Neuroimaging and Emotional Development in the Pediatric Population: Understanding the Link Between the Brain, Emotions, and Behavior
Abstract
1. Introduction
2. Emotions and Behavior: Brain Areas Involved
3. The Neuroplasticity of the Pediatric Brain
4. Role of Neuroimaging in the Study of Mood Disorders
5. Psychotherapy and Neuroimaging
6. Role of Neuroimaging and Emotion Regulation in Adolescence: A Window into the Developing Brain
7. Limitations in Neuroimaging Techniques
8. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
WHO | World Health Organization |
MRI | magnetic resonance |
sMRI | structural magnetic resonance imaging |
fMRI | functional magnetic resonance imaging |
PET | positron emission tomography |
DTI | diffusion tensor imaging |
PFC | prefrontal cortex |
DLPFC | dorsolateral prefrontal cortex |
VMPFC | ventromedial prefrontal cortex |
OFC | orbitofrontal cortex |
ACC | anterior cingulate cortex |
ADHD | attention deficit hyperactivity disorder |
CCAS | cerebellar cognitive affective syndrome |
BDNF | brain-derived neurotrophic factor |
BOLD | blood-oxygen-level-dependent |
CBT | cognitive behavioral therapy |
RF-CBT | rumination-focused cognitive behavioral therapy |
MDD | major depressive disorder |
CBT-I | CBT for insomnia |
CRS | circadian rhythm support |
MBCT-C | mindfulness-based cognitive therapy for children |
BMRM | body–mind relaxation meditation |
MBI | mindfulness-based intervention |
MRS | magnetic resonance spectroscopy |
mPFC | medial prefrontal cortex |
rt-fMRI-NF | real-time functional magnetic resonance imaging neurofeedback |
PTSD | post-traumatic stress disorder |
BPD | borderline personality disorder |
PBD | pediatric bipolar disorder |
BD | bipolar disorder |
FA | fractional anisotropy |
rTMS | repetitive transcranial magnetic stimulation |
References
- Wu, Y.; Zhong, Y.; Zhang, G.; Wang, C.; Zhang, N.; Chen, Q. Distinct functional patterns in child and adolescent bipolar and unipolar depression during emotional processing. Cereb. Cortex 2024, 34, bhad461. [Google Scholar] [CrossRef] [PubMed]
- Saxena, K.; Kurian, S.; Kumar, R.; Arnold, L.E.; Simkin, D.R. Mood disorders in youth: Complementary and integrative medicine. Child Adolesc. Psychiatr. Clin. N. Am. 2023, 32, 367–394. [Google Scholar] [CrossRef] [PubMed]
- Institute for Health Metrics and Evaluation (IHME). Global Burden of Disease Study 2024 Results; IHME: Seattle, WA, USA, 2024. [Google Scholar]
- Shahidullah, J.D.; Roberts, H.; Parkhurst, J.; Ballard, R.; Mautone, J.A.; Carlson, J.S. State of the evidence for use of psychotropic medications in school-age youth. Children 2023, 10, 1454. [Google Scholar] [CrossRef] [PubMed]
- Bore, M.C.; Liu, X.; Huang, X.; Kendrick, K.M.; Zhou, B.; Zhang, J.; Klugah-Brown, B.; Becker, B. Common and separable neural alterations in adult and adolescent depression—Evidence from neuroimaging meta-analyses. Neurosci. Biobehav. Rev. 2024, 164, 105835. [Google Scholar] [CrossRef]
- La Buissonniere-Ariza, V.; Fitzgerald, K.; Meoded, A.; Williams, L.L.; Liu, G.; Goodman, W.K.; Storch, E.A. Neural correlates of cognitive behavioral therapy response in youth with negative valence disorders: A systematic review of the literature. J. Affect. Disord. 2021, 282, 1288–1307. [Google Scholar] [CrossRef]
- Malezieux, M.; Klein, A.S.; Gogolla, N. Neural circuits for emotion. Annu. Rev. Neurosci. 2023, 46, 211–231. [Google Scholar] [CrossRef]
- Chauhan, P.; Rathawa, A.; Jethwa, K.; Mehra, S. The Anatomy of the Cerebral Cortex. In Cerebral Ischemia; Pluta, R., Ed.; Exon Publications: Brisbane, Australia, 2021; Chapter 1. Available online: https://www.ncbi.nlm.nih.gov/books/NBK574582/ (accessed on 15 February 2025).
