Bioactive Secondary Metabolites from Plant Sources: Types, Synthesis, and Their Therapeutic Uses
Abstract
:1. Introduction
2. Types of Secondary Metabolites
3. A Brief Description of Various Secondary Metabolites: Phenolic Compounds
3.1. Flavonoids
3.2. Phenylpropanoids
3.3. Terpenes
3.4. N-Containing Compounds
4. Induction of Plant Secondary Metabolism and Production by Inducer and Precursor
5. Applied Methods for the Isolation and Structure Elucidation of Metabolites: Improved Biomass and Secondary Metabolite in Culture Environment
6. Identification and Characterization of Techniques
7. The Role of Plant-Derived Natural Products in Drug Innovation and Plants as Sources of Bioactive Natural Medicinal Products
8. Function and Use of Secondary Metabolites
9. Current Plant-Derived Natural Products in Therapeutic Use
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanchez, S.; Demain, A.L. Secondary Metabolites; American Society of Plant Physiologists: Derwood, MD, USA, 2000. [Google Scholar]
- Bourgaud, F.; Gravot, A.; Milesi, S.; Gontier, E. Production of plant secondary metabolites: A historical perspective. Plant Sci. 2001, 161, 839–851. [Google Scholar] [CrossRef]
- Tsao, R.; Yang, R.; Xie, S.; Sockovie, E.; Khanizadeh, S. Which polyphenolic compounds contribute to the total antioxidant activities of apple? J. Agric. Food Chem. 2005, 53, 4989–4995. [Google Scholar] [CrossRef] [PubMed]
- Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Et Biophys. Acta (BBA)-Gen. Subj. 2013, 1830, 3670–3695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, D.J.; Cragg, G.M. Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod. 2004, 67, 1216–1238. [Google Scholar] [CrossRef]
- Cragg, G.M.; Grothaus, P.G.; Newman, D.J. Impact of natural products on developing new anti-cancer agents. Chem. Rev. 2009, 109, 3012–3043. [Google Scholar] [CrossRef]
- Weinberg, E.D. Trace-metal control of specific biosynthetic processes. Perspect. Biol. Med. 1962, 5, 432–445. [Google Scholar] [CrossRef]
- Pawlikowski, T. Pollination activity of bees (Apoidea: Apiformes) visiting the flowers of Tilia cordata Mill. and Tilia tomentosa Moench in an urban environment. J. Apic. Sci. 2010, 54, 73–79. [Google Scholar]
- Figueredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J. Factors affecting secondary metabolite production in plants: Volatile and essential oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Holdren, J.P. Impact of population growth. Science 1971, 171, 1212–1217. [Google Scholar] [CrossRef]
- Saxena, M.; Saxena, J.; Nema, R.; Singh, D.; Gupta, A. Phytochemistry of medicinal plants. J. Pharmacogn. Phytochem 2013, 1, 168–182. [Google Scholar]
- Huang, W.Y.; Cai, Y.Z.; Zhang, Y. Natural phenolic compounds from medicinal herbs and dietary plants: Potential use for cancer prevention. Nutr. Cancer 2009, 62, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Mabry, T.; Markham, K.R.; Thomas, M.B. The Systematic Identification of Flavonoids; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Harborne, A.J. Phytochemical Methods a Guide to Modern Techniques of Plant Analysis; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Dewick, P.M. Medicinal Natural Products: A Biosynthetic Approach; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Cseke, L.J.; Lu, C.R.; Kornfeld, A.; Kaufman, P.B.; Kirakosian, A. How and why these compounds are synthesized by plants. In Natural Products from Plants, 2nd ed.; Taylor & Francis: Boca Raton, FL, USA, 2006; pp. 51–100. [Google Scholar]
