Photosynthetic Efficiency in Green Bean Plants through the Application of Omeprazole and Melatonin at Low Doses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Experimental Design and Description of Treatments
2.3. Plant Biomass and Yield Measurement
2.4. SPAD Values
2.5. Measurements of Chlorophyll Fluorescence Parameters
2.6. Statistical Analysis
3. Results and Discussion
3.1. Total Biomass
3.2. Yield
3.3. SPAD Values
3.4. Chlorophyll Fluorescence Parameters
3.4.1. Chlorophyll Fluorescence
3.4.2. Photochemical and Non-Photochemical Quenching
3.4.3. Electron Transport Quantum Yield of PSII and Electron Transport Rate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bajželj, B.; Richards, K.S.; Allwood, J.M.; Smith, P.; Dennis, J.S.; Curmi, E.; Gilligan, C.A. Importance of food-demand management for climate mitigation. Nat. Clim. Change 2014, 4, 924–929. [Google Scholar] [CrossRef]
- Simkin, A.J.; López-Calcagno, P.E.; Raines, C.A. Feeding the world: Improving photosynthetic efficiency for sustainable crop production. J. Exp. Bot. 2019, 70, 1119–1140. [Google Scholar] [CrossRef] [PubMed]
- Karavidas, I.; Ntatsi, G.; Vougeleka, V.; Karkanis, A.; Ntanasi, T.; Saitanis, C.; Agathokleous, D.; Ropokis, A.; Sabatino, L.; Tran, F.; et al. Agronomic practices to increase the yield and quality of common bean (Phaseolus vulgaris L.): A systematic review. Agronomy 2022, 12, 271. [Google Scholar] [CrossRef]
- Celmeli, T.; Sari, H.; Canci, H.; Sari, D.; Adak, A.; Eker, T.; Toker, C. The nutritional content of common bean (Phaseolus vulgaris L.) landraces in comparison to modern varieties. Agronomy 2018, 8, 166. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Biostimulants in agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef]
- Hardeland, R. Melatonin in plants–diversity of levels and multiplicity of functions. Front. Plant Sci. 2016, 7, 198. [Google Scholar] [CrossRef]
- Van Oosten, M.J.; Dell’Aversana, E.; Ruggiero, A.; Cirillo, V.; Gibon, Y.; Woodrow, P.; Maggio, A.; Carillo, P. Omeprazole treatment enhances nitrogen use efficiency through increased nitrogen uptake and assimilation in corn. Front. Plant Sci. 2019, 10, 1507. [Google Scholar] [CrossRef]
- Shah, N.; Gossman, W. Omeprazole; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Arnao, M.B.; Hernández-Ruiz, J. Functions of melatonin in plants: A review. J. Pineal Res. 2015, 59, 133–150. [Google Scholar] [CrossRef]
- Du, P.; Yin, B.; Zhou, S.; Li, Z.; Zhang, X.; Cao, Y.; Han, R.; Shi, C.; Liang, B.; Xu, J. Melatonin and dopamine mediate the regulation of nitrogen uptake and metabolism at low ammonium levels in Malus hupehensis. Plant Physiol. Biochem. 2022, 171, 182–190. [Google Scholar] [CrossRef]
- Cirillo, V.; Van Oosten, M.J.; Izzo, M.; Maggio, A. Omeprazole treatment elicits contrasting responses to salt stress in two basil genotypes. Ann. Appl. Biol. 2019, 174, 329–338. [Google Scholar] [CrossRef]
- Zhao, Q.; Shen, W.; Gu, Y.; Hu, J.; Ma, Y.; Zhang, X.; Du, J.; Zhang, Y. Exogenous melatonin mitigates saline-alkali stress by decreasing DNA oxidative damage and enhancing photosynthetic carbon metabolism in soybean (Glycine max [L.] Merr.) leaves. Physiol. Plant. 2023, 175, e13983. [Google Scholar] [CrossRef] [PubMed]