- Alizamini, M.M.; Fattahi, M.; Sayehmiri, F.; Haghparast, A.; Liang, J. Regulatory role of PFC corticotropin-releasing factor system in stress-associated depression disorders: A systematic review. Cell. Mol. Neurobiol. 2023, 43, 1785–1797. [Google Scholar] [CrossRef]
- Alexander, L.; Wood, C.M.; Roberts, A.C. The ventromedial prefrontal cortex and emotion regulation: Lost in translation? J. Physiol. 2023, 601, 37–50. [Google Scholar] [CrossRef]
- Rolls, E.T.; Deco, G.; Huang, C.C.; Feng, J. The human orbitofrontal cortex, vmPFC, and anterior cingulate cortex effective connectome: Emotion, memory, and action. Cereb. Cortex 2022, 33, 330–356. [Google Scholar] [CrossRef]
- Izquierdo, I.; Furini, C.R.; Myskiw, J.C. Fear memory. Physiol. Rev. 2016, 96, 695–750. [Google Scholar] [CrossRef]
- Ghosh, A.; Basu, D.; Khandelwal, N.; Ahuja, C.K.; Bn, S.; Rana, D. Risk, reversibility and resilience of brain circuitries linked to opioid dependence: A diffusion tensor imaging study of actively opioid-using subjects and three comparison groups. Asian J. Psychiatr. 2019, 40, 107–115. [Google Scholar] [CrossRef]
- Gardini, S.; Venneri, A. Reduced grey matter in the posterior insula as a structural vulnerability or diathesis to addiction. Brain Res. Bull. 2012, 87, 205–211. [Google Scholar] [CrossRef]
- Bari, A.; Robbins, T.W. Inhibition and impulsivity: Behavioral and neural basis of response control. Prog. Neurobiol. 2013, 108, 44–79. [Google Scholar] [CrossRef] [PubMed]
- Mark, M.; Pakusch, J.; Ernst, T.M.; Timmann, D. Cerebellum and emotion memory. Adv. Exp. Med. Biol. 2022, 1378, 53–73. [Google Scholar] [CrossRef] [PubMed]
- Laricchiuta, D.; Picerni, E.; Cutuli, D.; Petrosini, L. Cerebellum, embodied emotions, and psychological traits. Adv. Exp. Med. Biol. 2022, 1378, 255–269. [Google Scholar] [CrossRef]
- Schmahmann, J.D. The cerebellum and cognition. Neurosci. Lett. 2019, 688, 62–75. [Google Scholar] [CrossRef] [PubMed]
- D’Agata, F.; Orsi, L. Cerebellum and emotion recognition. Adv. Exp. Med. Biol. 2022, 1378, 41–51. [Google Scholar] [CrossRef]
- Clausi, S.; Siciliano, L.; Olivito, G.; Leggio, M. Cerebellum and emotion in social behavior. Adv. Exp. Med. Biol. 2022, 1378, 235–253. [Google Scholar] [CrossRef]
- Hsueh, B.; Chen, R.; Jo, Y.; Tang, D.; Raffiee, M.; Kim, Y.S.; Inoue, M.; Randles, S.; Ramakrishnan, C.; Patel, S.; et al. Cardiogenic control of affective behavioural state. Nature 2023, 615, 292–299. [Google Scholar] [CrossRef]
- Nadeau, S.E. Neural mechanisms of emotions, alexithymia, and depression. Handb. Clin. Neurol. 2021, 183, 299–313. [Google Scholar] [CrossRef]
- Samara, Z.; Evers, E.A.T.; Peeters, F.; Uylings, H.B.M.; Rajkowska, G.; Ramaekers, J.G.; Stiers, P. Orbital and medial prefrontal cortex functional connectivity of major depression vulnerability and disease. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Deng, H.; Xiao, X. The insular cortex: An interface between sensation, emotion and cognition. Neurosci. Bull. 2024, 40, 1763–1773. [Google Scholar] [CrossRef]
