Using Brassica Cover Crops as Living Mulch in a Vineyard, Changes over One Growing Season
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vineyard Location and Site Conditions
2.2. Cover Crops
2.3. Establishment of the Experiment
2.4. Plot Maintenance
2.5. Estimated Biomass of Brassica Cover Crops
2.6. Soil Sampling
2.7. Analysis of Effect of Cover Crops on AMF Abundance
2.8. Fungal Community Analysis
2.9. Fungal Community Sequencing
2.10. Nematode Extraction and Counting
2.11. Statistical Analysis
2.11.1. Fungal Community
2.11.2. Nematode Community
3. Results
3.1. Cover Crop Establishment
3.2. Effect of Brassica Cover Crops on Soil Fungal Diversity and Community Composition
3.3. Do Intact Brassica Cover Crops Affect Soil Nematode Abundance and Community Composition?
4. Discussion
4.1. Brassica Cover Crops Effect on Soil Fungal Diversity
4.2. Brassica Effects on AMF
4.3. Brassica Effects on Nematodes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Úrbez-Torres, J.R.; Haag, P.; Bowen, P.; O’Gorman, D.T. Grapevine Trunk Diseases in British Columbia: Incidence and Characterization of the Fungal Pathogens Associated with Black Foot Disease of Grapevine. Plant Dis. 2014, 98, 456–468. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-Y.; Barton, M.; Pendleton, P. Controlled Release of Allyl Isothiocyanate for Bacteria Growth Management. Food Control 2012, 23, 478–484. [Google Scholar] [CrossRef]
- Tiznado-Hernandez, M.-E.; Troncoso-Rojas, R. Control of Fungal Diseases with Isothiocyanates. Stewart Postharvest Rev. 2008, 2, 1–14. [Google Scholar] [CrossRef]
- Eugui, D.; Escobar, C.; Velasco, P.; Poveda, J. Glucosinolates as an effective tool in plant-parasitic nematodes control: Exploiting natural plant defenses. Appl. Soil Ecol. 2022, 176, 104497. [Google Scholar] [CrossRef]
- Norsworthy, J.K.; Brandenberger, L.; Burgos, N.R.; Riley, M. Weed Suppression in Vigna unguiculata with a Spring-Seeded Brassicaceae Green Manure. Crop Prot. 2005, 24, 441–447. [Google Scholar] [CrossRef]
- Hopkins, R.J.; Van Dam, N.M.; Van Loon, J.J.A. Role of Glucosinolates in Insect-Plant Relationships and Multitrophic Interactions. Annu. Rev. Entomol. 2009, 54, 57–83. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Nakamura, K.; Asai, Y.; Wada, T.; Tanaka, K.; Matsuo, T.; Okamoto, S.; Meijer, J.; Kitamura, Y.; Nishikawa, A.; et al. Comparison of the Glucosinolate-Myrosinase Systems among Daikon (Raphanus sativus, Japanese White Radish) Varieties. J. Agric. Food Chem. 2008, 56, 2702–2707. [Google Scholar] [CrossRef]
- Drobnica, L.; Zemanova, M.; Nemec, P.; Antos, K.; Kristian, P.; Stullerova, A.; Knoppova, V. Antifungal Activity of Isothiocyanates and Related Compounds I. Naturally Occurring Isothiocyanates and Their Analogues. Appl. Microbiol. 1967, 15, 701–709. [Google Scholar] [CrossRef]
- Manici, L.M.; Lazzeri, L.; Palmieri, S. In Vitro Fungitoxic Activity of Some Glucosinolates and Their Enzyme-Derived Products toward Plant Pathogenic Fungi. J. Agric. Food Chem. 1997, 45, 2768–2773. [Google Scholar] [CrossRef]
- Sarwar, M.; Kirkegaard, J.A.; Wong, P.T.W.; Desmarchelier, J.M. Biofumigation Potential of Brassicas III. In Vitro Toxicity of Isothiocyanates to Soil-Borne Fungal Pathogens. Plant Soil 1998, 201, 103–112. [Google Scholar] [CrossRef]
- Mocali, S.; Landi, S.; Curto, G.; Dallavalle, E.; Infantino, A.; Colzi, C.; D’Errico, G.; Roversi, P.F.; D’Avino, L.; Lazzeri, L. Resilience of Soil Microbial and Nematode Communities after Biofumigant Treatment with Defatted Seed Meals. Ind. Crops Prod. 2015, 75, 79–90. [Google Scholar] [CrossRef]
