Type of Stress Induces Differential Responses in Acer rubrum (Red Maple), but Induced Responses Have No Effect on Herbivorous Pests
Abstract
:1. Introduction
1.1. Effects of Induced Responses on Herbivorous Insects
1.2. Targeting Trait Complexes to Identify Stress Signals and Insect Herbivore Responses in an Agro-Ecosystem
2. Materials and Methods
2.1. Red Maple Propagation and Treatment Applications
2.2. Analysis of Growth, Canopy, and Leaf Traits
2.3. Physiological Trait Measurements
2.4. Plant Phytochemistry
2.5. Quantification of Common Nursery Pests
2.6. Statistical Analysis
3. Results
3.1. Growth, Canopy and Leaf Traits
3.2. Physiological Traits
3.3. Plant Phytochemistry
3.4. Correlations between Common Nursery Pests and induced Responses
4. Discussion
4.1. Phenotypic Plasticity in Expression of Stress-Induced Responses
4.2. Pest Correlations with Maple Characteristics (or Lack of)
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffman, A.A.; Parsons, P.A. Evolutionary Genetics and Environmental Stress; Oxford University Press: Oxford, UK, 1991. [Google Scholar]
- Hoffman, A.A.; Hercus, M.J. Enviromental stress as an evolutionary force. Bioscience 2000, 50, 217–226. [Google Scholar] [CrossRef]
- He, Q.; Bertness, M.D.; Altieri, A.H. Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett. 2013, 16, 695–709. [Google Scholar] [CrossRef]
- Heredia-Guerrero, J.A.; Guzman-Puyol, S.; Benitez, J.J.; Anthanassiou, A.; Heredia, A.; Dominguez, E. Plant cuticle under global climate change: Biophysical implications. Glob. Chang. Biol. 2018, 24, 2749–2751. [Google Scholar] [CrossRef]
- Onyekachi, O.G.; Boniface, O.O.; Gemlack, N.F.; Nicholas, N. The effect of climate change on abiotic plant stress: A review. Abiotic Biot. Stress Plants 2019, 17, e82681. [Google Scholar]
- Dutta, S.; Mitra, M.; Agrawal, P.; Mahapatra, K.; De, S.; Sett, U.; Roy, S. Oxidative and genotoxic damages in plants in responses to heavy metal stress and maintenance of genome stability. Plant Signal. Behav. 2018, 13, e1460048. [Google Scholar] [CrossRef] [PubMed]
- Sytar, O.; Kumari, P.; Yadav, S.; Brestic, M.; Rastogi, A. Phytohormone priming: Regulator for heavy metal stress in plants. J. Plant Growth Regul. 2019, 2, 739–752. [Google Scholar] [CrossRef]
- Vazquez-Hernandez, M.C.; Parola-Contreras, I.; Montoya-Gomez, L.M.; Torres-Pacheco, I.; Schwarz, D.; Guevara-Gonzalez, R.G. Eustressors: Chemical and physical stress factors to enhance vegetables production. Sci. Hortic. 2019, 250, 223–229. [Google Scholar] [CrossRef]
- Cipollini, D.; Purrington, C.B.; Bergelson, J.B. Costs of induced responses in plants. Basic Appl. Ecol. 2003, 4, 79–89. [Google Scholar] [CrossRef]
- Agrawal, A.A.; Hastings, A.P. Trade-offs constrain the evolution of an inducible defense within but not between plant species. Ecology 2019, 100, e02857. [Google Scholar] [CrossRef]
- Castagneyrol, B.; Jactel, H.; Moreira, X. Anti-herbivore defences and insect herbivory: Interactive effects of drought and tree neighbors. J. Ecol. 2018, 106, 2043–2057. [Google Scholar] [CrossRef]
- Karban, R.; Myers, J.H. Induced plant responses to herbivory. Annu. Rev. Ecol. Syst. 1989, 20, 31–348. [Google Scholar] [CrossRef]
- Haukioja, E. Induction of defenses in trees. Annu. Rev. Entomol. 1991, 36, 25–42. [Google Scholar] [CrossRef]