- Garcia-Brugger, A.; Lamotte, O.; Vandelle, E.; Bourque, S.; Lecourieux, D.; Poinssot, B.; Wendehenne, D.; Pugin, A. Early signaling events induced by elicitors of plant defenses. Mol. Plant-Microbe Interact. 2006, 19, 711–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina, J.H.; Viola, H.; Wolfman, C.; Marder, M.; Wasowski, C.; Calvo, D.; Paladini, A.C. Overview—flavonoids: A new family of benzodiazepine receptor ligands. Neurochem. Res. 1997, 22, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, S.W. The nature and definition of an alkaloid. Alkaloids Chem. Biol. Perspect 1983, 1, 1–31. [Google Scholar]
- Oksman-Caldentey, K.M.; Inzé, D. Natural compounds derived from plants can be categorized into three different groups according to their final use in developing a drug. Trends Plant Sci. 2004, 9, 433–440. [Google Scholar] [CrossRef]
- Zhu, Z.H.; Chao, C.J.; Lu, X.Y.; Xiong, Y.G. Paulownia in China: Cultivation and Utilization; International Development Research Centre: Ottawa, ON, Canada, 1986. [Google Scholar]
- Gundlach, H.; Müller, M.J.; Kutchan, T.M.; Zenk, M.H. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc. Natl. Acad. Sci. USA 1992, 89, 2389–2393. [Google Scholar] [CrossRef] [Green Version]
- Mulabagal, V.; Tsay, H.S. Plant cell cultures-an alternative and efficient source for the production of biologically important secondary metabolites. Int. J. Appl. Sci. Eng. 2004, 2, 29–48. [Google Scholar]
- Fett-Neto, A.G.; Melanson, S.J.; Sakata, K.; DiCosmo, F. Improved growth and taxol yield in developing calli of Taxus cuspidata by medium composition modification. Bio/Technol. 1993, 11, 731–734. [Google Scholar] [CrossRef]
- Ellis, B.E.; Towers, G.H. Biogenesis of rosmarinic acid in Mentha. Biochem. J. 1970, 118, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Roberts, S.C.; Shuler, M.L. Large-scale plant cell culture. Curr. Opin. Biotechnol. 1997, 8, 154–159. [Google Scholar] [CrossRef]
- Radman, R.; Saez, T.; Bucke, C.; Keshavarz, T. Elicitation of plants and microbial cell systems. Biotechnol. Appl. Biochem. 2003, 37, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Karuppusamy, S. A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J. Med. Plants Res. 2009, 3, 1222–1239. [Google Scholar]
- Dörnenburg, H.; Frickinger, P.; Seydel, P. Plant cell-based processes for cyclotides production. J. Biotechnol. 2008, 135, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Seabrook, M.F. The Psychological Relationship between Dairy Cows and Dairy Cowmen and Its Implications for Animal Welfare. Int. J. Study Animal Probl. 1980, 1, 295–298. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- De Castro, M.L.; Garcıa-Ayuso, L.E. Soxhlet extraction of solid materials: An outdated technique with a promising innovative future. Anal. Chim. Acta 1998, 369, 1–10. [Google Scholar] [CrossRef]
- Veer, V.; Gopalakrishnan, R. (Eds.) Herbal Insecticides, Repellents and Biomedicines: Effectiveness and Commercialization; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Latha, L.Y. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complementary Altern. Med. 2011, 8. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Karambir, R.K. A comparative analysis of pmx, cx and ox crossover operators for solving traveling salesman problem. Int. J. Latest Res. Sci. Technol. 2012, 1, 98–101. [Google Scholar]
- Phillipson, J.D. Phytochemistry and medicinal plants. Phytochemistry 2001, 56, 237–243. [Google Scholar] [CrossRef]