- Elansary, H.O.; El-Abedin, T.K.Z. Omeprazole alleviates water stress in peppermint and modulates the expression of menthol biosynthesis genes. Plant Physiol. Biochem. 2019, 139, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Erdal, S. Melatonin promotes plant growth by maintaining integration and coordination between carbon and nitrogen metabolisms. Plant Cell Rep. 2019, 38, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Lu, N.; Xu, H.; Maruo, T.; Guo, S. Root zone cooling and exogenous spermidine root-pretreatment promoting Lactuca sativa L. growth and photosynthesis in the high-temperature season. Front. Plant Sci. 2016, 7, 368. [Google Scholar] [CrossRef]
- Yamori, W.; Kondo, E.; Sugiura, D.; Terashima, I.; Suzuki, Y.; Makino, A. Enhanced leaf photosynthesis as a target to increase grain yield: Insights from transgenic rice lines with variable Rieske FeS protein content in the cytochrome b6/f complex. Plant Cell Environ. 2016, 39, 80–87. [Google Scholar] [CrossRef]
- Wang, L.Y.; Liu, J.L.; Wang, W.X.; Sun, Y. Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica 2016, 54, 19–27. [Google Scholar] [CrossRef]
- Shrestha, S.; Brueck, H.; Asch, F. Chlorophyll index, photochemical reflectance index and chlorophyll fluorescence measurements of rice leaves supplied with different N levels. J. Photochem. Photobiol. B Biol. 2012, 113, 7–13. [Google Scholar] [CrossRef]
- Sánchez, E.; Ruiz, J.M.; Romero, L. Compuestos nitrogenados indicadores de estrés en respuesta a las dosis tóxicas y deficientes de Nitrógeno en frijol ejotero. Nova Sci. 2016, 8, 228–244. [Google Scholar] [CrossRef]
- Ahmad, S.; Wang, G.Y.; Muhammad, I.; Chi, Y.X.; Zeeshan, M.; Nasar, J.; Zhou, X.B. Interactive effects of melatonin and nitrogen improve drought tolerance of maize seedlings by regulating growth and physiochemical attributes. Antioxidants 2022, 11, 359. [Google Scholar] [CrossRef]
- Qiao, Y.; Yin, L.; Wang, B.; Ke, Q.; Deng, X.; Wang, S. Melatonin promotes plant growth by increasing nitrogen uptake and assimilation under nitrogen deficient condition in winter wheat. Plant Physiol. Biochem. 2019, 139, 342–349. [Google Scholar] [CrossRef]
- Carillo, P.; Raimondi, G.; Kyriacou, M.C.; Pannico, A.; El-Nakhel, C.; Colla, G.; De Pascale, S.; Cirillo, V.; Rouphael, Y. Morpho-physiological and homeostatic adaptive responses triggered by omeprazole enhance lettuce tolerance to salt stress. Sci. Hortic. 2019, 249, 22–30. [Google Scholar] [CrossRef]
- Turner, M.F.; Heuberger, A.L.; Kirkwood, J.S.; Collins, C.C.; Wolfrum, E.J.; Broeckling, C.D.; Prenni, J.E.; Jahn, C.E. Non-targeted metabolomics in diverse sorghum breeding lines indicates primary and secondary metabolite profiles are associated with plant biomass accumulation and photosynthesis. Front. Plant Sci. 2016, 7, 953. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Ni, Z.; Xia, H.; Xie, Y.; Lv, X.; Wang, J.; Ling, L.; Deng, Q.; Luo, X. Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Sci. Hortic. 2019, 246, 34–43. [Google Scholar] [CrossRef]
- Li, L.; Gallei, M.; Friml, J. Bending to auxin: Fast acid growth for tropisms. Trends Plant Sci. 2021, 27, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Jahan, M.S.; Guo, S.; Sun, J.; Shu, S.; Wang, Y.; El-Yazied, A.A.; Alabdallah, N.M.; Hikal, M.; Mostafa, H.M.; Ibrahim, F.M.; et al. Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress. Plant Physiol. Biochem. 2021, 167, 309–320. [Google Scholar] [CrossRef]
- Zhang, R.; Yue, Z.; Chen, X.; Wang, Y.; Zhou, Y.; Xu, W.; Huang, R. Foliar applications of urea and melatonin to alleviate water-logging stress on photosynthesis and antioxidant metabolism in sorghum seedlings. Plant Growth Regul. 2021, 97, 429–438. [Google Scholar] [CrossRef]