- Reardon, C.L.; Strauss, S.L.; Mazzola, M. Changes in Available Nitrogen and Nematode Abundance in Response to Brassica Seed Meal Amendment of Orchard Soil. Soil. Biol. Biochem. 2013, 57, 22–29. [Google Scholar] [CrossRef]
- Gruver, L.S.; Weil, R.R.; Zasada, I.A.; Sardanelli, S.; Momen, B. Brassicaceous and Rye Cover Crops Altered Free-Living Soil Nematode Community Composition. Appl. Soil Ecol. 2010, 45, 1–12. [Google Scholar] [CrossRef]
- Zasada, I.A.; Meyer, S.L.F.; Morra, M.J. Brassicaceous Seed Meals as Soil Amendments to Suppress the Plant-Parasitic Nematodes Pratylenchus penetrans and Meloidogyne incognita. J. Nematol. 2009, 41, 221–227. [Google Scholar] [PubMed]
- Dahlin, P.; Hallmann, J. New Insights on the Role of Allyl Isothiocyanate in Controlling the Root Knot Nematode Meloidogyne hapla. Plants 2020, 9, 603. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, Y.; Yang, H.; Chang, Z. Effect of Biofumigation and Chemical Fumigation on Soil Microbial Community Structure and Control of Pepper Phytophthora Blight. World J. Microbiol. Biotechnol. 2014, 30, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.S.; Hu, P.; Hollister, E.B.; Rothlisberger, K.L.; Somenahally, A.; Provin, T.L.; Hons, F.M.; Gentry, T.J. Impact of Indian Mustard (Brassica juncea) and Flax (Linum usitatissimum) Seed Meal Applications on Soil Carbon, Nitrogen, and Microbial Dynamics. Appl. Environ. Soil Sci. 2012, 2012, 351609. [Google Scholar] [CrossRef]
- Omirou, M.; Rousidou, C.; Bekris, F.; Papadopoulou, K.K.; Menkissoglou-Spiroudi, U.; Ehaliotis, C.; Karpouzas, D.G. The Impact of Biofumigation and Chemical Fumigation Methods on the Structure and Function of the Soil Microbial Community. Microb. Ecol. 2011, 61, 201–213. [Google Scholar] [CrossRef]
- Larkin, R.P.; Griffin, T.S.; Honeycutt, C.W. Rotation and Cover Crop Effects on Soilborne Potato Diseases, Tuber Yield, and Soil Microbial Communities. Plant Dis. 2010, 94, 1491–1502. [Google Scholar] [CrossRef]
- Cohen, M.F.; Yamasaki, H.; Mazzola, M. Brassica napus Seed Meal Soil Amendment Modifies Microbial Community Structure, Nitric Oxide Production and Incidence of Rhizoctonia Root Rot. Soil Biol. Biochem. 2005, 37, 1215–1227. [Google Scholar] [CrossRef]
- Richards, A.; Estaki, M.; Úrbez-Torres, J.R.; Bowen, P.; Lowery, T.; Hart, M. Cover Crop Diversity as a Tool to Mitigate Vine Decline and Reduce Pathogens in Vineyard Soils. Diversity 2020, 12, 128. [Google Scholar] [CrossRef]
- Waisen, P.; Cheng, Z.; Sipes, B.S.; Wang, K.H. Biofumigation Effects of Brassicaceous Cover Crops on Soil Health in Cucurbit Agroecosystems in Hawaii, USA. Pedosphere 2022, 32, 521–531. [Google Scholar] [CrossRef]
- Ingham, R.E.; Trofymow, J.A.; Ingham, E.R.; Coleman, D.C. Interactions of Bacteria, Fungi, and Their Nematode Grazers: Effects on Nutrient Cycling. Ecol. Monogr. 1985, 55, 119–140. [Google Scholar] [CrossRef]
- Freckman, D.W. Bacterivorous Nematodes and Organic-Matter Decomposition. Agric. Ecosyst. Environ. 1988, 24, 195–217. [Google Scholar] [CrossRef]
- Vierheilig, H.; Ocampo, J.A. Effect of Isothiocyanates on Germination of Spores of G. mosseae. Soil Biol. Biochem. 1990, 22, 1161–1162. [Google Scholar] [CrossRef]
- Schreiner, R.P.; Koide, R.T. Antifungal Compounds from the Roots of Mycotrophic and Non-Mycotrophic Plant. New Phytol. 1993, 123, 99–105. [Google Scholar] [CrossRef]