- Jarvis, M.F.; Williams, M. Direct autoradiographic localization of adenosine A2 receptors in the rat brain using the A2-selective agonist, [3H]. CGS Eur. J. Pharmacol. 1989, 168, 243–246. [Google Scholar] [CrossRef]
- Carlson, T.J.; King, S.R. From plant to patient: An ethnomedical approach to the identification of new drugs for the treatment of NIDDM. Diabetologia 1997, 40, 614–617. [Google Scholar]
- Russo, P.; Frustaci, A.; Del Bufalo, A.; Fini, M.; Cesario, A. Multitarget drugs of plants origin acting on Alzheimer’s disease. Curr. Med. Chem. 2013, 20, 1686–1693. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veldkamp, J.F. A revision of Sarcotheca Bl. and Dapania Korth.(Oxalidaceae). Blumea Biodivers. Evol. Biogeogr. Plants 1967, 15, 519–543. [Google Scholar]
- Banerji, A.; Sarkar, M.; Datta, R.; Sengupta, P.; Abraham, K. Amides from Piper brachystachyum and Piper retrofractum. Phytochemistry 2002, 59, 897–901. [Google Scholar] [CrossRef]
- Muharini, R.; Liu, Z.; Lin, W.; Proksch, P. New amides from the fruits of Piper retrofractum. Tetrahedron Lett. 2015, 56, 2521–2525. [Google Scholar] [CrossRef]
- Onwurah, N.N.; Eke, I.G.; Anaga, A.O. Antiulcer Properties of Aqueous Extract of Talinum Triangulare Leaves in Experimentally Induced Gastric Ulceration in Mice. Asian J. Pharm. Biol. Res. (AJPBR) 2013, 3, 4–7. [Google Scholar]
- Lawal, I.O.; Uzokwe, N.E.; Ladipo, D.O.; Asinwa, I.O.; Igboanugo, A.B. Ethnophytotherapeutic information for the treatment of high blood pressure among the people of Ilugun, Ilugun area of Ogun State, south-west Nigeria. Afr. J. Pharm. Pharmacol. 2009, 3, 222–226. [Google Scholar]
- López-Grimau, V.; Gutierrez, M.C. Decolourisation of simulated reactive dyebath effluents by electrochemical oxidation assisted by UV light. Chemosphere 2006, 62, 106–112. [Google Scholar] [CrossRef]
- Mitscher, L.A.; Park, Y.H.; Alshamma, A.; Hudson, P.B.; Haas, T. Amorfrutin A and B, bibenzyl antimicrobial agents from Amorpha fruticosa. Phytochemistry 1981, 20, 781–785. [Google Scholar] [CrossRef]
- Lee, H.J.; Kang, H.Y.; Kim, C.H.; Kim, H.S.; Kwon, M.C.; Kim, S.M.; Shin, I.S.; Lee, H.Y. Effect of new rotenoid glycoside from the fruits of Amorpha fruticosa LINNE on the growth of human immune cells. Cytotechnology 2006, 52, 219–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramanian, K.; Selvakkumar, C.; Vinaykumar, K.S.; Goswami, N.; Meenakshisundaram, S.; Balakrishnan, A.; Lakshmi, B.S. Tackling multiple antibiotic resistance in enteropathogenic Escherichia coli (EPEC) clinical isolates: A diarylheptanoid from Alpinia officinarum shows promising antibacterial and immunomodulatory activity against EPEC and its lipopolysaccharide-induced inflammation. Int. J. Antimicrob. Agents 2009, 33, 244–250. [Google Scholar] [PubMed]
- Selvakkumar, C.; Gayathri, B.; Vinaykumar, K.S.; Lakshmi, B.S.; Balakrishnan, A. Potential anti-inflammatory properties of crude alcoholic extract of Ocimum basilicum L. in human peripheral blood mononuclear cells. J. Health Sci. 2007, 53, 500–505. [Google Scholar] [CrossRef] [Green Version]
- Shilpa, K.; Sangeetha, K.N.; Muthusamy, V.S.; Sujatha, S.; Lakshmi, B.S. Probing key targets in insulin signaling and adipogenesis using a methanolic extract of Costus pictus and its bioactive molecule, methyl tetracosanoate. Biotechnol. Lett. 2009, 31, 1837–1841. [Google Scholar] [CrossRef]