- Harvell, D.C. The ecology and evolution of inducible defenses. Q. Rev. Biol. 1990, 65, 323–340. [Google Scholar] [CrossRef]
- Zangerl, A.R.; Arntz, A.M.; Berenbaum, M.R. Physiological price of an induced chemical defense: Photosynthesis, respiration, biosynthesis, and growth. Oecologia 1997, 109, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Gershenzon, J. The cost of plant chemical defense against herbivory: A biochemical perspective. In Insect-Plant Interactions; Bernays, E.A., Ed.; CRC Press: Boca Raton, FL, USA, 1994; pp. 105–173. [Google Scholar]
- Neilson, E.H.; Goodjer, J.Q.; Woodrow, I.E.; Moller, B.L. Plant chemical defense: At what cost? Trends Plant Sci. 2013, 18, 250–258. [Google Scholar] [CrossRef]
- Herms, D.A.; Mattson, W.J. The dilemma of plants: To grow or defend? Q. Rev. Biol. 1992, 67, 283–335. [Google Scholar] [CrossRef]
- Zust, T.; Agrawal, A.A. Trade-offs between plant growth and defense against insect herbivory: An emerging mechanistic synthesis. Annu. Rev. Plant Biol. 2017, 68, 513–534. [Google Scholar] [CrossRef] [PubMed]
- Perkovich, C.; Ward, D. Herbivore-induced defenses are not under phylogenetic constraints in the genus Quercus (oak): Phylogenetic patterns of growth, defense, and storage. Ecol. Evol. 2021, 11, 5187–5203. [Google Scholar] [CrossRef]
- van Noordwijk, A.J.; de Jong, G. Acquisition and allocation of resources: Their influence on variation in life history tactics. Am. Nat. 1986, 128, 137–142. [Google Scholar] [CrossRef]
- Woolery, P.O.; Jacobs, D.F. Photosynthetic assimilation and carbohydrate reallocation of Quercus rubra seedlings in response to simulated herbivory. Ann. For. Sci. 2011, 68, 617–624. [Google Scholar] [CrossRef]
- Perkovich, C.; Ward, D. Aboveground herbivory causes belowground changes in twelve oak Quercus species: A phylogenetic analysis of root biomass and non-structural carbohydrate storage. Oikos 2021, 130, 1797–1812. [Google Scholar] [CrossRef]
- Agrawal, A.A.; Fishbein, M. Plant defense syndromes. Ecology 2006, 87, s132–s149. [Google Scholar] [CrossRef]
- Agrawal, A.A. A scale-dependent framework for trade-offs, syndromes, and specialization in organismal biology. Ecology 2020, 10, e02924. [Google Scholar] [CrossRef] [PubMed]
- Berenbaum, M.R.; Nitao, J.K.; Zangerl, A.R. Chemical barriers to adaptation by a specialist herbivore. Oecologia 1991, 80, 501–506. [Google Scholar] [CrossRef]
- War, A.R.; Buhroo, A.A.; Hussain, B.; Ahmad, T.; Nair, R.M.; Sharma, H.C. Plant defense and insect adaptation with reference to secondary metabolites. In Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry; Merillon, J.M., Ramawat, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 795–822. [Google Scholar]
- Zhou, S.; Jander, G. Molecular ecology of plant volatiles in interactions with insect herbivores. J. Exp. Bot. 2022, 73, 449–462. [Google Scholar] [CrossRef]
- Li, Y.; Ling, L.; Xia, D.; Ji, Y.; Wang, J.; Li, C.; Meng, Y.; Fang, X.; Chen, Y. A comparative study of phenotypic plasticity of seven urban tree species in two contrasting environments. Pol. J. Environ. Sci. 2020, 30, 739–750. [Google Scholar] [CrossRef]
- Raubenheimer, D.; Simpson, S.J. Nutritional ecology and foraging theory. Curr. Opin. Insect Sci. 2018, 27, 38–45. [Google Scholar] [CrossRef]