- Cipollini, D.; Cipollini, K. A Review of Garlic Mustard (Alliaria petiolata, Brassicaceae) as an Allelopathic Plant. J. Torrey Bot. Soc. 2016, 143, 339–348. [Google Scholar] [CrossRef]
- Wolfe, B.E.; Rodgers, V.L.; Stinson, K.A.; Pringle, A. The Invasive Plant Alliaria petiolata (Garlic Mustard) Inhibits Ectomycorrhizal Fungi in Its Introduced Range. J. Ecol. 2008, 96, 777–783. [Google Scholar] [CrossRef]
- Stirling, B.G.; Wilson, E.; Stirling, A.; Pankhurst, C.; Moody, P.; Bell, M. Organic Amendments Enhance Biological Suppression of Plant-Parasitic Nematodes in Sugarcane Soils. In Proceedings of the 2003 Conference of the Australian Society of Sugar Cane Technologists, Townsville, Australia, 6–9 May 2003; Volume 25. [Google Scholar]
- Valdes, Y.; Viaene, N.; Moens, M. Effects of Yellow Mustard Amendments on the Soil Nematode Community in a Potato Field with Focus on Globodera rostochiensis. Appl. Soil Ecol. 2012, 59, 39–47. [Google Scholar] [CrossRef]
- Vervoort, M.T.W.; Vonk, J.A.; Brolsma, K.M.; Schütze, W.; Quist, C.W.; de Goede, R.G.M.; Hoffland, E.; Bakker, J.; Mulder, C.; Hallmann, J.; et al. Release of Isothiocyanates Does Not Explain the Effects of Biofumigation with Indian Mustard Cultivars on Nematode Assemblages. Soil Biol. Biochem. 2014, 68, 200–207. [Google Scholar] [CrossRef]
- Gerdemann, J.W.; Nicolson, T.H. Spores of Mycorrhizal Endogone Species Extracted from Soil by Wet Sieving and Decanting. Trans. Br. Mycol. Soc. 1963, 46, 235–244. [Google Scholar] [CrossRef]
- Vancov, T.; Keen, B. Amplification of Soil Fungal Community DNA Using the ITS86F and ITS4 Primers. FEMS Microbiol. Lett. 2009, 296, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; Mcmurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581. [Google Scholar] [CrossRef] [PubMed]
- Abarenkov, K.; Zirk, A.; Piirmann, T.; Pöhönen, R.; Ivanov, F.; Nilsson, R.H.; Kõljalg, U. UNITE QIIME Release for Fungi; UNITE Community, 2020. [Google Scholar] [CrossRef]
- Lozupone, C.A.; Hamady, M.; Kelley, S.T.; Knight, R. Quantitative and Qualitative β Diversity Measures Lead to Different Insights into Factors That Structure Microbial Communities. Appl. Environ. Microbiol. 2007, 73, 1576–1585. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.; Knight, R. UniFrac: A New Phylogenetic Method for Comparing Microbial Communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235. [Google Scholar] [CrossRef] [PubMed]
- Sorenson, T. A Method of Establishing Groups of Equal Amplitude in Plant Sociology Based on Similarity of Species Content. K. Dan. Vidensk. Selsk. 1948, 5, 1–5. [Google Scholar]
- Jenkins, W.R. A Rapid Centrifugal-Flotation Technique for Separating Nematodes from Soil. Plant Dis. Rep. 1964, 48, 692. [Google Scholar]
- Spearman, C. The Proof and Measurement of Association between Two Things. Am. J. Psychol. 1904, 15, 72–101. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021. [Google Scholar]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Anderson, M.J. A New Method for Non-Parametric Multivariate Analysis of Variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Oksanen, J.; Guillaume, B.F.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. 2020. Available online: https://github.com/vegandevs/vegan (accessed on 10 October 2023).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kassambara, A. Rstatix: Pipe-Friendly Framework for Basic Statstical Tests. 2021. Available online: https://rpkgs.datanovia.com/rstatix/ (accessed on 10 October 2023).