- Yan, F.; Zhang, J.; Li, W.; Ding, Y.; Zhong, Q.; Xu, X.; Wei, H.; Li, G. Exogenous melatonin alleviates salt stress by improv-ing leaf photosynthesis in rice seedlings. Plant Physiol. Biochem. 2021, 163, 367–375. [Google Scholar] [CrossRef]
- Salcido-Martínez, A.; Sanchez, E.; Licon-Trillo, L.P.; Perez-Alvarez, S.; Palacio-Márquez, A.; Amaya-Olivas, N.I.; Preciado-Rangel, P. Impact of the foliar application of magnesium nanofertilizer on physiological and biochemical parameters and yield in green beans. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 2167. [Google Scholar] [CrossRef]
- Rastogi, A.; Siddiqui, A.; Mishra, B.K.; Srivastava, M.; Pandey, R.; Misra, P.; Singh, M.; Shukla, S. Effect of auxin and gibberellic acid on growth and yield components of linseed (Linum usitatissimum L.). Crop. Breed. Appl. Biotechnol. 2013, 13, 136–143. [Google Scholar] [CrossRef]
- Sukumar, P.; Maloney, G.S.; Muday, G.K. Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis. Plant Physiol. 2013, 162, 1392–1405. [Google Scholar] [CrossRef]
- Jiang, C.; Johkan, M.; Hohjo, M.; Tsukagoshi, S.; Maruo, T. A correlation analysis on chlorophyll content and SPAD value in tomato leaves. Hort. Res. 2017, 71, 37–42. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Alamri, S.; Alsubaie, Q.D.; Ali, H.M. Melatonin and gibberellic acid promote growth and chlorophyll biosynthesis by regulating antioxidant and methylglyoxal detoxification system in tomato seedlings under salinity. J. Plant Growth Regul. 2020, 39, 1488–1502. [Google Scholar] [CrossRef]
- Soltabayeva, A.; Srivastava, S.; Kurmanbayeva, A.; Bekturova, A.; Fluhr, R.; Sagi, M. Early senescence in older leaves of low nitrate-grown Atxdh1 uncovers a role for purine catabolism in N supply. Plant Physiol. 2018, 178, 1027–1044. [Google Scholar] [CrossRef]
- Hussain, S.; Khalid, M.F.; Hussain, M.; Ali, M.A.; Nawaz, A.; Zakir, I.; Fatima, Z.; Ahmad, S. Role of micronutrients in salt stress tolerance to plants. In Plant Nutrients and Abiotic Stress Tolerance; Springer: Singapore, 2018; pp. 363–376. [Google Scholar] [CrossRef]
- Mir, A.R.; Siddiqui, H.; Alam, P.; Hayat, S. Melatonin modulates photosynthesis, redox status, and elemental composition to promote growth of Brassica juncea—A dose-dependent effect. Protoplasm 2020, 257, 1685–1700. [Google Scholar] [CrossRef] [PubMed]
- Weeda, S.; Zhang, N.; Zhao, X.; Ndip, G.; Guo, Y.; Buck, G.A.; Fu, C.; Ren, S. Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PLoS ONE 2014, 9, e93462. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Wang, Y.; Chi, Y.; Zhou, L.; Chen, J.; Zhou, W.; Song, J.; Zhao, N.; Ding, J. Drought stress strengthens the link between chlorophyll fluorescence parameters and photosynthetic traits. PeerJ 2020, 8, e10046. [Google Scholar] [CrossRef]
- Sánchez-Reinoso, A.D.; Ligarreto-Moreno, G.A.; Restrepo-Díaz, H. Physiological and biochemical expressions of a determinated growth common bean genotype (Phaseolus vulgaris L.) to water deficit stress periods. J. Anim. Plant Sci. 2018, 28, 119–127. [Google Scholar]
- Guidi, L.; Lo Piccolo, E.; Landi, M. Chlorophyll fluorescence, photoinhibition and abiotic stress: Does it make any difference the fact to be a C3 or C4 species? Front. Plant Sci. 2019, 10, 174. [Google Scholar] [CrossRef]
