuconazole and Prothioconazole. Chemosphere 2022, 286, 131819. [Google Scholar] [CrossRef]
- Poag, P.S.; Popp, M.; Rupe, J.; Dixon, B.; Rothrock, C.; Boger, C. Economic Evaluation of Soybean Fungicide Seed Treatments. Agron. J. 2005, 97, 1647–1657. [Google Scholar] [CrossRef]
- Makhaye, G.; Mofokeng, M.M.; Tesfay, S.; Aremu, A.O.; Van Staden, J.; Amoo, S.O. Chapter 5—Influence of Plant Biostimulant Application on Seed Germination. In Biostimulants for Crops from Seed Germination to Plant Development a Practical Approach; Academic Press: Cambridge, MA, USA, 2021; pp. 109–135. [Google Scholar]
- Badawi, M.; Seadh, S.; Emhimmid, W. Improvement Wheat Germination by Using Some Biostimulants Substances. J. Plant Prod. 2020, 11, 139–144. [Google Scholar] [CrossRef]
- Mesut Çimrin, K.; Türkmen, Ö.; Turan, M.; Tuncer, B. Phosphorus and Humic Acid Application Alleviate Salinity Stress of Pepper Seedling. Afr. J. Biotechnol. 2010, 9, 5845–5851. [Google Scholar]
- Rocha, I.; Ma, Y.; Souza-Alonso, P.; Vosátka, M.; Freitas, H.; Oliveira, R.S. Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops. Front. Plant Sci. 2019, 10, 1357. [Google Scholar] [CrossRef] [PubMed]
- Vitti, A.; Bevilacqua, V.; Logozzo, G.; Bochicchio, R.; Amato, M.; Nuzzaci, M. Seed Coating with Trichoderma harzianum T-22 of Italian Durum Wheat Increases Protection against Fusarium culmorum-Induced Crown Rot. Agriculture 2022, 12, 714. [Google Scholar] [CrossRef]
- Afzal, I.; Javed, T.; Amirkhani, M.; Taylor, A.G. Modern Seed Technology: Seed Coating Delivery Systems for Enhancing Seed and Crop Performance. Agriculture 2020, 10, 526. [Google Scholar] [CrossRef]
- Qiu, Y.; Amirkhani, M.; Mayton, H.; Chen, Z.; Taylor, A.G. Biostimulant Seed Coating Treatments to Improve Cover Crop Germination and Seedling Growth. Agronomy 2020, 10, 154. [Google Scholar] [CrossRef]
- Mehmood Rana, R.; Ur Rehman, S.; Ahmed, J.; Bilal, M. A Comprehensive Overview of Recent Advances in Drought Stress Tolerance Research in Wheat (Triticum aestivum L.). Asian J. Agric. Biol. 2013, 1, 29–37. [Google Scholar]
- Pour-Aboughadareh, A.; Mohammadi, R.; Etminan, A.; Shooshtari, L.; Maleki-Tabrizi, N.; Poczai, P. Effects of Drought Stress on Some Agronomic and Morpho-Physiological Traits in Durum Wheat Genotypes. Sustainability 2020, 12, 5610. [Google Scholar] [CrossRef]
- Hossain, A.; Skalicky, M.; Brestic, M.; Maitra, S.; Alam, M.A.; Syed, M.A.; Hossain, J.; Sarkar, S.; Saha, S.; Bhadra, P.; et al. Consequences and Mitigation Strategies of Abiotic Stresses in Wheat (Triticum aestivum L.) under the Changing Climate. Agronomy 2021, 11, 241. [Google Scholar] [CrossRef]
- Naeem, M.; Ahmad, M.; Kamran, M.; Shah, M.; Iqbal, M. Physiological Responses of Wheat (Triticum aestivum L.) to Drought Stress. Int. J. Plant Soil Sci. 2015, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zampieri, M.; Toreti, A.; Ceglar, A.; Naumann, G.; Turco, M.; Tebaldi, C. Climate Resilience of the Top Ten Wheat Producers in the Mediterranean and the Middle East. Reg. Environ. Chang. 2020, 20, 41. [Google Scholar] [CrossRef]
- Mathlouthi, F.; Ruggeri, R.; Rossini, A.; Rossini, F. A New Fertilization Approach for Bread Wheat in the Mediterranean Environment: Effects on Yield and Grain Protein Content. Agronomy 2022, 12, 2152. [Google Scholar] [CrossRef]
