The Impact of Cameraria ohridella (Lepidoptera, Gracillariidae) on the State of Aesculus hippocastanum Photosynthetic Apparatus in the Urban Environment
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Blum, A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 2017, 40, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Kosova, K.; Vıtamvas, P.; Urban, M.O.; Prasil, I.T.; Renaut, J. Plant abiotic stress proteomics: The major factors determining alterations in cellular proteome. Front. Plant Sci. 2018, 9, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zandalinas, S.I.; Mittler, R.; Balfagon, D.; Arbona, V.; Gomez-Cadenas, A. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 2018, 62, 2–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avtaeva, T.A.; Sukhodolskaya, R.A.; Brygadyrenko, V.V. Modeling the bioclimating range of Pterostichus melanarius (Coleoptera, Carabidae) in conditions of global climate change. Biosyst. Divers. 2021, 29, 140–150. [Google Scholar] [CrossRef]
- Komlyk, V.O.; Brygadyrenko, V.V. Morphological variability of Bembidion minimum (Coleoptera, Carabidae) populations under the influence of natural and anthropogenic factors. Biosyst. Divers. 2019, 27, 250–269. [Google Scholar] [CrossRef] [Green Version]
- Kozak, V.M.; Romanenko, E.R.; Brygadyrenko, V.V. Influence of herbicides, insecticides and fungicides on food consumption and body weight of Rossiulus kessleri (Diplopoda, Julidae). Biosyst. Divers. 2020, 28, 272–280. [Google Scholar] [CrossRef]
- Shulman, M.V.; Pakhomov, O.Y.; Brygadyrenko, V.V. Effect of lead and cadmium ions upon the pupariation and morphological changes in Calliphora vicina (Diptera, Calliphoridae). Folia Oecol. 2017, 44, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Langraf, V.; Petrovičová, K.; David, S.; Kanská, M.; Nozdrovická, J.; Schlarmannová, J. Change phenotypic traits in ground beetles (Carabidae) reflects biotope disturbance in Central Europe. J. Entomol. Res. Soc. 2018, 20, 119–129. [Google Scholar]
- Langraf, V.; Petrovičová, K.; David, S.; Nozdrovická, J.; Petrovič, F.; Schlarmannová, J. The bioindication evaluation of ground beetles (Coleoptera: Carabidae) in three forest biotopes in the southern part of Central Slovakia. Ekológia 2019, 38, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Putchkov, A.V.; Brygadyrenko, V.V.; Nikolenko, N.Y. Ecological-faunistic analysis of ground beetles and tiger beetles (Coleoptera: Carabidae, Cicindelidae) of metropolises of Ukraine. Biosyst. Divers. 2020, 28, 163–174. [Google Scholar] [CrossRef]
- Ruchin, A.B. Seasonal dynamics and spatial distribution of lepidopterans in selected locations in Mordovia, Russia. Biodiversitas 2021, 22, 2569–2575. [Google Scholar] [CrossRef]
- Faly, L.I.; Kolombar, T.M.; Prokopenko, E.V.; Pakhomov, O.Y.; Brygadyrenko, V.V. Structure of litter macrofauna communities in poplar plantations in an urban ecosystem in Ukraine. Biosyst. Divers. 2017, 25, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Chaplygina, A.B.; Savynska, N.O.; Brygadyrenko, V.V. Trophic links of the spotted flycatcher, Muscicapa striata, in transformed forest ecosystems of North-Eastern Ukraine. Balt. For. 2018, 24, 304–312. [Google Scholar]