- Elson, C.E.; Maltzman, T.H.; Boston, J.L.; Tanner, M.A.; Gould, M.N. Anti-carcinogenic activity of d-limonene during the initiation and promotion/progression stages of DMBA-induced rat mammary carcinogenesis. Carcinogenesis 1988, 9, 331–332. [Google Scholar] [CrossRef]
- Espina, L.; Gelaw, T.K.; de Lamo-Castellvi, S.; Pagán, R.; Garcia-Gonzalo, D. Mechanism of bacterial inactivation by (+)-limonene and its potential use in food preservation combined processes. PLoS ONE 2013, 8, e56769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, V.; Mazzardo-Martins, L.; Martins, D.F.; Santos, A.R.; da Silva Brum, L.F.; Picada, J.N.; Pereira, P. Neurobehavioral and genotoxic evaluation of (−)-linalool in mice. J. Nat. Med. 2013, 67, 876–880. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, S.; Hosokawa-Shinonaga, Y.; Tamaoki, D.; Yamada, S.; Akimitsu, K.; Gomi, K. Jasmonate induction of the monoterpene linalool confers resistance to rice bacterial blight and its biosynthesis is regulated by JAZ protein in rice. Plant Cell Environ. 2014, 37, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Cai, L.; Zhong, G.; Luo, W. Simultaneous determination of jatrorrhizine, palmatine, berberine, and obacunone in Phellodendri Amurensis Cortex by RP-HPLC. China J. Chin. Mater. Med. (Zhongguo Zhongyao Zazhi) 2010, 35, 2061–2064. [Google Scholar]
- Zhang, J.; Schurr, U.; Davies, W.J. Control of stomatal behaviour by abscisic acid which apparently originates in the roots. J. Exp. Bot. 1987, 38, 1174–1181. [Google Scholar] [CrossRef]
- Hakoshima, T.; Murase, K.; Hirano, Y.; Sun, T. Gibberellin Perception by the Gibberellin Receptor and its Effector Recognition. Nihon Kessho Gakkaishi 2010, 52, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.P. Gibberellin-GID1-DELLA: A pivotal regulatory module for plant growth and development. Plant Physiol. 2010, 154, 567–570. [Google Scholar] [CrossRef] [PubMed]
- Hacham, Y.; Holland, N.; Butterfield, C.; Ubeda-Tomas, S.; Bennett, M.J.; Chory, J.; Savaldi-Goldstein, S. Brassinosteroid perception in the epidermis controls root meristem size. Development 2011, 138, 839–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwu, M.M. African Medicinal Plants; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- McBrien, N.A.; Stell, W.K.; Carr, B. How does atropine exert its anti-myopia effects? Ophthalmic Physiol. Opt. 2013, 33, 373–378. [Google Scholar] [CrossRef]
- Gu, L.; Li, N.; Gong, J.; Li, Q.; Zhu, W.; Li, J. Berberine ameliorates intestinal epithelial tight-junction damage and down-regulates myosin light chain kinase pathways in a mouse model of endotoxinemia. J. Infect. Dis. 2011, 203, 1602–1612. [Google Scholar] [CrossRef] [Green Version]
- Agyapong, V.I.; Singh, K.; Savage, M.; Thekiso, T.B.; Finn, M.; Farren, C.K.; McLoughlin, D.M. Use of codeine-containing medicines by Irish psychiatric inpatients before and after regulatory limitations on their supply. Ir. J. Psychol. Med. 2013, 30, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.B.; Yu, J.H.; Ko, E.; Lee, K.W.; Song, A.K.; Park, S.Y.; Shin, I.; Han, W.; Noh, D.Y. The alkaloid Berberine inhibits the growth of Anoikis-resistant MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell cycle arrest. Phytomedicine 2010, 17, 436–440. [Google Scholar] [CrossRef]
- Simera, M.; Poliacek, I.; Jakus, J. Central antitussive effect of codeine in the anesthetized rabbit. Eur. J. Med. Res. 2010, 15, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.; Owen, E.; Earis, J.; Woodcock, A. Effect of codeine on objective measurement of cough in chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2006, 117, 831–835. [Google Scholar] [CrossRef]