- Khan, T.A.; Saleem, M.; Fariduddin, Q. Melatonin influences stomatal behavior, root morphology, cell viability, photosynthetic responses, fruit yield, and fruit quality of tomato plants exposed to salt stress. J. Plant Growth Regul. 2022, 42, 2408–2432. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Yang, S.J.; Chen, Y.Y. Effects of melatonin on photosynthetic performance and antioxidants in melon during cold and recovery. Biol. Plant. 2017, 61, 571–578. [Google Scholar] [CrossRef]
- Dumanović, J.; Nepovimova, E.; Natić, M.; Kuča, K.; Jaćević, V. The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Front. Plant Sci. 2021, 11, 552969. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.X.; Manchester, L.C.; Esteban-Zubero, E.; Zhou, Z.; Reiter, R.J. Melatonin as a potent and inducible endogenous antioxidant: Synthesis and metabolism. Molecules 2015, 20, 18886–18906. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, G.C.; Govindjee. The Non-Photochemical Quenching of the Electronically Excited State of Chlorophyll a in Plants: Definitions, Timelines, Viewpoints, Open Questions. In Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria; Demmig-Adams, B., Garab, G., Adams, W., III, Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 40, pp. 1–44. [Google Scholar] [CrossRef]
- Van Oosten, M.J.; Silletti, S.; Guida, G.; Cirillo, V.; Di Stasio, E.; Carillo, P.; Woodrow, P.; Maggio, A.; Raimondi, G. A benzimidazole proton pump inhibitor increases growth and tolerance to salt stress in tomato. Front. Plant Sci. 2017, 8, 1220. [Google Scholar] [CrossRef]
- Tyystjärvi, E. Photoinhibition of photosystem II. In International Review of Cell and Molecular Biology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 300, pp. 243–303. [Google Scholar] [CrossRef]
- Murchie, E.H.; Ruban, A.V. Dynamic non-photochemical quenching in plants: From molecular mechanism to productivity. Plant J. 2020, 101, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Berteotti, S.; Ballottari, M.; Bassi, R. Increased biomass productivity in green algae by tuning non-photochemical quenching. Sci. Rep. 2016, 6, 21339. [Google Scholar] [CrossRef] [PubMed]
- Quaas, T.; Berteotti, S.; Ballottari, M.; Flieger, K.; Bassi, R.; Wilhelm, C.; Goss, R. Non-photochemical quenching and xanthophyll cycle activities in six green algal species suggest mechanistic differences in the process of excess energy dissipation. J. Plant Physiol. 2015, 172, 92–103. [Google Scholar] [CrossRef]
- Kromdijk, J.; Walter, J. Relaxing Non-Photochemical Quenching (NPQ) to Improve Photosynthesis in Crops; Burleigh Dodds Science Publishing: Cambridge, UK, 2023; pp. 1–19. [Google Scholar] [CrossRef]
- Janka, E.; Körner, O.; Rosenqvist, E.; Ottosen, C.O. Using the quantum yields of photosystem II and the rate of net photosynthesis to monitor high irradiance and temperature stress in chrysanthemum (Dendranthema grandiflora). Plant Physiol. Biochem. 2015, 90, 14–22. [Google Scholar] [CrossRef]
- Olvera-González, E.; Alaniz-Lumbreras, D.; Ivanov-Tsonchev, R.; Villa-Hernández, J.; de la Rosa-Vargas, I.; López-Cruz, I.; Silos-Espino, H.; Lara-Herrera, A. Chlorophyll fluorescence emission of tomato plants as a response to pulsed light based LEDs. Plant Growth Regul. 2013, 69, 117–123. [Google Scholar] [CrossRef]
- Saito, A.; Shinjo, S.; Ito, D.; Doi, Y.; Sato, A.; Wakabayashi, Y.; Honda, J.; Arai, Y.; Maeda, T.; Ohyama, T.; et al. Enhancement of photosynthetic iron-use efficiency is an important trait of Hordeum vulgare for adaptation of photosystems to iron deficiency. Plants 2021, 10, 234. [Google Scholar] [CrossRef]
