Extending the Capsicum Growing Season under Semi-Arid Climate by Using a Suitable Protected Cropping Structure †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Operation of the RRPS to Optimise Internal Climatic Conditions
2.2. Installation of Temperature, Humidity, PAR, and Wind Sensors
2.3. Plant Height Measurement at Crop Establishment
2.4. Marketable Fruit Number and Yield
2.5. Total Soluble Solids
2.6. Statistical Analyses
3. Results
3.1. The Climatic Conditions inside the RRPS for the First Month after Each Planting Date
3.2. Crop Growth
3.3. Marketable Fruit Yield and Yield Attributes
3.4. Total Soluble Solids
3.5. Internal and External Environmental Conditions of the Multi-Span Polytunnels in Geraldton
4. Discussion
4.1. Effects of the Planting Dates on the Growth of Capsicum Varieties
4.2. The RRPS Supports a Longer Growing Season to Increase the Overall Marketable Fruit Yield and Extends the Supply Window
4.3. Potential for a Modified Multi-Span Polytunnel Structure for Carnarvon
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeifman, L.; Hertog, S.; Kantorova, V.; Wilmoth, J. A World of 8 Billion. United Nations, UN Department of Economic and Social Affairs (DESA). Available online: https://www.un.org/development/desa/dpad/wp-content/uploads/sites/45/publication/PB_140.pdf (accessed on 19 May 2023).
- Nguyen, G.N.; Lantzke, N.; van Burgel, A. Effects of Shade Nets on Microclimatic Conditions, Growth, Fruit Yield, and Quality of Eggplant (Solanum melongena L.): A Case Study in Carnarvon, Western Australia. Horticulturae 2022, 8, 696. [Google Scholar] [CrossRef]
- Eftekhari, M.S. Impacts of climate change on agriculture and horticulture. In Climate Change: The Social and Scientific Construct; Springer: Berlin/Heidelberg, Germany, 2022; pp. 117–131. [Google Scholar]
- DPIRD. Carnarvon Plantation Industry Production Statistics 2020; Department of Primary Industries and Regional Development: South Perth, WA, Australia, 2021. [Google Scholar]
- Nguyen, G.N.; Lantzke, N. Mitigating the Adverse Effects of Semi-Arid Climate on Capsicum Cultivation by Using the Retractable Roof Production System. Plants 2022, 11, 2794. [Google Scholar] [CrossRef] [PubMed]
- Palmero, D.; Rodríguez, J.; De Cara, M.; Camacho, F.; Iglesias, C.; Tello, J. Fungal microbiota from rain water and pathogenicity of Fusarium species isolated from atmospheric dust and rainfall dust. J. Ind. Microbiol. Biotechnol. 2011, 38, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Huber, L.; Gillespie, T. Modeling leaf wetness in relation to plant disease epidemiology. Annu. Rev. Phytopathol. 1992, 30, 553–577. [Google Scholar] [CrossRef]
- Rowlandson, T.; Gleason, M.; Sentelhas, P.; Gillespie, T.; Thomas, C.; Hornbuckle, B. Reconsidering leaf wetness duration determination for plant disease management. Plant Dis. 2015, 99, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Rogers, G. Understanding and Managing Impacts of Climate Change and Variability on Vegetable Industry Productivity and Profits; Project Number: VG12041; Horticulture Australia: Sydney, Australia, 2013. [Google Scholar]
- Kehoe, M.A.; Webster, C.; Wang, C.; Jones, R.A.; Coutts, B.A. Occurrence of cucumber green mottle mosaic virus in Western Australia. Australas. Plant Pathol. 2022, 51, 1–8. [Google Scholar] [CrossRef]
- O’Connell, S.; Rivard, C.; Peet, M.M.; Harlow, C.; Louws, F. High Tunnel and Field Production of Organic Heirloom Tomatoes: Yield, Fruit Quality, Disease, and Microclimate. HortScience 2012, 47, 1283–1290. [Google Scholar] [CrossRef]