- Centanni, S.W.; Janes, A.C.; Haggerty, D.L.; Atwood, B.; Hopf, F.W. Better living through understanding the insula: Why subregions can make all the difference. Neuropharmacology 2021, 198, 108765. [Google Scholar] [CrossRef] [PubMed]
- Penagos-Corzo, J.C.; Cosio van-Hasselt, M.; Escobar, D.; Vázquez-Roque, R.A.; Flores, G. Mirror neurons and empathy-related regions in psychopathy: Systematic review, meta-analysis, and a working model. Soc. Neurosci. 2022, 17, 462–479. [Google Scholar] [CrossRef] [PubMed]
- McBenedict, B.; Petrus, D.; Pires, M.P.; Pogodina, A.; Arrey Agbor, D.B.; Ahmed, Y.A.; Castro Ceron, J.I.; Balaji, A.; Abrahão, A.; Lima Pessôa, B. The role of the insula in chronic pain and associated structural changes: An integrative review. Cureus 2024, 16, e58511. [Google Scholar] [CrossRef]
- Ghahremani, D.G.; Pochon, J.F.; Diaz, M.P.; Tyndale, R.F.; Dean, A.C.; London, E.D. Nicotine dependence and insula subregions: Functional connectivity and cue-induced activation. Neuropsychopharmacology 2023, 48, 936–945. [Google Scholar] [CrossRef]
- Gerosa, M.; Canessa, N.; Morawetz, C.; Mattavelli, G. Cognitive reappraisal of food craving and emotions: A coordinate-based meta-analysis of fMRI studies. Soc. Cogn. Affect. Neurosci. 2024, 19, nsad077. [Google Scholar] [CrossRef]
- Schacht, J.P. Stress, cues, and craving: Does the insula hold the key to understanding stress-induced drinking in alcohol use disorder? Biol. Psychiatry 2024, 95, 200–201. [Google Scholar] [CrossRef]
- Catani, M.; Dell’Acqua, F.; Thiebaut de Schotten, M. A revised limbic system model for memory, emotion and behaviour. Neurosci. Biobehav. Rev. 2013, 37, 1724–1737. [Google Scholar] [CrossRef]
- Janak, P.H.; Tye, K.M. From circuits to behaviour in the amygdala. Nature 2015, 517, 284–292. [Google Scholar] [CrossRef]
- Šimić, G.; Tkalčić, M.; Vukić, V.; Mulc, D.; Španić, E.; Šagud, M.; Olucha-Bordonau, F.E.; Vukšić, M.; Hof, P.R. Understanding emotions: Origins and roles of the amygdala. Biomolecules 2021, 11, 823. [Google Scholar] [CrossRef] [PubMed]
- Rolls, E.T. Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala. Brain Struct. Funct. 2023, 228, 1201–1257. [Google Scholar] [CrossRef] [PubMed]
- Terranova, J.I.; Yokose, J.; Osanai, H.; Marks, W.D.; Yamamoto, J.; Ogawa, S.K.; Kitamura, T. Hippocampal-amygdala memory circuits govern experience-dependent observational fear. Neuron 2022, 110, 1416–1431.e13. [Google Scholar] [CrossRef] [PubMed]
- Giotakos, O. Neurobiology of emotional trauma. Psychiatriki 2020, 31, 162–171. [Google Scholar] [CrossRef]
- Arnsten, A.F.T.; Joyce, M.K.P.; Roberts, A.C. The aversive lens: Stress effects on the prefrontal-cingulate cortical pathways that regulate emotion. Neurosci. Biobehav. Rev. 2023, 145, 105000. [Google Scholar] [CrossRef]
- Oane, I.; Barborica, A.; Mindruta, I.R. Cingulate cortex: Anatomy, structural and functional connectivity. J. Clin. Neurophysiol. 2023, 40, 482–490. [Google Scholar] [CrossRef]