- Makhaye, G.; Aremu, A.O.; Gerrano, A.S.; Tesfay, S.; Du Plooy, C.P.; Amoo, S.O. Biopriming with Seaweed Extract and Microbial-Based Commercial Biostimulants Influences Seed Germination of Five Abelmoschus esculentus Genotypes. Plants 2021, 10, 1327. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Wahid, A.; Siddique, K.H. Micronutrient application through seed treatments: A review. J. Plant Nutr. Soil Sci. 2012, 12, 125–142. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant Properties of Seaweed Extracts in Plants: Implications towards Sustainable Crop Production. Plants 2021, 10, 531. [Google Scholar] [CrossRef] [PubMed]
- Zulfiqar, F.; Casadesús, A.; Brockman, H.; Munné-Bosch, S. An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Sci. 2020, 295, 110194. [Google Scholar] [CrossRef]
- Latique, S.; Mohamed Aymen, E.; Halima, C.; Chérif, H.; Mimoun, E.K. Alleviation of salt stress in durum wheat (Triticum durum L.) seedlings through the application of liquid seaweed extracts of Fucus spiralis. Commun. Soil Sci. Plant Anal. 2017, 48, 2582–2593. [Google Scholar] [CrossRef]
- Ahmed, T.; Abou Elezz, A.; Khalid, M.F. Hydropriming with Moringa Leaf Extract Mitigates Salt Stress in Wheat Seedlings. Agriculture 2021, 11, 1254. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Farooq, M.; Nawaz, A. Seed priming with sorghum extracts and benzyl aminopurine improves the tolerance against salt stress in wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants 2018, 24, 239–249. [Google Scholar] [CrossRef]
- Bouteraa, M.T.; Mishra, A.; Romdhane, W.B.; Hsouna, A.B.; Siddique, K.H.M.; Saad, R.B. Bio-Stimulating Effect of Natural Polysaccharides from Lobularia maritima on Durum Wheat Seedlings: Improved Plant Growth, Salt Stress Tolerance by Modulating Biochemical Responses and Ion Homeostasis. Plants 2022, 11, 1991. [Google Scholar] [CrossRef] [PubMed]
- Lei, K.; Sun, S.; Zhong, K.; Li, S.; Hu, H.; Sun, C.; Zheng, Q.; Tian, Z.; Dai, T.; Sun, J. Seed Soaking with Melatonin Promotes Seed Germination under Chromium Stress via Enhancing Reserve Mobilization and Antioxidant Metabolism in Wheat. Ecotoxicol. Environ. Saf. 2021, 220, 112241. [Google Scholar] [CrossRef] [PubMed]
- Noman, A.; Ali, Q.; Naseem, J.; Javed, M.T.; Kanwal, H.; Islam, W.; Aqeel, M.; Khalid, N.; Zafar, S.; Tayyeb, M.; et al. Sugar Beet Extract Acts as a Natural Bio-Stimulant for Physio-Biochemical Attributes in Water Stressed Wheat (Triticum aestivum L.). Acta Physiol. Plant. 2018, 40, 110. [Google Scholar] [CrossRef]
- Rady, M.M.; Kuşvuran, A.; Alharby, H.F.; Alzahrani, Y.; Kuşvuran, S. Pretreatment with Proline or an Organic Bio-Stimulant Induces Salt Tolerance in Wheat Plants by Improving Antioxidant Redox State and Enzymatic Activities and Reducing the Oxidative Stress. J. Plant Growth Regul. 2019, 38, 449–462. [Google Scholar] [CrossRef]
- Qiu, B.; Chen, Z. Feasibility Research on Seed Coating in Industrialized Rice Seedling Raising. Trans. Chin. Soc. Agric. Eng. 2000, 16, 96–98. [Google Scholar]
- Ferreira, L.L.; Resende, J.M.; Carvalho, I.R.; Carnevale, A.B.; Fernandes, M.S.; Carrijo dos Santos, N.S.; Batista, P.F.; Azevedo Pereira, A.I.; Silva Curvêlo, C.R.; Amaral, U.; et al. Multivariate Explanation of the Establishment of Soybean Initial Growth Pattern via Biostimulant Seed Treatment. Agron. Sci. Biotechnol. 2022, 8, 1–11. [Google Scholar] [CrossRef]