- Perkovich, C.; Ward, D. Protein:carbohydrate ratios in the diet of gypsy moth Lymantria dispar affect its ability to tolerate tannins. J. Chem. Ecol. 2020, 46, 299–307. [Google Scholar] [CrossRef]
- Feeny, P.P. Effect of oak leaf tannin on larval growth of the winter moth Operophtera brumata. J. Insect Physiol. 1968, 14, 805–817. [Google Scholar] [CrossRef]
- Barbehenn, R.V.; Constabel, C.P. Tannins in plant-herbivore interactions. Phytochemistry 2011, 72, 1551–1565. [Google Scholar] [CrossRef]
- Mezquida, E.T.; Caputo, P.; Acebes, P. Acorn crop, seed size and chemical defenses determine the performance of specialized insect predators and reproductive output in Mediterranean oak. Insects 2021, 12, e721. [Google Scholar] [CrossRef] [PubMed]
- Addesso, K.M.; McAuslane, H.J. Pepper weevil attraction to volatiles from host and nonhost plants. Environ. Entomol. 2009, 38, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Addesso, K.M.; McAuslane, H.J.; Hans, T. Attraction of pepper weevil to volatiles from damaged pepper plants. Entomol. Exp. Et Appl. 2011, 138, 1–11. [Google Scholar] [CrossRef]
- Werle, C.T.; Ranger, C.M.; Schultz, P.B.; Reding, M.E.; Addesso, K.M.; Oliver, J.B.; Sampson, B.J. Integrating repellent and attractant semiochemicals into a push-pull strategy for ambrosia beetles (Coleoptera: Curculionidae). J. Appl. Entomol. 2019, 143, 333–343. [Google Scholar] [CrossRef]
- Matsui, K.; Koeduka, T. Green leaf volatiles in plant signaling and response. In Lipids in Plant and Algae Development. Subcellular Biochemistry; Nakamura, Y., Li-Besson, Y., Eds.; Springer: Cham, Switzerland, 2016; pp. 427–443. [Google Scholar]
- Ameye, M.; Allmann, S.; Verwaeren, J.; Smagghe, G.; Haesaert, G.; Schuurink, R.C.; Audenaert, K. Green leaf volatile production by plants: A meta-analysis. New Phytol. 2018, 220, 666–683. [Google Scholar] [CrossRef]
- Failoa, C.; Taipale, D. Impact of insect herbivory on plant stress volatile emissions from trees: A synthesis of quantitative measurements and recommendations for future research. Atmos. Environ. 2020, 5, e100060. [Google Scholar] [CrossRef]
- Felton, G.W.; Tumlinson, J.H. Plant-insect dialogs: Complex interactions at the plant-insect interface. Curr. Opin. Plant Biol. 2008, 11, 457–463. [Google Scholar] [CrossRef]
- Pigliucci, M. Phenotypic Plasticity beyond Nature and Nurture; John Hopkins University Press: Baltimore, MD, USA, 2001. [Google Scholar]
- Pigliucci, M. Evolution of phenotypic plasticity: Where are we going now? Trends Ecol. Evol. 2005, 20, 481–486. [Google Scholar] [CrossRef]
- Li, J.; Jin, Y.; Shen, Y. Changes of volatiles from drought stressed ashleaf maple (Acer negundo) in July and August. For. Stud. China 2000, 2, 27–33. [Google Scholar]
- Jardine, K.J.; Karl, T.; Lerdau, M.; Harley, P.; Guenther, A.B.; Mak, J.E. Carbon isotope analysis of acetaldehyde emitted from leaves following mechanical stress and anozia. Plant Biol. 2009, 11, 591–597. [Google Scholar] [CrossRef]
- Zwack, J.A.; Aiello, A.S.; Graves, W.R.; Townsend, A.M. Root-zone stress effects on water relations and growth of silver, red, and Freeman maples. HortScience 1996, 31, e576a. [Google Scholar] [CrossRef]