- Bao, D.F.; Hyde, K.D.; Maharachchikumbura, S.S.N.; Perera, R.H.; Thiyagaraja, V.; Hongsanan, S.; Wanasinghe, D.N.; Shen, H.W.; Tian, X.G.; Yang, L.Q.; et al. Taxonomy, phylogeny and evolution of freshwater Hypocreomycetidae (Sordariomycetes). Fungal Divers. 2023, 121, 1–94. [Google Scholar] [CrossRef]
- Jayawardena, R.S.; Purahong, W.; Zhang, W.; Wubet, T.; Li, X.; Liu, M.; Zhao, W.; Hyde, K.D.; Liu, J.H.; Yan, J. Biodiversity of fungi on Vitis vinifera L. revealed by traditional and high-resolution culture-independent approaches. Fungal Divers. 2018, 90, 1–84. [Google Scholar] [CrossRef]
- Aleynova, O.A.; Nityagovsky, N.N.; Kiselev, K.V. Biodiversity of endophytic bacteria and fungi of wild grapes Vitis amurensis Rupr. In BIO Web of Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 39. [Google Scholar]
- Pem, D.; Jeewon, R.; Chethana, K.W.T.; Hongsanan, S.; Doilom, M.; Suwannarach, N.; Hyde, K.D. Species concepts of Dothideomycetes: Classification, phylogenetic inconsistencies and taxonomic standardization. Fungal Divers. 2021, 109, 283–319. [Google Scholar] [CrossRef]
- Kalichman, J.; Kirk, P.M.; Matheny, P.B. A compendium of generic names of agarics and Agaricales. Taxon 2020, 69, 425–447. [Google Scholar] [CrossRef]
- Thapa, V.R.; Ghimire, R.; Acosta-Martínez, V.; Marsalis, M.A.; Schipanski, M.E. Cover Crop Biomass and Species Composition Affect Soil Microbial Community Structure and Enzyme Activities in Semiarid Cropping Systems. Appl. Soil Ecol. 2021, 157, 103735. [Google Scholar] [CrossRef]
- Steinauer, K.; Chatzinotas, A.; Eisenhauer, N. Root Exudate Cocktails: The Link between Plant Diversity and Soil Microorganisms? Ecol. Evol. 2016, 6, 7387–7396. [Google Scholar] [CrossRef]
- Hu, P.; Hollister, E.B.; Somenahally, A.C.; Hons, F.M.; Gentry, T.J. Soil Bacterial and Fungal Communities Respond Differently to Various Isothiocyanates Added for Biofumigation. Front. Microbiol. 2015, 5, 729. [Google Scholar] [CrossRef]
- Hollister, E.B.; Hu, P.; Wang, A.S.; Hons, F.M.; Gentry, T.J. Differential Impacts of Brassicaceous and Nonbrassicaceous Oilseed Meals on Soil Bacterial and Fungal Communities. Microbiol. Ecol. 2012, 83, 632–641. [Google Scholar] [CrossRef]
- Siebers, M.; Rohr, T.; Ventura, M.; Schü Tz, V.; Thies, S.; Kovacic, F.; Jaeger, K.-E.; Berg, M.; Dö Rmann, P.; Schulz, M. Disruption of Microbial Community Composition and Identification of Plant Growth Promoting Microorganisms after Exposure of Soil to Rapeseed-Derived Glucosinolates. PLoS ONE 2018, 13, e0200160. [Google Scholar] [CrossRef]
- Vierheilig, H.; Bennett, R.; Kiddle, G.; Kaldorf, M.; Ludwig-Müller, J. Differences in Glucosinolate Patterns and Arbuscular Mycorrhizal Status of Glucosinolate-Containing Plant Species. New Phytol. 2000, 146, 343–352. [Google Scholar] [CrossRef]
- Pellerin, S.; Mollier, A.; Morel, C.; Plenchette, C. Effect of Incorporation of Brassica napus L. Residues in Soils on Mycorrhizal Fungus Colonisation of Roots and Phosphorus Uptake by Maize (Zea mays L.). Europ. J. Agron. 2007, 26, 113–120. [Google Scholar] [CrossRef]