- Bezerra, A.R.G.; Silva, F.C.S.; Silva, A.F.; Sediyama, T.; Álvares, C.H.A. Effect of Biostimulants and Seed Treatment with Fungicide on the Germination and Vigor of Soybean Seedlings. Rev. Bras. Tec. Ciênc. Agrar. 2015, 8, 27–35. [Google Scholar] [CrossRef]
- Ujvári, G.; Capo, L.; Grassi, A.; Cristani, C.; Pagliarani, I.; Turrini, A.; Blandino, M.; Giovannetti, M.; Agnolucci, M. Agronomic Strategies to Enhance the Early Vigor and Yield of Maize. Part I: The Role of Seed Applied Biostimulant, Hybrid and Starter Fertilization on Rhizosphere Bacteria Profile and Diversity. Front. Plant Sci. 2023, 14, 1240310. [Google Scholar] [CrossRef] [PubMed]
- Majkowska-Gadomska, J.; Francke, A.; Dobrowolski, A.; Mikulewicz, E. The Effect of Selected Biostimulants on Seed Germination of Four Plant Species. Acta Agrophysica 2017, 24, 591–599. [Google Scholar]
- Tweddell, R.J.; Pelerin, S.; Chabot, R. A Two-Year Field Study of a Commercial Biostimulant Applied on Maize as Seed Coating. Can. J. Plant Sci. 2000, 80, 805–807. [Google Scholar] [CrossRef]
- Marino, S.; Alvino, A. Detection of Spatial and Temporal Variability of Wheat Cultivars by High-Resolution Vegetation Indices. Agronomy 2019, 9, 226. [Google Scholar] [CrossRef]
- Amoriello, T.; Belocchi, A.; Quaranta, F.; Ripa, C.; Melini, F.; Aureli, G. Behaviour of Durum Wheat Cultivars towards Deoxynivalenol Content: A Multi-Year Assay in Italy. Ital. J. Agron. 2018, 13, 12–20. [Google Scholar] [CrossRef]
- Freiberg, J.A.; Ludwig, M.P.; Avelar, S.A.G.; Girotto, E. Tratamento de Sementes e Sua Influência No Potencial Produtivo Da Cultura Do Trigo. J. Seed Sci. 2017, 39, 280–287. [Google Scholar] [CrossRef]
- Ayed, S.; Bouhaouel, I.; Jebari, H.; Hamada, W. Use of Biostimulants: Towards Sustainable Approach to Enhance Durum Wheat Performances. Plants 2022, 11, 133. [Google Scholar] [CrossRef] [PubMed]
- Castillo, C.G.; Fredericksen, C.; Koch, R.; Sieverding, E. Effect of Seed Treatment with Natural Products on Early Arbuscular Mycorrhizal Colonization of Wheat by Claroideoglomus Claroideum. J. Appl. Bot. Food Qual. 2014, 87, 117–123. [Google Scholar] [CrossRef]
- Ministero dell’Agricoltura e delle Foreste. Metodi Ufficiali di Analisi per le Sementi; Gazzetta Ufficiale della Repubblica Italiana: Rome, Italy, 1993. [Google Scholar]
- Scarici, E.; Ruggeri, R.; Provenzano, M.E.; Rossini, F. Germination and Performance of Seven Native Wildflowers in the Mediterranean Landscape Plantings. Ital. J. Agron. 2018, 13, 163–171. [Google Scholar] [CrossRef]
- Farooq, M.; Basra, S.M.A.; Ahmad, N.; Hafeez, K. Thermal Hardening: A New Seed Vigor Enhancement Tool in Rice. J. Integr. Plant Biol. 2005, 47, 187–193. [Google Scholar] [CrossRef]
- Ritz, C.; Pipper, C.B.; Streibig, J.C. Analysis of Germination Data from Agricultural Experiments. Eur. J. Agron. 2013, 45, 1–6. [Google Scholar] [CrossRef]
- Rossini, F.; Ruggeri, R.; Celli, T.; Rogai, F.M.; Kuzmanović, L.; Richardson, M.D. Cool-Season Grasses for Overseeding Sport Turfs: Germination and Performance under Limiting Environmental Conditions. HortScience 2019, 54, 555–563. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing 2021. Available online: https://www.R-project.org/ (accessed on 17 September 2023).