- Alexander, W.H.; Brown, J.W. The role of the anterior cingulate cortex in prediction error and signaling surprise. Top. Cogn. Sci. 2019, 11, 119–135. [Google Scholar] [CrossRef]
- Valentinova, K.; Acuña, M.A.; Ntamati, N.R.; Nevian, N.E.; Nevian, T. An amygdala-to-cingulate cortex circuit for conflicting choices in chronic pain. Cell Rep. 2023, 42, 113125. [Google Scholar] [CrossRef]
- Wu, Y.E.; Hong, W. Neural basis of prosocial behavior. Trends Neurosci. 2022, 45, 749–762. [Google Scholar] [CrossRef]
- Rolls, E.T.; Cheng, W.; Gong, W.; Qiu, J.; Zhou, C.; Zhang, J.; Lv, W.; Ruan, H.; Wei, D.; Cheng, K. Functional connectivity of the anterior cingulate cortex in depression and in health. Cereb. Cortex 2019, 29, 3617–3630. [Google Scholar] [CrossRef]
- Fornito, A.; Yücel, M.; Dean, B.; Wood, S.J.; Pantelis, C. Anatomical abnormalities of the anterior cingulate cortex in schizophrenia: Bridging the gap between neuroimaging and neuropathology. Schizophr. Bull. 2009, 35, 973–993. [Google Scholar] [CrossRef] [PubMed]
- Fortier, A.; Dumais, A.; Athanassiou, M.; Tikàsz, A.; Potvin, S. Dysconnectivity between the anterior insula and the dorsal anterior cingulate cortex during an emotion go/nogo paradigm is associated with aggressive behaviors in male schizophrenia patients. Psychiatry Res. Neuroimaging. 2023, 328, 111579. [Google Scholar] [CrossRef] [PubMed]
- Pronier, É.; Morici, J.F.; Girardeau, G. The role of the hippocampus in the consolidation of emotional memories during sleep. Trends Neurosci. 2023, 46, 912–925. [Google Scholar] [CrossRef] [PubMed]
- Price, R.B.; Duman, R. Neuroplasticity in cognitive and psychological mechanisms of depression: An integrative model. Mol. Psychiatry 2020, 25, 530–543. [Google Scholar] [CrossRef]
- Peng, S.; Yang, X.; Meng, S.; Liu, F.; Lv, Y.; Yang, H.; Kong, Y.; Xie, W.; Li, M. Dual circuits originating from the ventral hippocampus independently facilitate affective empathy. Cell Rep. 2024, 43, 114277. [Google Scholar] [CrossRef]
- Shi, H.J.; Wang, S.; Wang, X.P.; Zhang, R.X.; Zhu, L.J. Hippocampus: Molecular, cellular, and circuit features in anxiety. Neurosci. Bull. 2023, 39, 1009–1026. [Google Scholar] [CrossRef]
- Fischer, S. The hypothalamus in anxiety disorders. Handb. Clin. Neurol. 2021, 180, 149–160. [Google Scholar] [CrossRef]
- Menke, A. The HPA axis as target for depression. Curr. Neuropharmacol. 2024, 22, 904–915. [Google Scholar] [CrossRef]
- Osakada, T.; Yan, R.; Jiang, Y.; Wei, D.; Tabuchi, R.; Dai, B.; Wang, X.; Zhao, G.; Wang, C.X.; Liu, J.J.; et al. A dedicated hypothalamic oxytocin circuit controls aversive social learning. Nature 2024, 626, 347–356. [Google Scholar] [CrossRef]
- Liu, Z.; Le, Q.; Lv, Y.; Chen, X.; Cui, J.; Zhou, Y.; Cheng, D.; Ma, C.; Su, X.; Xiao, L.; et al. A distinct D1-MSN subpopulation down-regulates dopamine to promote negative emotional state. Cell Res. 2022, 32, 139–156. [Google Scholar] [CrossRef]
- Choi, T.Y.; Jeon, H.; Jeong, S.; Kim, E.J.; Kim, J.; Jeong, Y.H.; Kang, B.; Choi, M.; Koo, J.W. Distinct prefrontal projection activity and transcriptional state conversely orchestrate social competition and hierarchy. Neuron 2024, 112, 611–627.e8. [Google Scholar] [CrossRef] [PubMed]