- Putchkov, A.V.; Brygadyrenko, V.V.; Markina, T.Y. Ground beetles of the tribe Carabini (Coleoptra, Carabidae) in the main megapolises of Ukraine. Vestn. Zool. 2019, 53, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Shupranova, L.V.; Holoborodko, K.K.; Seliutina, O.V.; Pakhomov, O.Y. The influence of Cameraria ohridella (Lepidoptera, Gracillariidae) on the activity of the enzymatic antioxidant system of protection of the assimilating organs of Aesculus hippocastanum in an urbogenic environment. Biosyst. Divers. 2019, 27, 238–243. [Google Scholar] [CrossRef]
- Seliutina, O.V.; Shupranova, L.V.; Holoborodko, K.K.; Shulman, M.V.; Bobylev, Y.P. Effect of Cameraria ohridella on accumulation of proteins, peroxidase activity and composition in Aesculus hippocastanum leaves. Regul. Mech. Biosyst. 2020, 11, 299–304. [Google Scholar] [CrossRef]
- Sett, R. Responses in plants exposed to dust pollution. Hortic. Int. J. 2017, 1, 53–56. [Google Scholar] [CrossRef] [Green Version]
- Dimitrijevic, M.V.; Mitic, V.D.; Rankovic, G.Z.; Miladinovic, D.L. Survey of antioxidant properties of barberry: A chemical and chemometric approach. Anal. Lett. 2019, 53, 671–682. [Google Scholar] [CrossRef]
- Martínez-Ferri, E.; Zumaquero, A.; Ariza, M.T.; Barceló, A.; Pliego, C. Nondestructive detection of white root rot disease in avocado rootstocks by leaf chlorophyll fluorescence. Plant Dis. 2016, 100, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Urban, L.; Aarrouf, J.; Bidel, L.P.R. Assessing the effects of water deficit on photosynthesis using parameters derived from measurements of leaf gas exchange and of chlorophyll a fluorescence. Front. Plant Sci. 2017, 8, 2068. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.; Zhang, Y.; Zhang, M.; Hong, A.; Yang, H.; Liu, Y. Shade effects on growth, photosynthesis and chlorophyll fluorescence parameters of three Paeonia species. PeerJ 2020, 8, e9316. [Google Scholar] [CrossRef] [PubMed]
- Berner, J.M.; Cloete, H.; Shuuya, T. A baseline assessment of the photosynthetic potential of Welwitschia mirabilis using the JIP-test for monitoring and conservation purposes. Bothalia 2021, 51, a9. [Google Scholar] [CrossRef]
- Holoborodko, K.K.; Seliutina, O.V.; Ivanko, I.A.; Alexeyeva, A.A.; Shulman, M.V.; Pakhomov, O.Y. Effect of Cameraria ohridella feeding on Aesculus hippocastanum photosynthesis. Regul. Mech. Biosyst. 2021, 12, 346–352. [Google Scholar] [CrossRef]
- Baghbani, F.; Lotfi, R.; Moharramnejad, S.; Bandehagh, A.; Roostaei, M.; Rastogi, A.; KalajiImpact, M.H. Impact of Fusarium verticillioides on chlorophyll fluorescence parameters of two maize lines. Eur. J. Plant Pathol. 2019, 154, 337–346. [Google Scholar] [CrossRef] [Green Version]
- Koski, T.M.; Lindstedt, C.; Klemola, T.; Troscianko, J.; Mäntylä, E.; Tyystjärvi, E.; Stevens, M.; Helander, M.; Laaksonen, T. Insect herbivory may cause changes in the visual properties of leaves and affect the camouflage of herbivores to avian predators. Behav. Ecol. Sociobiol. 2017, 71, 97. [Google Scholar] [CrossRef]
- Uhrin, P.; Supuka, J.; Billiková, M. Growth adaptability of Norway maple (Acer platanoides L.) to urban environment. Folia Oecol. 2018, 45, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Cheng, D.; Zhang, Z.; Zhou, S.; Peng, Y.; Zhang, L. Relationships between leaf physiognomy and sensitivity of photosynthetic processes to freezing for subtropical evergreen woody plants. iForest 2019, 12, 551–557. [Google Scholar] [CrossRef]