- Onofri, A.; Mesgaran, M.B.; Ritz, C. A Unified Framework for the Analysis of Germination, Emergence, and Other Time-to-Event Data in Weed Science. Weed Sci. 2022, 70, 259–271. [Google Scholar] [CrossRef]
- Ali, Q.; Perveen, R.; El-Esawi, M.A.; Ali, S.; Hussain, S.M.; Amber, M.; Iqbal, N.; Rizwan, M.; Alyemeni, M.N.; El-Serehy, H.A.; et al. Low Doses of Cuscuta reflexa Extract Act as Natural Biostimulants to Improve the Germination Vigor, Growth, and Grain Yield of Wheat Grown under Water Stress: Photosynthetic Pigments, Antioxidative Defense Mechanisms, and Nutrient Acquisition. Biomolecules 2020, 10, 1212. [Google Scholar] [CrossRef] [PubMed]
- Layek, J.; Das, A.; Ramkrushna, G.I.; Ghosh, A.; Panwar, A.S.; Krishnappa, R.; Ngachan, S.V. Effect of Seaweed Sap on Germination, Growth and Productivity of Maize (Zea mays) in North Eastern Himalayas. Indian J. Agron. 2016, 61, 354–359. [Google Scholar] [CrossRef]
- Brown, J.C.; Tiffin, L.; Holmes, R.S. Competition between Chelating Agents and Roots as Factor Affecting Absorption of Iron and Other Ions by Plant Species. Plant Physiol. 1960, 35, 878–886. [Google Scholar] [CrossRef] [PubMed]
- Inaba, S.; Takenaka, C. Effects of Dissolved Organic Matter on Toxicity and Bioavailability of Copper for Lettuce Sprouts. Environ. Int. 2005, 31, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Begum, M.; Bordoloi, B.C.; Singha, D.D.; Ojha, N.J. Role of Seaweed Extract on Growth, Yield and Quality of Some Agricultural Crops: A Review. Agric. Rev. 2018, 39, 321–326. [Google Scholar] [CrossRef]
- Hamouda, M.M.; Saad-Allah, K.M.; Gad, D. Potential of Seaweed Extract on Growth, Physiological, Cytological and Biochemical Parameters of Wheat (Triticum aestivum L.) Seedlings. J. Soil Sci. Plant Nutr. 2022, 22, 1818–1831. [Google Scholar] [CrossRef]
- Rossini, A.; Ruggeri, R.; Mzid, N.; Rossini, F.; Di Miceli, G. Codium fragile (Suringar) Hariot as Biostimulant Agent to Alleviate Salt Stress in Durum Wheat: Preliminary Results from Germination Trials. Plants 2024, 13, 283. [Google Scholar] [CrossRef] [PubMed]
- Hamed, S.M.; Abd El-Rhman, A.A.; Abdel-Raouf, N.; Ibraheem, I.B.M. Role of Marine Macroalgae in Plant Protection & Improvement for Sustainable Agriculture Technology. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 104–110. [Google Scholar] [CrossRef]
- Sadak, M.; El-Bassiouny, H.; Mahfouz, S.; El-Enany, M.; Elewa, T. Use of Thiamine, Pyridoxine and Biostimulant for Better Yield of Wheat Plants under Water Stress: Growth, Osmoregulations, Antioxidantive Defense and Protein Pattern. Egypt. J. Chem. 2022, 66, 407–424. [Google Scholar] [CrossRef]
- Stirk, W.A.; Van Staden, J. Comparison of Cytokinin-and Auxin-like Activity in Some Commercially Used Seaweed Extracts. J. Appl. Phycol. 1997, 8, 503–508. [Google Scholar] [CrossRef]
- El-Din, S.M.M. Utilization of Seaweed Extracts as Bio-Fertilizers to Stimulate the Growth of Wheat Seedlings. Egypt. Soc. Exp. Biol. 2015, 11, 31–39. [Google Scholar]