- Vree, T.B.; Van Dongen, R.T.; Koopman-Kimenai, P.M. Codeine analgesia is due to codeine-6-glucuronide, not morphine. Int. J. Clin. Pract. 2000, 54, 395–398. [Google Scholar]
- Mody, N.V.; Henson, R.; Hedin, P.A.; Kokpol, U.; Miles, D.H. Isolation of the insect paralyzing agent coniine from Sarracenia flava. Experientia 1976, 32, 829–830. [Google Scholar] [CrossRef]
- Panter, K.E.; Welch, K.D.; Gardner, D.R.; Green, B.T. Poisonous plants: Effects on embryo and fetal development. Birth Defects Res. Part C Embryo Today Rev. 2013, 99, 223–234. [Google Scholar] [CrossRef]
- Hajek, P.; McRobbie, H.; Myers, K. Efficacy of cytisine in helping smokers quit: Systematic review and meta-analysis. Thorax 2013, 68, 1037–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porreca, F.; Cowan, A.; Raffa, R.B.; Tallarida, R.J. Ketazocines and morphine: Effects on gastrointestinal transit after central and peripheral administration. Life Sci. 1983, 32, 1785–1790. [Google Scholar] [CrossRef]
- West, R.; Zatonski, W.; Cedzynska, M.; Lewandowska, D.; Pazik, J.; Aveyard, P.; Stapleton, J. Placebo-controlled trial of cytisine for smoking cessation. N. Engl. J. Med. 2011, 365, 1193–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozov-Ung, I.; Mreyoud, A.; Moore, J.; Wilding, G.E.; Khawam, E.; Lackner, J.M.; Semler, J.R.; Sitrin, M.D. Detection of drug effects on gastric emptying and contractility using a wireless motility capsule. BMC Gastroenterol. 2014, 14, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Takita, K.; Herlenius, E.; Yamamoto, Y.; Lindahl, S.G. Effects of neuroactive substances on the morphine-induced respiratory depression; an in vitro study. Brain Res. 2000, 884, 201–205. [Google Scholar] [CrossRef]
- Clarke, P.B.; Fu, D.S.; Jakubovic, A.L.; Fibiger, H.C. Evidence that mesolimbic dopaminergic activation underlies the locomotor stimulant action of nicotine in rats. J. Pharmacol. Exp. Ther. 1988, 246, 701–708. [Google Scholar]
- Gandhi, P.T. Novel Nicotine Derivatives. U.S. Patent 20130123106, 16 May 2013. [Google Scholar]
- Velu, G.; Palanichamy, V.; Rajan, A.P. Phytochemical and pharmacological importance of plant secondary metabolites in modern medicine. In Bioorganic Phase in Natural Food: An Overview; Springer: Cham, Switzerland, 2018; pp. 135–156. [Google Scholar]
- Rhoades, D.F.; Cates, R.G. Toward a general theory of plant antiherbivore chemistry. In Biochemical Interaction between Plants and Insects; Springer: Boston, MA, USA, 1976; pp. 168–213. [Google Scholar]
- Achan, J.; Talisuna, A.O.; Erhart, A.; Yeka, A.; Tibenderana, J.K.; Baliraine, F.N.; Rosenthal, P.J.; D’Alessandro, U. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria. Malar. J. 2011, 10, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Adnyana, I.K.; Sukandar, E.Y.; Setiawan, F.; Christanti, Y. Efficacy and safety O-desmethyl quinine compare to quinine for nocturnal leg cramp. J. Med. Sci. (Pak.) 2013, 13, 819–823. [Google Scholar] [CrossRef] [Green Version]
- El-Tawil, S.; Al Musa, T.; Valli, H.; Lunn, M.P.; Brassington, R.; El-Tawil, T.; Weber, M. Quinine for muscle cramps. Cochrane Database Syst. Rev. 2015, 4, CD005044. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.; Leah, M.; Charles, N. Antiepileptic properties of Quinine: A systematic review. Ann. Neurosci. 2012, 19, 14. [Google Scholar] [PubMed] [Green Version]