- Li, P.; Feng, Z.; Catalayud, V.; Yuan, X.; Yansen, X.; Paoletti, E. A meta-analysis on growth, physiological, and biochemical responses of woody species to ground-level ozone highlights the role of plant functional types. Plant Cell Environ. 2017, 40, 2369–2380. [Google Scholar] [CrossRef]
- Lin, K.H.; Wu, C.W.; Chang, Y.S. Applying Dickson quality index, chlorophyll fluorescence, and leaf area index for assessing plant quality of Pentas lanceolata. Not. Bot. Horti. Agrobot. Cluj Napoca 2019, 47, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Campohermoso, M.A.; Broetto, F.; Rodríguez-Hernández, A.M.; Soriano-Melgar, L.d.A.A.; Mounzer, O.; Sánchez-Blanco, M.J. Disponibilidad de agua, variaciones en el diámetro del tallo, fluorescencia de la clorofila y contenido iónico en Pistacia lentiscus bajo estrés salino. Terra Latinoam. 2020, 38, 103–111. [Google Scholar] [CrossRef]
- Sonti, N.F.; Hallett, R.A.; Griffin, K.L.; Trammell, T.L.E.; Sullivan, J.H. Chlorophyll fluorescence parameters, leaf traits and foliar chemistry of white oak and red maple trees in urban forest patches. Tree Physiol. 2020, 41, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Uhrin, P.; Supuka, J. Quality assessment of urban trees using growth visual and chlorophyll fluorescence indicators. Ekológia 2016, 35, 160–172. [Google Scholar] [CrossRef] [Green Version]
- Šajbidorová, V.; Lichtnerová, H.; Paganová, V. The impact of different water regime on chlorophyll fluorescence of Pyrus pyraster L. and Sorbus domestica L. Acta Univ. Agric. Silvic. Mendel. Brun. 2015, 63, 1575–1579. [Google Scholar] [CrossRef] [Green Version]
- Sepúlveda, P.; Johnstone, D.M. Novel way of assessing plant vitality in urban trees. Forests 2019, 10, 2. [Google Scholar] [CrossRef] [Green Version]
- Swoczyna, T.; Latocha, P. Monitoring seasonal damage of photosynthetic apparatus in mature street trees exposed to road-side salinity caused by heavy traffic. Photosynthetica 2020, 58, 573–584. [Google Scholar] [CrossRef]
- Johnstone, D.; Tausz, M.; Moore, G.; Nicolas, M. Bark and leaf chlorophyll fluorescence are linked to wood structural changes in Eucalyptus saligna. AoB Plants 2014, 6, plt057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchocka, M.; Swoczyna, T.; Kosno-Jończy, J.; Kalaji, H.M. Impact of heavy pruning on development and photosynthesis of Tilia cordata Mill. trees. PLoS ONE 2021, 16, e0256465. [Google Scholar] [CrossRef]
- de Almeida, K.E.C.; da Silva, J.G.S.; de Araujo Silva, I.M.; da Costa, A.L.; de Laia, M.L. de A. Ecophysiological analysis of Eucalyptus amaldulensis (Dehnh.) submitted to attack from Thaumastocoris peregrinus (Carpintero & Dellape). Rev. Árvore 2018, 42, e420120. [Google Scholar] [CrossRef]
- Ullah, M.I.; Arshad, M.; Ali, S.; Mehmood, N.; Khalid, S.; Afzal, M. Physiological characteristics of Citrus plants infested with citrus leafminer, Phyllocnistis citrella (Lepidoptera: Gracillariidae). Int. J. Fruit Sci. 2020, 20 (Suppl. S2), S871–S883. [Google Scholar] [CrossRef]
- Moustaka, J.; Meyling, N.V.; Hauser, T.P. Induction of a compensatory photosynthetic response mechanism in tomato leaves upon short time feeding by the chewing insect Spodoptera exigua. Insects 2021, 12, 562. [Google Scholar] [CrossRef]