- Mzibra, A.; Aasfar, A.; Benhima, R.; Khouloud, M.; Boulif, R.; Douira, A.; Bamouh, A.; Meftah Kadmiri, I. Biostimulants Derived from Moroccan Seaweeds: Seed Germination Metabolomics and Growth Promotion of Tomato Plant. J. Plant Growth Regul. 2021, 40, 353–370. [Google Scholar] [CrossRef]
- Iqbal, M.; Ashraf, M. Presowing Seed Treatment with Cytokinins and Its Effect on Growth, Photosynthetic Rate, Ionic Levels and Yield of Two Wheat Cultivars Differing in Salt Tolerance. J. Integr. Plant Biol. 2005, 47, 1315–1325. [Google Scholar] [CrossRef]
- Iqbal, M.; Ashraf, M. Seed Treatment with Auxins Modulates Growth and Ion Partitioning in Salt-Stressed Wheat Plants. J. Integr. Plant Biol. 2007, 49, 1003–1015. [Google Scholar] [CrossRef]
- Iqbal, M.; Ashraf, M.; Jamil, A. Seed Enhancement with Cytokinins: Changes in Growth and Grain Yield in Salt Stressed Wheat Plants. Plant Growth Regul. 2006, 50, 29–39. [Google Scholar] [CrossRef]
- Ventura-Aguilar, R.I.; Bosquez-Molina, E.; Bautista-Baños, S.; Rivera-Cabrera, F. Cactus Stem (Opuntia ficus-indica Mill): Anatomy, Physiology and Chemical Composition with Emphasis on Its Biofunctional Properties. J. Sci. Food Agric. 2017, 97, 5065–5073. [Google Scholar] [CrossRef]
- Cho, I.-K.; Jin, S.-W.; Kim, Y.-D. Analysis of Components in the Parts of Opuntia ficus indica from Shinan Korea. Korean J. Food Preserv. 2009, 16, 742–746. [Google Scholar]
- Hernández-Urbiola, M.I.; Pérez-Torrero, E.; Rodríguez-García, M.E. Chemical Analysis of Nutritional Content of Prickly Pads (Opuntia ficus indica) at Varied Ages in an Organic Harvest. Int. J. Environ. Res. Public Health 2011, 8, 1287–1295. [Google Scholar] [CrossRef]
- El-Mostafa, K.; El Kharrassi, Y.; Badreddine, A.; Andreoletti, P.; Vamecq, J.; El Kebbaj, M.S.; Latruffe, N.; Lizard, G.; Nasser, B.; Cherkaoui-Malki, M. Nopal Cactus (Opuntia ficus-indica) as a Source of Bioactive Compounds for Nutrition, Health and Disease. Molecules 2014, 19, 14879–14901. [Google Scholar] [CrossRef]
- Sáenz, C.; Sepúlveda, E.; Matsuhiro, B. Opuntia Spp. Mucilage’s: A Functional Component with Industrial Perspectives. J. Arid Environ. 2004, 57, 275–290. [Google Scholar] [CrossRef]
- Sáenz Hernández, C.L.; Berger, H.; Rodríguez-Félix, A.; Galletti, L.; Corrales García, J.; Sepúlveda, E.; Varnero Moreno, M.T.; García de Cortázar, V.; Cuevas García, R.; Arias, E.; et al. Agro-Industrial Utilization of Cactus Pear; FAO: Rome, Italy, 2013. [Google Scholar]
- Perkowski, M.C.; Warpeha, K.M. Phenylalanine Roles in the Seed-to-Seedling Stage: Not Just an Amino Acid. Plant Sci. 2019, 289, 110223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shen, Y.; Mu, K.; Cai, W.; Zhao, Y.; Shen, H.; Wang, X.; Ma, H. Phenylalanine Ammonia Lyase GmPAL1.1 Promotes Seed Vigor under High-Temperature and -Humidity Stress and Enhances Seed Germination under Salt and Drought Stress in Transgenic Arabidopsis. Plants 2022, 11, 3239. [Google Scholar] [CrossRef] [PubMed]