- Fewell, A.M.; Roddick, J.G. Interactive antifungal activity of the glycoalkaloids α-solanine and α-chaconine. Phytochemistry 1993, 33, 323–328. [Google Scholar] [CrossRef]
- Lu, M.K.; Shih, Y.W.; Chien, T.T.; Fang, L.H.; Huang, H.C.; Chen, P.S. α-Solanine inhibits human melanoma cell migration and invasion by reducing matrix metalloproteinase-2/9 activities. Biol. Pharm. Bull. 2010, 33, 1685–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenny, O.M.; McCarthy, C.M.; Brunton, N.P.; Hossain, M.B.; Rai, D.K.; Collins, S.G.; Jones, P.W.; Maguire, A.R.; O’Brien, N.M. Anti-inflammatory properties of potato glycoalkaloids in stimulated Jurkat and Raw 264.7 mouse macrophages. Life Sci. 2013, 92, 775–782. [Google Scholar] [CrossRef]
- Mohsenikia, M.; Alizadeh, A.M.; Khodayari, S.; Khodayari, H.; Karimi, A.; Zamani, M.; Azizian, S.; Mohagheghi, M.A. The protective and therapeutic effects of alpha-solanine on mice breast cancer. Eur. J. Pharm. 2013, 718, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bonjoch, J.; Solé, D. Synthesis of strychnine. Chem. Rev. 2000, 100, 3455–3482. [Google Scholar] [CrossRef]
- Buckingham, J. Bitter Nemesis—The Intimate History of Strychnine; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Do Pham, D.D.; Kelso, G.F.; Yang, Y.; Hearn, M.T. Studies on the oxidative N-demethylation of atropine, thebaine and oxycodone using a Fe III-TAML catalyst. Green Chem. 2014, 16, 1399–1409. [Google Scholar] [CrossRef]
- Jensen, A.A.; Gharagozloo, P.; Birdsall, N.J.; Zlotos, D.P. Pharmacological characterisation of strychnine and brucine analogues at glycine and α7 nicotinic acetylcholine receptors. Eur. J. Pharm. 2006, 539, 27–33. [Google Scholar] [CrossRef]
- Umukoro, S.; Omogbiya, I.A.; Eduviere, A.T. Evaluation of the effect of jobelyn® on chemoconvulsants-induced seizure in mice. Basic Clin. Neurosci. 2013, 4, 125. [Google Scholar]
- In, H.J.; Young, S.K.; Kwang, Y.C.; Keun, J.K. Unexpected effect of fluorine in diels-alder reaction of 2-fluoroacrolein with thebaine. Bull. Korean Chem. Soc. 1990, 11, 178–179. [Google Scholar]
- Fist, A.J.; Byrne, C.J.; Gerlach, W.L. Papaver Somniferum Strain with High Concentration of Thebaine and Oripavine. U.S. Patent 6,067,749, 30 May 2000. [Google Scholar]
- Heal, K.G.; Taylor-Robinson, A.W. Tomatine adjuvantation of protective immunity to a major pre-erythrocytic vaccine candidate of malaria is mediated via CD8+ T cell release of IFN-γ. J. Biomed. Biotechnol 2010, 2010, 834326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrow, W.J.; Yang, Y.W.; Sheikh, N.A. Immunobiology of the Tomatine adjuvant. Vaccine 2004, 22, 2380–2384. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Hu, M. Bioavailability challenges associated with development of anti-cancer phenolics. Mini Rev. Med. Chem. 2010, 10, 550–567. [Google Scholar] [CrossRef] [Green Version]
- Tomsik, P.; Micuda, S.; Sucha, L.; Cermakova, E.; Suba, P.; Zivny, P.; Mazurova, Y.; Knizek, J.; Niang, M.; Rezacova, M. The anticancer activity of alpha-tomatine against mammary adenocarcinoma in mice. Biomed. Pap. 2013, 157, 153–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Drug | Source | Target Disease | Reference |
---|---|---|---|
Metformin | Galega officinalis | Anti-diabetic | [38] |
Galantamine | Galanthus woronowii | Alzheimer’s disease | [39] |
Artemisinin | Artemisia annua | Malignant cerebral malaria | [36] |
Paclitaxel | Taxus brevifolia | Antimitotic agent-Various cancer | [40] |
Calanolide A | Calophyllum lanigerum, | Type-1 HIV | [35] |
Crude extract | Sarcotheca griffithii | Cough | [41] |