- Cárdenas, A.M.; Gallardo, P. Relationship between insect damage and chlorophyll content in mediterranean oak species. Appl. Ecol. Environ. Res. 2016, 14, 477–491. [Google Scholar] [CrossRef]
- Golan, K.; Rubinowska, K.; Kmieć, K.; Kot, I.; Górska-Drabik, E.; Łagowska, B.; Michałek, W. Impact of scale insect infestation on the content of photosynthetic pigments and chlorophyll fluorescence in two host plant species. Arthropod-Plant Interact. 2015, 9, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Baranovski, B.A.; Ivanko, I.A.; Gasso, V.J.; Ponomarenko, O.L.; Dubyna, D.V.; Roshchyna, N.O.; Karmyzova, L.O.; Poleva, J.L.; Nikolaieva, V.V. Biodiversity of the Regional Landscape Park Samara Plavni within the first large reservoir in Europe. Biosyst. Divers. 2021, 29, 160–179. [Google Scholar] [CrossRef]
- Baranovski, B.A.; Karmyzova, L.A.; Roshchyna, N.O.; Ivanko, I.A.; Karas, O.G. Ecological-climatic characteristics of the flora of a floodplain landscape in Southeastern Europe. Biosyst. Divers. 2020, 28, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Kautsky, H.; Hirsch, A. Neue Versuche zur Kohlensäureassimilation. Naturwissenschaften 1931, 19, 964. [Google Scholar] [CrossRef]
- Antal, T.; Konyukhov, I.; Volgusheva, A.; Plyusnina, T.; Rubin, A. Chlorophyll fuorescence induction and relaxation system for the continuous monitoring of photosynthetic capacity in photobioreactors. Physiol. Plant 2018, 165, 476–486. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, Z.; Li, B.; Zhang, H.; Hu, J.; Zhao, J. Photosynthetic rate prediction model of newborn leaves verified by core fluorescence parameters. Sci. Rep. 2020, 10, 3013. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Zhang, W.; Liu, Y.; Wang, L. Responses of growth and photosynthetic fluorescent characteristics in Ottelia acuminata to a water-depth gradient. J. Freshw. Ecol. 2018, 33, 285–297. [Google Scholar] [CrossRef] [Green Version]
- Alonso, L.; Van Wittenberghe, S.; Amorós-López, J.; Vila-Francés, J.; Gómez-Chova, L.; Moreno, J. Diurnal cycle relationships between passive fluorescence, PRI and NPQ of vegetation in a controlled stress experiment. Remote Sens. 2017, 9, 770. [Google Scholar] [CrossRef] [Green Version]
- Ayyaz, A.; Amir, M.; Umer, S.; Iqbal, M.; Bano, H.; Gul, H.S.; Noor, Y.; Kanwal, A.; Khalid, A.; Javed, M.; et al. Melatonin induced changes in photosynthetic efficiency as probed by OJIP associated with improved chromium stress tolerance in canola (Brassica napus L.). Heliyon 2020, 6, e04364. [Google Scholar] [CrossRef]
- Ruban, A.V. Nonphotochemical chlorophyll fluorescence quenching: Mechanism and effectiveness in protecting plants from photodamage. Plant Physiol. 2016, 170, 1903–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balabanova, D.; Paunov, M.; Goltsev, V.; Cuypers, A.; Vangronsveld, J.; Vassilev, A. Photosynthetic performance of the imidazolinone resistant sunflower exposed to single and combined treatment by the herbicide imazamox and an amino acid extract. Front. Plant Sci. 2016, 7, 1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blacutt, A.A.; Gold, S.E.; Voss, K.A.; Gao, M.; Glenn, A.E. Fusarium verticillioides: Advancements in understanding the toxicity, virulence, and niche adaptations of a model mycotoxigenic pathogen of maize. Phytopathology 2018, 108, 312–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasylenko, O.; Kondratenko, T.; Havryliuk, O.; Andrusyk, Y.; Kutovenko, V.; Dmytrenko, Y.; Grevtseva, N.; Marchyshyna, Y. The study of the productivity potential of grape varieties according to the indicators of functional activity of leaves. Potravin. Slovak J. Food Sci. 2021, 15, 639–647. [Google Scholar] [CrossRef]