- Ambreen, S.; Athar, H.u.R.; Khan, A.; Zafar, Z.U.; Ayyaz, A.; Kalaji, H.M. Seed Priming with Proline Improved Photosystem II Efficiency and Growth of Wheat (Triticum aestivum L.). BMC Plant Biol. 2021, 21, 502. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.; Santana, M.M.; Maia, R.N.; Tavares, J.; Nabti, E.; Cruz, C. Bacterial Inoculation and Extracts of Opuntia Rackets or Marine Algae Trigger Distinct Proline Balances in Tomato Salt Stress Alleviation. Agronomy 2023, 13, 2921. [Google Scholar] [CrossRef]
- Braziene, Z.; Paltanavicius, V.; Avizienytė, D. The Influence of Fulvic Acid on Spring Cereals and Sugar Beets Seed Germination and Plant Productivity. Environ. Res. 2021, 195, 110824. [Google Scholar] [CrossRef] [PubMed]
- Litvin, V.; Deriy, S.; Plakhotniuk, L. Effects of Humic Substances on Seed Germination of Wheat under the Influence of Heavy Metal. Cherkasy Univ. Bullettin Biol. Sci. Ser. 2020, 1, 42–52. [Google Scholar] [CrossRef]
- Talboys, P.J.; Healey, J.R.; Withers, P.J.A.; Roose, T.; Edwards, A.C.; Pavinato, P.S.; Jones, D.L. Combining Seed Dressing and Foliar Applications of Phosphorus Fertilizer Can Give Similar Crop Growth and Yield Benefits to Soil Applications Together With Greater Recovery Rates. Front. Agron. 2020, 2, 605655. [Google Scholar] [CrossRef]
- Izydorczyk, G.; Saeid, A.; Mironiuk, M.; Witek-Krowiak, A.; Kozioł, K.; Grzesik, R.; Chojnacka, K. Sustainable Method of Phosphorus Biowaste Management to Innovative Biofertilizers: A Solution for Circular Economy of the Future. Sustain. Chem. Pharm. 2022, 27, 100634. [Google Scholar] [CrossRef]
- Mathlouthi, F.; Ruggeri, R.; Rossini, F. Alternative Solution to Synthetic Fertilizers for the Starter Fertilization of Bread Wheat under Mediterranean Climatic Conditions. Agronomy 2022, 12, 511. [Google Scholar] [CrossRef]
- Ali, M.M.; Javed, T.; Mauro, R.P.; Shabbir, R.; Afzal, I.; Yousef, A.F. Effect of Seed Priming with Potassium Nitrate on the Performance of Tomato. Agriculture 2020, 10, 498. [Google Scholar] [CrossRef]
- Al-Obaidi, A.H.S.; Alrijabo, A.A. Soaking Technique on Bread Wheat (Triticum aestivum L.) and Its Influence on Yield and Its Components in Rain Fed Area. Indian J. Ecol. 2021, 48, 14. [Google Scholar]
- Rai-Kalal, P.; Jajoo, A. Priming with Zinc Oxide Nanoparticles Improve Germination and Photosynthetic Performance in Wheat. Plant Physiol. Biochem. 2021, 160, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Hassan, N.; Irshad, S.; Saddiq, M.S.; Bashir, S.; Khan, S.; Wahid, M.A.; Khan, R.R.; Yousra, M. Potential of Zinc Seed Treatment in Improving Stand Establishment, Phenology, Yield and Grain Biofortification of Wheat. J. Plant Nutr. 2019, 42, 1676–1692. [Google Scholar] [CrossRef]
- Tymoszuk, A.; Wojnarowicz, J. Zinc Oxide and Zinc Oxide Nanoparticles Impact on in Vitro Germination and Seedling Growth in Allium cepa L. Materials 2020, 13, 2784. [Google Scholar] [CrossRef]