- Hoffman, W.A.; Porter, H. Avoiding bias calculations of relative growth rate. Ann. Bot. 2002, 80, 37–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, H.; Jiang, W.; Ghiassi, M.; Lee, S.; Nitin, M. Classification of Camellia (Theaceae) species using leaf architecture variations and pattern recognition techniques. PLoS ONE 2012, 7, e29704. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurements and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4-3. [Google Scholar] [CrossRef]
- Turner, N.C.; Long, M.J. Errors arising from rapid water loss in the measurement of leaf water potential by the measurement of leaf water potential by the pressure chamber technique. Aust. J. Plant Physiol. 1980, 7, 527–537. [Google Scholar]
- Knipfer, T.; Bambach, N.; Hernandez, M.I.; Bartlett, M.K.; Sinclair, G.; Duong, F.; Kluepfel, D.A.; McElrone, A.J. Predicting stomatal conductance closure and turgor loss in woody plants using predaen and midday water potential. Plant Physiol. 2020, 184, 881–894. [Google Scholar] [CrossRef]
- Julkunen-Tiitto, R.; Sorsa, S. Testing the effects of drying methods on willow flavonoids, tannins, and salicylates. J. Chem. Ecol. 2001, 27, 779–789. [Google Scholar] [CrossRef]
- Julkunen-Tiitto, R.; Tahvanainen, J. The effect of the sample preparation method of extractable phenolics of Salicaceae species. Planta Med. 1989, 55, 55–58. [Google Scholar] [CrossRef]
- Orians, C.M. Preserving leaves for tannin and phenolic glycoside analyses: A comparison of methods using three willow taxa. J. Chem. Ecol. 1995, 21, 1235–1243. [Google Scholar] [CrossRef]
- Ameglio, T.; Archer, P.; Cohen, M.; Valancogne, C.; Daudet, F.; Dayau, S.; Cruiziat, P. Significance and limits in the use of predawn leaf water potential for tree irrigation. Plant Soil 1999, 207, 155–167. [Google Scholar] [CrossRef]
- Mullen, W.; Stewart, A.J.; Lean, M.E.J.; Gardner, P.; Duthie, G.G.; Crozier, A. Effect of freezing and storage on the phenolics, ellagitannins, flavonoids, and antioxidant capacity of red raspberries. J. Agric. Food Chem. 2011, 50, 5197–5201. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, A. The Tannin Handbook. 2011. Available online: http://www.users.miami.oh.edu/hagermae/ (accessed on 15 November 2021).
- Hagerman, A. Extraction of tannin from fresh and preserved leaves. J. Chem. Ecol. 1988, 13, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Fournier, E. Colorimetric quantification of carbohydrates. Curr. Protoc. Food Anal. Chem. 2001, 1, 1–8. [Google Scholar] [CrossRef]
- Tomlinson, K.W.; van Langevelde, F.; Ward, D.; Bongers, F.; da Silva, D.A.; Prins, H.H.T.; de Bie, S.; Sterck, F. Deciduous and evergreen trees differ in juvenile biomass allometries because of differences in allocation to root storage. Ann. Bot. 2013, 112, 575–587. [Google Scholar] [CrossRef]
- Ball, E.D. The potato leafhopper and its relation to the Hopper-burn. J. Econ. Entomol. 1919, 12, 149–155. [Google Scholar] [CrossRef]
- Wickham, H.; Francois, R.; Henry, L.; Muller, K. Dplyr: A Grammar of Data Manipulation. R Package Version 1.0.7. 2021. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 4 April 2022).
- R Core Team. R: A language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2021. Available online: https://www.R-project.org/ (accessed on 4 April 2022).