- Stefanov, M.A.; Rashkov, G.D.; Apostolova, E.L. Assessment of the Photosynthetic Apparatus Functions by Chlorophyll Fluorescence and P700 Absorbance in C3 and C4 Plants under Physiological Conditions and under Salt Stress. Int. J. Mol. Sci. 2022, 23, 3768. [Google Scholar] [CrossRef]
- Chen, X.; Mo, X.; Hu, S.; Liu, S. Relationship between fluorescence yield and photochemical yield under water stress and intermediate light conditions. J. Exp. Bot. 2019, 70, 301–313. [Google Scholar] [CrossRef]
- Scognamiglio, V.; Antonacci, A.; Arduini, F.; Moscone, D.; Campos, V.R.E.; Fraceto, L.F.; Palleschi, G. An eco-designed paper-based algal biosensor for nanoformulated herbicide optical detection. J. Hazard. Mater. 2019, 373, 483–492. [Google Scholar] [CrossRef]
No. | Name | Park Coordinates | Altitude Above Sea Level, m |
---|---|---|---|
1 | Botanical Garden of DNU | 48°26′14″ N, 35°02′35″ E | 127 |
2 | Novokodatskyi Park | 48°29′08″ N, 34°56′42″ E | 82 |
3 | Taras G. Shevchenko Park | 48°27′48″ N, 35°04′23″ E | 83 |
4 | Pridneprovsky Park | 48°23′59″ N, 35°07′59″ E | 75 |
5 | Metallurgists Square | 48°28′26″ N, 34°59′31″ E | 65 |
6 | Lazaria Hloby Park | 48°28′11″ N, 35°01′48″ E | 56 |
7 | Druzhby narodiv Forest Park | 48°32′02″ N, 35°05′42″ E | 65 |
8 | Park Sahaydak | 48°29′13″ N, 35°03′41″ E | 50 |
No. | Name | Relief Part (Floodplain, Sandy Terrace, Third Terrace, Ravine, Watershed) | Mechanical Composition of Soil (Sand, Sandy Loam, Loam, Clay) | Soil Humus Content, % | Slope Exposure and Steepness (for Example, 3% Northwest-Facing Slope) | Park Area, ha | Degree and Predominant Type of Anthropogenic Impact (for Example, Moderate Recreation, Heavy Aerogenic Pollution) | Share of a Target Tree of all the Trees in the Park, % |
---|---|---|---|---|---|---|---|---|
1 | Botanical Garden of DNU | Watershed, upper third of ravine | loam | 2.3–5.7 | 7°northeast-facing slope | 46 | moderate recreation, moderate aerogenic motor vehicle pollution | <1 |
2 | Novokodatskyi Park | floodplane | loam | 3.1–3.8 | various-exposured slopes, 2–7° | 35 | moderate recreation, moderate aerogenic motor vehicle pollution, heavy aerogenic industrial pollution, | 1.4 |
3 | Taras G. Shevchenko Park | upland with access to watershed | loam | 3.2–4.8 | 15° northwest-facing, | 57 | moderate recreation, moderate aerogenic industrial pollution | 16 |
4 | Pridneprovsky Park | sandy terrace | sandy loam | 0.9–1.4 | - | 7 | moderate recreation, heavy aerogenic industrial pollution, | 12 |
5 | Metallurgists Square | watershed | loam | 2.8–3.4 | - | 3.8 | moderate recreation, moderate aerogenic motor vehicle pollution, moderate aerogenic industrial pollution, | 8 |
6 | Lazaria Hloby Park | floodplane | loam | 3.3–4.7 | - | 26 | moderate recreation, moderate aerogenic motor vehicle pollution, mild aerogenic industrial pollution | <1 |