- Mendes, F.; Lourenço, S.; De Abreu Dos Santos, M.; Alves, C.Z.; Naudi, C.; Campos, S.; Carina Da, A.; Cândido, S.; De Mello Prado, R.; Barbosa, G.; et al. Effect of Two Sources of Zinc on the Physiological Quality of Seed and Nutrition of Rice Seedlings Effect of Two Sources of Zinc on the Physiological Quality of Seed and Nutrition of Rice (Oriza sativa). Rev. Fac. Cienc. Agrar. 2020, 52, 95–105. [Google Scholar]
- Zhao, A.; Yang, S.; Wang, B.; Tian, X. Effects of ZnSO4 and Zn-EDTA Applied by Broadcasting or by Banding on Soil Zn Fractions and Zn Uptake by Wheat (Triticum aestivum L.) under Greenhouse Conditions. J. Plant Nutr. Soil Sci. 2019, 182, 307–317. [Google Scholar] [CrossRef]
- Chahal, S.K.; Hettiarachchi, G.M.; Nelson, N.O.; Guttieri, M.J. Fate and Plant Uptake of Different Zinc Fertilizer Sources upon Their Application to an Alkaline Calcareous Soil. ACS Agric. Sci. Technol. 2023, 3, 725–737. [Google Scholar] [CrossRef]
Ingredient (g) | Control | NPK | Zn | SWEO | NPK + Zn | NPK + SWEO | SWEO + Zn | SWEO + NPK + Zn |
---|---|---|---|---|---|---|---|---|
Fungicide | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Distilled Water | 8 | 5 | 7 | 5 | 4 | 2 | 4 | 1 |
SWEO | 0 | 0 | 0 | 3 | 0 | 3 | 3 | 3 |
NPK | 0 | 3 | 0 | 0 | 3 | 3 | 0 | 3 |
Zinc | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
Seed Treatment | Final Germination (%) | T50 (Days) |
---|---|---|
Control | 86.0 ± 0.4 c | 2.26 ± 0.03 e |
NPK | 90.5 ± 0.29 b | 1.84 ± 0.01 b |
Zn | 90.8 ± 0.48 b | 1.84 ± 0.02 b |
SWEO | 95.8 ± 0.85 a | 1.71 ± 0.01 a |
NPK + Zn | 91.3 ± 0.75 b | 2.04 ± 0.03 d |
NPK +SWEO | 90.8 ± 0.48 b | 2.1 ± 0.02 d |
SWEO +Zn | 92.5 ± 0.65 b | 1.87 ± 0.02 b |
SWEO + NPK + Zn | 92.3 ± 0.63 b | 1.94 ± 0.04 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossini, A.; Ruggeri, R.; Rossini, F. Discriminating among Alternative Dressing Solutions for Cereal Seed Treatment: Effect on Germination and Seedling Vigor of Durum Wheat. Int. J. Plant Biol. 2024, 15, 230-241. https://doi.org/10.3390/ijpb15020019
Rossini A, Ruggeri R, Rossini F. Discriminating among Alternative Dressing Solutions for Cereal Seed Treatment: Effect on Germination and Seedling Vigor of Durum Wheat. International Journal of Plant Biology. 2024; 15(2):230-241. https://doi.org/10.3390/ijpb15020019
Chicago/Turabian StyleRossini, Angelo, Roberto Ruggeri, and Francesco Rossini. 2024. "Discriminating among Alternative Dressing Solutions for Cereal Seed Treatment: Effect on Germination and Seedling Vigor of Durum Wheat" International Journal of Plant Biology 15, no. 2: 230-241. https://doi.org/10.3390/ijpb15020019
APA StyleRossini, A., Ruggeri, R., & Rossini, F. (2024). Discriminating among Alternative Dressing Solutions for Cereal Seed Treatment: Effect on Germination and Seedling Vigor of Durum Wheat. International Journal of Plant Biology, 15(2), 230-241. https://doi.org/10.3390/ijpb15020019