- Wang, P.; Sun, X.; Li, C.; Wei, Z.; Liang, D.; Ma, F. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J. Pineal Res. 2013, 54, 292–302. [Google Scholar] [CrossRef]
- Yang, X.L.; Xu, H.; Li, D.; Gao, X.; Li, T.L.; Wang, R. Effect of melatonin priming on photosynthetic capacity of tomato leaves under low-temperature stress. Photosynthetica 2018, 56, 884–892. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, H.; Cao, K.; Hu, L.; Du, T.; Baluška, F.; Zou, Z. Beneficial roles of melatonin on redox regulation of photosynthetic electron transport and synthesis of D1 protein in tomato seedlings under salt stress. Front. Plant Sci. 2016, 7, 1823. [Google Scholar] [CrossRef] [PubMed]
- Perez, C.E.A.; Rodrigues, F.A.; Moreira, W.R.; DaMatta, F.M. Leaf gas exchange and chlorophyll a fluorescence in wheat plants supplied with silicon and infected with Pyricularia oryzae. Phytopathology 2014, 104, 143–149. [Google Scholar] [CrossRef]
- Pereira, Y.C.; Rodrigues, W.S.; Lima, E.J.A.; Santos, L.R.; Silva, M.H.L.; Lobato, A.K.S. Brassinosteroids increase electron transport and photosynthesis in soybean plants under water deficit. Photosynthetica 2019, 57, 181–191. [Google Scholar] [CrossRef]
- Lu, X.F.; Zhang, H.; Lyu, S.S.; Du, G.D.; Wang, X.Q.; Wu, C.H.; Lyu, D.G. Effects of exogenous phenolic acids on photosystem functions and photosynthetic electron transport rate in strawberry leaves. Photosynthetica 2018, 56, 616–622. [Google Scholar] [CrossRef]
- Wang, D.Y.; Wang, J.; Shi, S.H.; Huang, L.X.; Zhu, M.; Li, F.H. Exogenous melatonin ameliorates salinity-induced oxidative stress and improves photosynthetic capacity in sweet corn seedlings. Photosynthetica 2021, 59, 327–336. [Google Scholar] [CrossRef]
- Borges, A.A.; Jiménez-Arias, D.; Expósito-Rodríguez, M.; Sandalio, L.M.; Pérez, J.A. Priming crops against biotic and abiotic stresses: MSB as a tool for studying mechanisms. Front. Plant Sci. 2014, 5, 642. [Google Scholar] [CrossRef]
- Erland, L.A.; Saxena, P.K. Melatonin and serotonin in plant morphogenesis and development. In Neurotransmitters in Plants: Perspectives and Applications; Ramakrishna, A., Roshchina, V.V., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 57–66. [Google Scholar] [CrossRef]
Applied Molecule | Dose (µM) | Dose of Commercial Compound Applied (mg/L) | Code |
---|---|---|---|
Control | 0 | 0 | CONTROL |
Omeprazole | 1 | 4.1 | OMP 1 |
Melatonin | 1 | 14.7 | MEL 1 |
Omeprazole | 10 | 41.7 | OMP 10 |
Melatonin | 10 | 147.8 | MEL 10 |
Omeprazole | 100 | 417 | OMP 100 |
Melatonin | 100 | 1478.3 | MEL 100 |
Compound | Brand Name | Manufacturing Laboratory | Molarity (g/M) | Concentration of Brand Name Compound |
---|---|---|---|---|
Omeprazole | Omeprazol® | Av. Dr. Roberto Michel #2920, Col. Parque Industrial el Álamo C.P. 44490, Guadalajara, Jalisco, México. | 345.4 | 8.28% |
Melatonin | Revenox® | Productos Farmacéuticos Collins S.A. de C.V. Av. López Mateos #1938, Agua Blanca Industrial, C.P. 45235, Zapopan, Jalisco, México. | 232.278 | 1.60% |
Variable | Parameter | Formula | Description |
---|---|---|---|
Fv/Fm | Maximum quantum yield of PSII | Maximum variable fluorescence in the state in which all non-photochemical processes are at a minimum. That is, in the dark-adapted state. | |
Fv′/Fm′ | Maximum variable quantum yield of PSII | Maximum effective variable fluorescence of the open centers of PSII. That is, in any light-adapted state (actinic radiation). | |
qP | Photochemical quenching of chlorophyll fluorescence | Estimation of the dissipation of light energy, transformed into chemical energy, which is used to carry out the reactions that drive photosynthesis. | |