7 | Druzhby narodiv Forest Park | third terrace | loam | 2.2–4.6 | - | 90 | moderate recreation, moderate aerogenic motor vehicle pollution | <1 |
8 | Park Sahaydak | floodplane | Sandy loam (filling artificial soils) | 0.7–1.6 | - | 34 | moderate recreation, moderate aerogenic motor vehicle pollution, moderate aerogenic industrial pollution | <1 |
No. | Name | Average Damage Level |
---|---|---|
1 | Botanical Garden of DNU | 0.36 ± 0.008 |
2 | Novokodatskyi Park | 0.06 ±0.003 |
3 | Taras G. Shevchenko Park | 0.16 ± 0.007 |
4 | Pridneprovsky Park | 0.36 ± 0.006 |
5 | Metallurgists Square | 0.12 ± 0.004 |
6 | Lazaria Hloby Park | 0.47 ± 0.017 |
7 | Druzhby narodiv Forest Park | 0.35 ± 0.011 |
8 | Park Sahaydak | 0.08 ± 0.009 |
Characteristic | Leaf Damage Degree, % | Fo | Fp | Fm | Fst | Fv | Ef | E |
---|---|---|---|---|---|---|---|---|
Leaf damage degree, % | 1 | – | – | – | – | – | – | – |
Fo | −0.276 ± 0.156 | 1 | – | – | – | – | – | – |
Fp | −0.201 ± 0.159 | 0.933 ± 0.058 *** | 1 | – | – | – | – | – |
Fm | −0.127 ± 0.161 | 0.853 ± 0.085 *** | 0.952 ± 0.050 *** | 1 | – | – | – | – |
Fst | −0.263 ± 0.157 | 0.812 ± 0.095 *** | 0.890 ± 0.074 *** | 0.945 ± 0.053 *** | 1 | – | – | – |
Fv | −0.079 ± 0.162 | 0.768 ± 0.104 *** | 0.909 ± 0.068 *** | 0.990 ± 0.023 *** | 0.933 ± 0.058 *** | 1 | – | – |
Ef | −0.053 ± 0.162 | 0.659 ± 0.122 *** | 0.774 ± 0.103 *** | 0.889 ± 0.074 *** | 0.837 ± 0.089 *** | 0.907 ± 0.068 *** | 1 | – |
E | 0.320 ± 0.154 * | 0.108 ± 0.161 | 0.143 ± 0.161 | 0.128 ± 0.161 | −0.191 ± 0.159 | 0.127 ± 0.161 | 0.148 ± 0.160 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holoborodko, K.; Seliutina, O.; Alexeyeva, A.; Brygadyrenko, V.; Ivanko, I.; Shulman, M.; Pakhomov, O.; Loza, I.; Sytnyk, S.; Lovynska, V.; et al. The Impact of Cameraria ohridella (Lepidoptera, Gracillariidae) on the State of Aesculus hippocastanum Photosynthetic Apparatus in the Urban Environment. Int. J. Plant Biol. 2022, 13, 223-234. https://doi.org/10.3390/ijpb13030019
Holoborodko K, Seliutina O, Alexeyeva A, Brygadyrenko V, Ivanko I, Shulman M, Pakhomov O, Loza I, Sytnyk S, Lovynska V, et al. The Impact of Cameraria ohridella (Lepidoptera, Gracillariidae) on the State of Aesculus hippocastanum Photosynthetic Apparatus in the Urban Environment. International Journal of Plant Biology. 2022; 13(3):223-234. https://doi.org/10.3390/ijpb13030019
Chicago/Turabian StyleHoloborodko, Kyrylo, Oksana Seliutina, Anna Alexeyeva, Viktor Brygadyrenko, Iryna Ivanko, Mariya Shulman, Olexander Pakhomov, Iryna Loza, Svitlana Sytnyk, Viktoriia Lovynska, and et al. 2022. "The Impact of Cameraria ohridella (Lepidoptera, Gracillariidae) on the State of Aesculus hippocastanum Photosynthetic Apparatus in the Urban Environment" International Journal of Plant Biology 13, no. 3: 223-234. https://doi.org/10.3390/ijpb13030019
APA StyleHoloborodko, K., Seliutina, O., Alexeyeva, A., Brygadyrenko, V., Ivanko, I., Shulman, M., Pakhomov, O., Loza, I., Sytnyk, S., Lovynska, V., Grytsan, Y., & Bandura, L. (2022). The Impact of Cameraria ohridella (Lepidoptera, Gracillariidae) on the State of Aesculus hippocastanum Photosynthetic Apparatus in the Urban Environment. International Journal of Plant Biology, 13(3), 223-234. https://doi.org/10.3390/ijpb13030019