- Salkind, N. Encyclopedia of Research and Design; SAGE Publications, Inc.: New York, NY, USA, 2010. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Isah, T. Stress and defense responses in plant secondary metabolites production. Biol. Res. 2019, 52, 39. [Google Scholar] [CrossRef]
- Laitinen, R.A.E.; Nikoloski, Z. Genetic basis of plasticity in plants. J. Exp. Bot. 2019, 70, 739–745. [Google Scholar] [CrossRef]
- Bradshaw, A.D. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 1965, 13, 115–155. [Google Scholar]
- Bradshaw, A.D. Unraveling phenotypic plasticity- why should we bother? New Phytol. 2006, 170, 644–648. [Google Scholar] [CrossRef]
- Via, S.; Gomulkiewicz, R.; De Jong, G.; Scheiner, S.M.; Schlichting, C.D.; Van Tienderen, P.H. Adaptive phenotypic plasticity- consensus and controversy. Trends Ecol. Evol. 1995, 10, 212–217. [Google Scholar] [CrossRef]
- Ward, D.; Shrestha, M.H.; Golan-Goldhirsh, A. Evolution and ecology meet molecular genetics: Adaptive plasticity in two isolated Negev desert populations of Acacia raddiana at either end of a rainfall gradient. Ann. Bot. 2012, 109, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Stearns, S.C.; Koella, J.C. The evolution of phenotypic plasticity in life-history traits: Predictions of reaction norms for age and size at maturity. Evolution 1986, 40, 893–913. [Google Scholar] [PubMed]
- Arnold, P.A.; Kruuk, L.E.B.; Nicotra, A.B. How to analyse plant phenotypic plasticity in response to a changing climate. New Phytol. 2019, 222, 1235–1241. [Google Scholar] [CrossRef]
- Cote, G.; Perry, G.; Blier, P.; Bernatchez, L. The influence of gene-environment interactions on GHR and IGF-1 expression and their association with growth in brook charr, Salvelinus fontinalis (Mitchill). BMC Genet. 2007, 8, e87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.S.P. Response of plants to water stress. Front. Plant Sci. 2014, 5, e86. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Png, G.K.; Li, Y.; Jimoh, S.O.; Ding, Y.; Li, F.; Sun, S. Leaf plasticity contributes to plant anti-herbivore defenses and indicates selective foraging: Implications for sustainable grazing. Ecol. Indic. 2021, 122, e107273. [Google Scholar] [CrossRef]
- Valladares, F.; Matesanz, S.; Guilhaumon, F.; Araujo, M.B.; Balaguer, L.; Benito-Garzon, M.; Cornwell, W.; Gionaoli, E.; van Kluenen, M.; Naya, D.E.; et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 2014, 17, 1351–1364. [Google Scholar] [CrossRef]
- van Kleunen, M.; Fischer, M. Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytol. 2004, 166, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Blumstein, M.; Hopkins, R. Adaptive variation in non-structural carbohydrate storage in temperate tree species. Plant Cell Environ. 2020, 44, 2494–2505. [Google Scholar] [CrossRef] [PubMed]
- Schlichting, C.D.; Pigliucci, M. Phenotypic Evolution: A Reaction Norm Perspective; Sinauer Associates: Sunderland, MA, USA, 1998. [Google Scholar]
- Metcalf, C. Invisible trade-offs: Van Noordwijk and de Jong and life-history evolution. Am. Nat. 2016, 187, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Erb, M. Volatiles as inducers and suppressors of plant defense and immunity—Origins, specificity, perception, and signaling. Curr. Opin. Plant Biol. 2018, 44, 117–221. [Google Scholar] [CrossRef] [PubMed]