- Tong, Y.; Gabriel-Neumann, E.; Krumbein, A.; Ngwene, B.; George, E.; Schreiner, M. Interactive Effects of Arbuscular Mycorrhizal Fungi and Intercropping with Sesame (Sesamum indicum) on the Glucosinolate Profile in Broccoli (Brassica oleracea Var. Italica). Environ. Exp. Bot. 2014, 109, 288–295. [Google Scholar] [CrossRef]
- Potter, M.J.; Vanstone, V.A.; Davies, K.A.; Kirkegaard, J.A.; Rathjen, A.J. Reduced Susceptibility of Brassica napus to Pratylenchus neglectus in Plants with Elevated Root Levels of 2-Phenylethyl Glucosinolate. J. Nematol. 1999, 31, 291–298. [Google Scholar] [PubMed]
- Zasada, I.A.; Ferris, H. Sensitivity of Meloidogyne javanica and Tylenchulus semipenetrans to Isothiocyanates in Laboratory Assays. Phytopathology 2003, 93, 747–750. [Google Scholar] [CrossRef]
- Zasada, I.A.; Ferris, H. Nematode Suppression with Brassicaceous Amendments: Application Based upon Glucosinolate Profiles. Soil Biol. Biochem. 2004, 36, 1017–1024. [Google Scholar] [CrossRef]
- Goodell, P.; Ferris, H. Plant-Parasitic Nematode Distributions in an Alfalfa Field. J. Nematol. 1980, 12, 136–141. [Google Scholar]
- Lu, Z.-B.; Dong, D.-F.; Yang, B.; Li, L.-L.; Yu, Y.; Ouyang, F.; Ge, F.; Verma, V.-C.; Men, X.-Y. Effects of Crop Species Richness on the Community of Soil Nematodes in an Experimental Agro-Ecosystem. Eur. J. Soil Biol. 2016, 73, 26–33. [Google Scholar] [CrossRef]
- Viketoft, M. Effects of Six Grassland Plant Species on Soil Nematodes: A Glasshouse Experiment. Soil Biol. Biochem. 2008, 40, 906–915. [Google Scholar] [CrossRef]
- Cortois, R.; Veen, G.F.C.; Duyts, H.; Abbas, M.; Strecker, T.; Kostenko, O.; Eisenhauer, N.; Scheu, S.; Gleixner, G.; De Deyn, G.B.; et al. Possible Mechanisms Underlying Abundance and Diversity Responses of Nematode Communities to Plant Diversity. Ecosphere 2017, 8, e01719. [Google Scholar] [CrossRef]
- De Deyn, G.B.; Raaijmakers, C.E.; Van Ruijven, J.; Berendse, F.; Van Der Putten, W.H. Plant Species Identity and Diversity Effects on Different Trophic Levels of Nematodes in the Soil Food Web. Okios 2004, 106, 576–586. [Google Scholar] [CrossRef]
Brassica Species | Seeding Rate |
---|---|
Rockcress | 1 g m−2 |
Shepherd’s purse | 1 g m−2 |
Tillage radish | 0.7 g m−2 |
White mustard | 1.1 g m−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Farrell, C.; Forge, T.; Hart, M.M. Using Brassica Cover Crops as Living Mulch in a Vineyard, Changes over One Growing Season. Int. J. Plant Biol. 2023, 14, 1105-1116. https://doi.org/10.3390/ijpb14040081
O’Farrell C, Forge T, Hart MM. Using Brassica Cover Crops as Living Mulch in a Vineyard, Changes over One Growing Season. International Journal of Plant Biology. 2023; 14(4):1105-1116. https://doi.org/10.3390/ijpb14040081
Chicago/Turabian StyleO’Farrell, Corynne, Tom Forge, and Miranda M. Hart. 2023. "Using Brassica Cover Crops as Living Mulch in a Vineyard, Changes over One Growing Season" International Journal of Plant Biology 14, no. 4: 1105-1116. https://doi.org/10.3390/ijpb14040081
APA StyleO’Farrell, C., Forge, T., & Hart, M. M. (2023). Using Brassica Cover Crops as Living Mulch in a Vineyard, Changes over One Growing Season. International Journal of Plant Biology, 14(4), 1105-1116. https://doi.org/10.3390/ijpb14040081