- Vega-Alfaro, A.; Ramírez-Vargas, C.; Chávez, G.; Lacayo, F.; Bethke, P.C.; Nienhuis, J. Flowering Time and Productivity of Interspecific Grafts Between Pepper Species in Contrasting High Tunnel-sheltered and Open-field Production Environments in Costa Rica. HortTechnology 2021, 31, 828–837. [Google Scholar] [CrossRef]
- Yasuor, H.; Wien, H.C. Peppers. In The Physiology of Vegetable Crops, 2nd ed.; Wien, H.C., Stützel, H., Eds.; CABI: Boston, MA, USA, 2020. [Google Scholar]
- Rathinasabapathi, B. Improving vegetable capsicums for fruit yield, quality, and tolerance to biotic and abiotic stresses. In Genomic Designing of Climate-Smart Vegetable Crops; Springer: Cham, Switzerland, 2020; pp. 277–308. [Google Scholar]
- Rylski, I.; Spigelman, M. Effect of shading on plant development, yield and fruit quality of sweet pepper grown under conditions of high temperature and radiation. Sci. Hortic. 1986, 29, 31–35. [Google Scholar] [CrossRef]
- Bevacqua, R.F.; VanLeeuwen, D.M. Planting date effects on stand establishment and yield of chile pepper. HortScience 2003, 38, 357–360. [Google Scholar] [CrossRef]
- Kesavan, V. Sustainable Production of Quality Capsicums in Carnarvon; Project Number: VG99013; Horticulture Australia: Sydney, Australia, 2002. [Google Scholar]
- Rogers, G. An Investigation of Low Cost Protective Cropping; Hort Innovation: Sydney, Australia, 2018; p. 81. [Google Scholar]
- Radhakrishnan, M.; Lantzke, N.; Mattingley, P. Situation Analysis of Horticulture in Western Australia Situation Analysis of Horticulture in Western Australia Area, Volume and Value of Horticultural Crop Production by Local Government Area within Western Australia; Department of Primary Industries and Regional Development: Perth, Western Australia, Australia, 2023; p. 120. [Google Scholar]
- Elfadly, E.; Abd El-Aal, H.; Rizk, A.; Sobeih, W. Ambient UV manipulation in greenhouses: Plant responses and insect pest management in cucumber. Acta Hortic. 2016, 1134, 343–350. [Google Scholar] [CrossRef]
- Costa, H.S.; Robb, K.L. Effects of ultraviolet-absorbing greenhouse plastic films on flight behavior of Bemisia argentifolii (Homoptera: Aleyrodidae) and Frankliniella occidentalis (Thysanoptera: Thripidae). J. Econ. Entomol. 1999, 92, 557–562. [Google Scholar] [CrossRef]
- Costa, H.; Robb, K.; Wilen, C. Field trials measuring the effects of ultraviolet-absorbing greenhouse plastic films on insect populations. J. Econ. Entomol. 2002, 95, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Lantzke, N. Vegetable crops. In Research Highlights 2021, Primary Industries Development; Paterson, J., Page, L., Eds.; Department of Primary Industries and Regional Development: South Perth, WA, Australia, 2021; pp. 255–265. [Google Scholar]
- Gruda, N. Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. Crit. Rev. Plant Sci. 2005, 24, 227–247. [Google Scholar] [CrossRef]
- Taylor, M.D.; Locascio, S.J. Blossom-end rot: A calcium deficiency. J. Plant Nutr. 2004, 27, 123–139. [Google Scholar] [CrossRef]
- Ho, L.C.; Belda, R.; Brown, M.; Andrews, J.; Adams, P. Uptake and Transport of Calcium and the Possible Causes of Blossom-end Rot in Tomato. J. Exp. Bot. 1993, 44, 509–518. [Google Scholar] [CrossRef]
- Rabbi, B.; Chen, Z.-H.; Sethuvenkatraman, S. Protected cropping in warm climates: A review of humidity control and cooling methods. Energies 2019, 12, 2737. [Google Scholar] [CrossRef]
- Jovicich, E.; Collier, A.; Wittl, H.; White, N. Gap Analysis and Economic Assessment for Protected Cropping Vegetables in Tropical Australia; 0734144679; Hort Innovation: Sydney, NSW, Australia, 2018; p. 64. [Google Scholar]