- Awmack, C.S.; Leather, S.R. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 2002, 47, 817–844. [Google Scholar] [CrossRef]
- Salgado, A.L.; Saastamoinen, M. Developmental stage-dependent response and preference for host plant quality n an insect herbivore. Anim. Behav. 2019, 150, 27–38. [Google Scholar] [CrossRef]
- Holeski, L.M.; Chase-Alone, R.; Kelly, J.K. The genetics of phenotypic plasticity in plant defense: Trichome production in Mimulus guttatus. Am. Nat. 2010, 175, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Tooker, J.; Pfeiffer, M.; Chung, S.G.; Felton, G.W. Role of trichomes in defense against herbivores: Comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta 2012, 236, 1053–1066. [Google Scholar] [CrossRef] [PubMed]
- Dalin, P.; Agren, J.; Bjorkman, C.; Huttunen, P.; Karkkainen, K. Leaf trichome formation and plant resistance to herbivory. In Induced Plant Resistance to Herbivory; Springer: Berlin/Heidelberg, Germany, 2008; pp. 89–105. [Google Scholar]
- Levin, D.A. The role of trichomes in plant defense. Q. Rev. Biol. 1973, 48, 3–15. [Google Scholar] [CrossRef]
- Singh, A.; Dilkes, B.; Sela, H.; Tzin, V. The effectiveness of physical and chemical defense responses of wild emmer wheat against aphids depends on the leaf position and genotype. Front. Plant Sci. 2021, 12, e667820. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.A.; Gorski, P.M.; Tallamy, D.W. Polymorphism in plant defense against herbivory: Constitutive and induced resistance in Cucumus sativus. J. Chem. Ecol. 1999, 25, 2285–2304. [Google Scholar] [CrossRef]
- Thompson, J.D.; Amiot, J.; Borron, C.; Linhart, Y.B.; Keeefover-Ring, K.; Gauthier, P. Spatial heterogeneity of gall formation in relation to chemotype distribution in Thymus vulgaris. Plant Ecol. 2019, 220, 777–778. [Google Scholar] [CrossRef]
- Zang, Z.; Wang, J.; Cui, H.L.; Yan, S. Terahertz spectral imaging based quantitative determination of spatial distribution of plant leaf constituents. Plant Methods 2019, 15, 106. [Google Scholar] [CrossRef] [Green Version]
Treatment | Cultivar | Treatment × Cultivar | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
λ | df | F(12, 2307) | p | λ | df | F(4, 767) | p | λ | df | F(12, 2307) | p | |
Growth, canopy, and leaf traits | 0.06 | 3 | 3.66 | <0.001 | 0.36 | 1 | 109.87 | <0.001 | 0.02 | 3 | 1.11 | 0.049 |
Physiological traits | 0.70 | 3 | 2.29 | 0.007 | 0.62 | 1 | 11.81 | <0.001 | 0.66 | 3 | 2.56 | 0.012 |
Phytochemical Constituents | 1.10 | 3 | 13.1 | <0.001 | 0.45 | 1 | 18.31 | <0.001 | 0.33 | 3 | 2.82 | <0.001 |
Response Variable | Treatment | Cultivar | Treatment × Cultivar | ||||||
---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |
Growth, canopy, and leaf traits | |||||||||
RGR height | 3 | 50.94 | <0.001 | 1 | 191.96 | <0.001 | 3 | 5.37 | 0.002 |
RGR stem diameter | 3 | 73.53 | <0.001 | 1 | 27.13 | <0.001 | 3 | 5.77 | <0.001 |
Canopy height | 3 | 1.23 | 0.30 | 1 | 192.85 | <0.001 | 3 | 0.14 | 0.940 |
Canopy diameter | 3 | 20.04 | <0.001 | 1 | 13.03 | <0.001 | 3 | 2.39 | 0.071 |
Trichome density | 3 | 2.76 | 0.041 | 1 | 0.38 | 0.536 | 3 | 0.51 | 0.673 |
Leaf area | 3 | 10.75 | <0.001 | 1 | 440.28 | <0.001 | 3 | 2.33 | 0.073 |
Specific leaf area | 3 | 7.09 | <0.001 | 1 | 210.57 | <0.001 | 3 | 1.51 | 0.209 |
Dry leaf mass | 3 | 0.34 | 0.799 | 1 | 0.37 | 0.544 | 3 | 0.21 | 0.889 |
Physiological traits | |||||||||