NPQ | Non-photochemical quenching of chlorophyll fluorescence | Estimation of the attenuation of light energy, dissipated as heat during adaptation to actinic radiation. Acts as a protective mechanism for photoinhibition under conditions of excess energy. | |
PhiPSII | Quantum yield of PSII | Also represented as ΦPSII or φPSII (Derived from the greek letter “Phi”). Estimate of the ratio of energy used by the PSII centers for transport to the absorbed light. | |
ETR | Electron transport rate | Estimation of the actual electron transport rate of PSII. PPDF: Photosynthetic photon flux density. f: Factor of the energy partition between PSI and PSII, assuming it is equal between the two systems, 0.5. a: Common ratio of light absorption by photosynthetic tissue of C3 plants, 0.84. |
Treatment | PhiPSII | ETR (μmol e−·m−2·s−1) |
---|---|---|
CONTROL | 0.1492 ± 0.030 b | 76.42 ± 15.7 b |
OMP 1 | 0.2278 ± 0.013 a | 116.21 ± 6.46 a |
OMP 10 | 0.2070 ± 0.005 a | 105.47 ± 2.66 a |
OMP 100 | 0.2212 ± 0.013 a | 112.85 ± 6.37 a |
CONTROL | 0.1492 ± 0.030 d | 76.42 ± 15.7 d |
MEL 1 | 0.1873 ± 0.017 c | 95.58 ± 8.85 c |
MEL 10 | 0.2555 ± 0.018 a | 130.34 ± 9.54 a |
MEL 100 | 0.2177 ± 0.014 b | 110.80 ± 7.18 b |
TB | YD | SPAD | Fv/Fm | qP | NPQ | PhiPSII | ETR | |
---|---|---|---|---|---|---|---|---|
TB | 1 | 0.6859 ** | 0.1671 | 0.2420 | 0.2971 | −0.1399 | 0.3173 * | 0.3140 * |
YD | 0.6859 ** | 1 | 0.3345 * | 0.1961 | 0.4821 * | −0.0118 | 0.4684 * | 0.4618 * |
SPAD | 0.1671 | 0.3345 * | 1 | 0.2640 | 0.3908 * | −0.0615 | 0.4302 * | 0.4259 * |
Fv/Fm | 0.2420 | 0.1961 | 0.2640 | 1 | 0.7812 ** | −0.1638 | 0.7721 ** | 0.7688 ** |
qP | 0.2971 | 0.4821 * | 0.3908 * | 0.7812 ** | 1 | −0.1396 | 0.9572 ** | 0.9554 ** |
NPQ | −0.1399 | −0.0118 | −0.0615 | −0.1638 | −0.1396 | 1 | −0.1435 | −0.1435 |
PhiPSII | 0.3173 * | 0.4684 * | 0.4302 * | 0.7721 ** | 0.9572 ** | −0.1435 | 1 | 0.9997 ** |
ETR | 0.3140 * | 0.4618 * | 0.4259 * | 0.7688 ** | 0.9554 ** | −0.1435 | 0.9997 ** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Estrada, C.A.; Sánchez, E.; Flores-Córdova, M.A.; Pérez-Álvarez, S.; Noperi-Mosqueda, L.C.; Chávez-Mendoza, C. Photosynthetic Efficiency in Green Bean Plants through the Application of Omeprazole and Melatonin at Low Doses. Int. J. Plant Biol. 2023, 14, 864-878. https://doi.org/10.3390/ijpb14040064
Ramírez-Estrada CA, Sánchez E, Flores-Córdova MA, Pérez-Álvarez S, Noperi-Mosqueda LC, Chávez-Mendoza C. Photosynthetic Efficiency in Green Bean Plants through the Application of Omeprazole and Melatonin at Low Doses. International Journal of Plant Biology. 2023; 14(4):864-878. https://doi.org/10.3390/ijpb14040064
Chicago/Turabian StyleRamírez-Estrada, Carlos Abel, Esteban Sánchez, María Antonia Flores-Córdova, Sandra Pérez-Álvarez, Linda Citlalli Noperi-Mosqueda, and Celia Chávez-Mendoza. 2023. "Photosynthetic Efficiency in Green Bean Plants through the Application of Omeprazole and Melatonin at Low Doses" International Journal of Plant Biology 14, no. 4: 864-878. https://doi.org/10.3390/ijpb14040064
APA StyleRamírez-Estrada, C. A., Sánchez, E., Flores-Córdova, M. A., Pérez-Álvarez, S., Noperi-Mosqueda, L. C., & Chávez-Mendoza, C. (2023). Photosynthetic Efficiency in Green Bean Plants through the Application of Omeprazole and Melatonin at Low Doses. International Journal of Plant Biology, 14(4), 864-878. https://doi.org/10.3390/ijpb14040064