- Khapte, P.S.; Kumar, P.; Singh, A.; Wakchaure, G.C.; Saxena, A.; Sabatino, L. Integrative Effect of Protective Structures and Irrigation Levels on Tomato Performance in Indian Hot-Arid Region. Plants 2022, 11, 2743. [Google Scholar] [CrossRef] [PubMed]
Variety | Marketable Fruit Yield (t ha−1) | Fruit Per Plant | Average Fruit Weight (g) | Reject Rate (%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | Mean | P1 | P2 | P3 | Mean | P1 | P2 | P3 | Mean | P1 | P2 | P3 | Mean | |
Chevello | 103.4 | 70.4 | 33.3 | 69.0 a | 16.0 | 10.5 | 4.8 | 10.4 a | 184.5 | 190.2 | 198.9 | 191.2 a | 20.7 | 24.6 | 36.7 | 27.3 a |
Chevi | 101.8 | 74.7 | 38.9 | 71.8 b | 14.4 | 9.6 | 4.9 | 9.6 a | 201.9 | 220.9 | 225.0 | 215.9 b | 20.8 | 23.7 | 27.7 | 24.0 b |
Mean | 102.6 a | 72.5 b | 36.1 c | 15.2 a | 10.1 b | 4.8 c | 193.2 a | 205.5 b | 212.0 b | 20.7 a | 24.2 a | 32.2 b | ||||
ANOVA | P | V | P × V | P | V | P × V | P | V | P × V | P | V | P × V | ||||
s.e.d | 4.50 | 3.54 | 6.25 | 0.43 | 0.45 | 0.7 | 5.05 | 1.87 | 5.54 | 2.54 | 1.18 | 2.92 | ||||
p | <0.001 | 0.47 | 0.69 | <0.001 | 0.136 | 0.34 | 0.026 | <0.001 | 0.067 | 0.01 | 0.032 | 0.038 | ||||
l.s.d (p = 0.05) | 12.50 | - | - | 1.05 | - | - | 12.35 | 4.58 | - | 6.22 | 2.90 | 6.56 |
Variety | Marketable Fruit Yield (t.ha−1) | Fruit Per Plant | Fruit Weight (g) | Reject Rate | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | Mean | P1 | P2 | P3 | Mean | P1 | P2 | P3 | Mean | P1 | P2 | P3 | Mean | |
Chevello | 50.5 | 41.7 | 30.9 | 41.0 a | 7.5 | 6.1 | 4.3 | 6.0 a | 191.7 | 195.3 | 202.7 | 196.6 a | 7.7 | 8.7 | 35.0 | 17.1 a |
Chevi | 53.8 | 45.2 | 36.4 | 45.1 b | 7.2 | 5.4 | 4.5 | 5.7 a | 213.1 | 240.6 | 232.3 | 228.7 b | 9.2 | 8.9 | 26.2 | 14.8 b |
Mean | 52.1 a | 43.5 ab | 33.6 b | 7.3 a | 5.7 b | 4.4 c | 202.4 a | 218.0 b | 217.5 b | 8.4 a | 8.8 a | 30.6 b | ||||
ANOVA | P | V | P × V | P | V | P × V | P | V | P × V | P | V | P × V | ||||
s.e.d | 4.02 | 1.03 | 4.21 | 0.45 | 0.17 | 0.49 | 5.22 | 2.63 | 6.13 | 1.74 | 0.93 | 2.08 | ||||
p | 0.025 | 0.007 | 0.644 | 0.007 | 0.113 | 0.182 | 0.066 | <0.001 | 0.026 | <0.01 | 0.043 | 0.007 | ||||
l.s.d (p = 0.05) | 11.15 | 2.51 | - | 1.25 | - | - | - | 6.43 | 14.52 | 4.84 | 2.26 | 4.89 |
Variety | Total Soluble Solids (°Brix) | |||
---|---|---|---|---|
P1 | P2 | P3 | Mean | |
Chevello | 5.9 | 5.5 | 6.5 | 5.9 a |
Chevi | 6.6 | 6.6 | 6.6 | 6.6 b |
Mean | 6.3 a | 6.0 b | 6.6 c | |
ANOVA | P | V | P × V | |
s.e.d | 0.11 | 0.21 | 0.28 | |
p | 0.009 | 0.018 | 0.223 | |
l.s.d (p = 0.05) | 0.28 | 0.51 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, G.N.; Lantzke, N. Extending the Capsicum Growing Season under Semi-Arid Climate by Using a Suitable Protected Cropping Structure. Int. J. Plant Biol. 2023, 14, 922-948. https://doi.org/10.3390/ijpb14040068
Nguyen GN, Lantzke N. Extending the Capsicum Growing Season under Semi-Arid Climate by Using a Suitable Protected Cropping Structure. International Journal of Plant Biology. 2023; 14(4):922-948. https://doi.org/10.3390/ijpb14040068
Chicago/Turabian StyleNguyen, Giao N., and Neil Lantzke. 2023. "Extending the Capsicum Growing Season under Semi-Arid Climate by Using a Suitable Protected Cropping Structure" International Journal of Plant Biology 14, no. 4: 922-948. https://doi.org/10.3390/ijpb14040068
APA StyleNguyen, G. N., & Lantzke, N. (2023). Extending the Capsicum Growing Season under Semi-Arid Climate by Using a Suitable Protected Cropping Structure. International Journal of Plant Biology, 14(4), 922-948. https://doi.org/10.3390/ijpb14040068