Chlorophyll a | 3 | 8.61 | <0.001 | 1 | 4.30 | 0.040 | 3 | 1.68 | 0.190 |
Chlorophyll b | 3 | 5.58 | 0.300 | 1 | 2.07 | 0.158 | 3 | 3.40 | 0.027 |
Total carotenoids | 3 | 0.68 | 0.570 | 1 | 0.47 | 0.50 | 3 | 0.59 | 0.632 |
Photosynthetic rate | 3 | 1.50 | 0.230 | 1 | 0.57 | 0.454 | 3 | 0.56 | 0.646 |
Stomatal conductance | 3 | 1.28 | 0.293 | 1 | 19.34 | <0.001 | 3 | 4.22 | 0.011 |
Water potential (pre-dawn) | 3 | 0.072 | 0.974 | 1 | 86.02 | <0.001 | 3 | 0.13 | 0.943 |
Water potential (mid-day) | 3 | 31.64 | <0.001 | 1 | 3.30 | 0.082 | 3 | 0.96 | 0.427 |
Phytochemical constituents | |||||||||
June polyphenols | 3 | 1.70 | 0.171 | 1 | 0.01 | 0.989 | 3 | 0.61 | 0.607 |
June tannins | 3 | 81.79 | <0.001 | 1 | 20.62 | <0.001 | 3 | 7.49 | <0.001 |
June TNC | 3 | 202.60 | <0.001 | 1 | 0.075 | 0.785 | 3 | 0.839 | 0.476 |
September polyphenols | 3 | 1.02 | 0.384 | 1 | 3.58 | 0.061 | 3 | 0.96 | 0.412 |
September tannins | 3 | 210.38 | <0.001 | 1 | 80.35 | <0.001 | 3 | 9.14 | <0.001 |
September TNC | 3 | 0.85 | 0.471 | 1 | 0.48 | 0.488 | 3 | 0.80 | 0.494 |
Limonene | 3 | 0.448 | 0.721 | 1 | 26.97 | <0.001 | 3 | 2.14 | 0.687 |
(Z)-3-hexene-1-ol | 3 | - | - | 1 | - | - | 3 | - | - |
(Z)-3-hexenyl acetate | 3 | 0.303 | 0.823 | 1 | 67.22 | <0.001 | 3 | 0.79 | 0.445 |
DMNT | 3 | 2.421 | 0.104 | 1 | 29.03 | <0.001 | 3 | 1.67 | 0.385 |
Correlative Trait | Spider Mites | Broad Mites | Aphids | Leaf Hoppers | ||||
---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | |
Leaf morphological traits | ||||||||
Trichome density | 0.32 | 0.051 | 0.17 | 0.416 | −0.57 | 0.039 | 0.34 | 0.266 |
Leaf area | 0.22 | 0.319 | 0.04 | 0.698 | −0.07 | 0.211 | −0.12 | 0.116 |
Specific leaf area | 0.22 | 0.513 | −0.18 | 0.117 | −0.21 | 0.338 | −0.08 | 0.242 |
Dry leaf mass | 0.09 | 0.661 | −0.19 | 0.215 | 0.16 | 0.053 | 0.16 | 0.333 |
Nutritional compounds | ||||||||
Non-structural carbohydrates | −0.07 | 0.513 | 0.10 | 0.403 | −0.07 | 0.568 | −0.01 | 0.298 |
Anti-nutritional compounds | ||||||||
Polyphenols | −0.05 | 0.676 | −0.09 | 0.444 | −0.02 | 0.836 | −0.02 | 0.162 |
Tannins | −0.15 | 0.221 | −0.29 | 0.126 | −0.06 | 0.641 | −0.25 | 0.359 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perkovich, C.; Witcher, A.; DeLay, G.; Addesso, K. Type of Stress Induces Differential Responses in Acer rubrum (Red Maple), but Induced Responses Have No Effect on Herbivorous Pests. Int. J. Plant Biol. 2022, 13, 400-418. https://doi.org/10.3390/ijpb13040033
Perkovich C, Witcher A, DeLay G, Addesso K. Type of Stress Induces Differential Responses in Acer rubrum (Red Maple), but Induced Responses Have No Effect on Herbivorous Pests. International Journal of Plant Biology. 2022; 13(4):400-418. https://doi.org/10.3390/ijpb13040033
Chicago/Turabian StylePerkovich, Cindy, Anthony Witcher, Grayson DeLay, and Karla Addesso. 2022. "Type of Stress Induces Differential Responses in Acer rubrum (Red Maple), but Induced Responses Have No Effect on Herbivorous Pests" International Journal of Plant Biology 13, no. 4: 400-418. https://doi.org/10.3390/ijpb13040033
APA StylePerkovich, C., Witcher, A., DeLay, G., & Addesso, K. (2022). Type of Stress Induces Differential Responses in Acer rubrum (Red Maple), but Induced Responses Have No Effect on Herbivorous Pests. International Journal of Plant Biology, 13(4), 400-418. https://doi.org/10.3390/ijpb13040033