Crude extract | Piper retrofractum | Fever, hypotension, abdominal pain, anthelmintic | [42,43] |
Crude extract (acrylamides and phaeophytins) | Talinum triangulare | Cuts, wound, scabies and peptic ulcer | [44,45] |
Crude extract (monoterpenes and sesquiterpenes) | Amorpha fruticosa | Antibacterial, insecticidal, cytotoxic | [46,47,48] |
Crude extract | Alpinia officinarum | Anti-microbial and anti-inflammatory | [49] |
Crude extract | Ocimum Basilicum | Anti-inflammatory activity | [50] |
Crude extract | Costus pictus | anti-diabetic | [51] |
Isopropanol | Synthesis | Used as alcohol | [11] |
Isovaleric acid | Essential oils | Anticonvulsant and used in perfumery | [52] |
Limonene | Essential oils | Fragrant, anti-carcinogenic and bacterial | [53,54] |
Linalool | Essential oils | Antibacterial, effects center nervous system | [55,56] |
Phytoalexins | At sire of infections in plants | Anti-antimicrobial, anti-cancer and anti-oxidative | [55,57] |
Gibberellin | Gibberella fujikuroi | Elongation of plant and promotes growth | [58,59] |
Brassinosteroids | Brassica napus, Lychnis viscaria | Plant protection | [60,61] |
Sterols | Naturally found in plants, fungi and animals | Medicinal effect and nutritional supplements | [60,61] |
Carotenoids | Chloroplasts, carrots, and chromoplasts of plants | Antioxidants | [60,61] |
Atropine | Atropa belladonna, datura stramonium | Adversary of muscarinic acetylcholine receptors, anti-myopia effects, anti-cholinergic, | [62,63] |
Berberine | Berberis species | Anti-bacterial, antiviral, anti-inflammatory, anti-cancer and anti-diabetic | [56,64,65] |
Codeine | Papaver somniferum | Analgesic, antidepressant, antitussive, anti-diarrheal, sedative and hypnotic properties | [66,67,68,69] |
Coniine | Conium macularum | Poisonous, neurotoxin | [70,71] |
Cytisine (baptitoxine, sophorine) | Cytisus laborinum | Smoking cessation drug, acetylcholine agonist | [72,73] |
Morphine | Papaver somniferum | Edema, acute pulmonary and shortness of breath | [74,75,76] |
Nicotine | Solanaceae | Insecticide, anti-inflammatory and stimulant, antiherbivore | [77,78,79,80] |
Quinine | Cinchona succirubra | Antimalarial | [81,82,83,84] |
Solanine | Solanum tuberosum | Antifungal, ant pesticide, sedative, anticonvulsant, anticarcinogenic, anti-inflammatory | [85,86,87,88] |
Strychnine | Strychnos nux-vomica | Pesticide | [89,90,91,92] |
Thebaine (paramorphine) | Papaver bracteatum | Analgesic | [48,93,94,95] |
Tomatine | Tomato | Anticancer, immune effects, antifungal | [96,97,98] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Twaij, B.M.; Hasan, M.N. Bioactive Secondary Metabolites from Plant Sources: Types, Synthesis, and Their Therapeutic Uses. Int. J. Plant Biol. 2022, 13, 4-14. https://doi.org/10.3390/ijpb13010003
Twaij BM, Hasan MN. Bioactive Secondary Metabolites from Plant Sources: Types, Synthesis, and Their Therapeutic Uses. International Journal of Plant Biology. 2022; 13(1):4-14. https://doi.org/10.3390/ijpb13010003
Chicago/Turabian StyleTwaij, Baan Munim, and Md. Nazmul Hasan. 2022. "Bioactive Secondary Metabolites from Plant Sources: Types, Synthesis, and Their Therapeutic Uses" International Journal of Plant Biology 13, no. 1: 4-14. https://doi.org/10.3390/ijpb13010003
APA StyleTwaij, B. M., & Hasan, M. N. (2022). Bioactive Secondary Metabolites from Plant Sources: Types, Synthesis, and Their Therapeutic Uses. International Journal of Plant Biology, 13(1), 4-14. https://doi.org/10.3390/ijpb13010003