- Zinsmaier, A.K.; Dong, Y.; Huang, Y.H. Cocaine-induced projection-specific and cell type-specific adaptations in the nucleus accumbens. Mol. Psychiatry 2022, 27, 669–686. [Google Scholar] [CrossRef] [PubMed]
- Bayassi-Jakowicka, M.; Lietzau, G.; Czuba, E.; Patrone, C.; Kowiański, P. More than addiction—The nucleus accumbens contribution to development of mental disorders and neurodegenerative diseases. Int. J. Mol. Sci. 2022, 23, 2618. [Google Scholar] [CrossRef]
- Noble, K.G.; Hart, E.R.; Sperber, J.F. Socioeconomic disparities and neuroplasticity: Moving toward adaptation, intersectionality, and inclusion. Am. Psychol. 2021, 76, 1486–1495. [Google Scholar] [CrossRef]
- Connor, S.A.; Siddiqui, T.J. Synapse organizers as molecular codes for synaptic plasticity. Trends Neurosci. 2023, 46, 971–985. [Google Scholar] [CrossRef]
- Taylor, K.R.; Monje, M. Neuron-oligodendroglial interactions in health and malignant disease. Nat. Rev. Neurosci. 2023, 24, 733–746. [Google Scholar] [CrossRef]
- Kruyer, A.; Kalivas, P.W.; Scofield, M.D. Astrocyte regulation of synaptic signaling in psychiatric disorders. Neuropsychopharmacology 2023, 48, 21–36. [Google Scholar] [CrossRef]
- Vaidya, N.; Marquand, A.F.; Nees, F.; Siehl, S.; Schumann, G. The impact of psychosocial adversity on brain and behaviour: An overview of existing knowledge and directions for future research. Mol. Psychiatry 2024, 29, 3245–3267. [Google Scholar] [CrossRef] [PubMed]
- Jung, N.H.; Münchau, A.; Mall, V. Neuronale Plastizität und Neuromodulation in der Kinderneurologie [Neuronal plasticity and neuromodulation in pediatric neurology]. Nervenarzt 2018, 89, 1131–1139. (In German) [Google Scholar] [CrossRef]
- François, C.; Ripollés, P.; Ferreri, L.; Muchart, J.; Sierpowska, J.; Fons, C.; Solé, J.; Rebollo, M.; Zatorre, R.J.; Garcia-Alix, A.; et al. Right structural and functional reorganization in four-year-old children with perinatal arterial ischemic stroke predict language production. eNeuro 2019, 6, 0447-18. [Google Scholar] [CrossRef]
- Olulade, O.A.; Seydell-Greenwald, A.; Chambers, C.E.; Turkeltaub, P.E.; Dromerick, A.W.; Berl, M.M.; Gaillard, W.D.; Newport, E.L. The neural basis of language development: Changes in lateralization over age. Proc. Natl. Acad. Sci. USA 2020, 117, 23477–23483. [Google Scholar] [CrossRef] [PubMed]
- Craig, B.T.; Hilderley, A.; Kinney-Lang, E.; Long, X.; Carlson, H.L.; Kirton, A. Developmental neuroplasticity of the white matter connectome in children with perinatal stroke. Neurology 2020, 95, e2476–e2486. [Google Scholar] [CrossRef]
- Siffredi, V.; Preti, M.G.; Kebets, V.; Obertino, S.; Leventer, R.J.; McIlroy, A.; Wood, A.G.; Anderson, V.; Spencer-Smith, M.M.; Van De Ville, D. Structural neuroplastic responses preserve functional connectivity and neurobehavioural outcomes in children born without corpus callosum. Cereb. Cortex 2021, 31, 1227–1239. [Google Scholar] [CrossRef]
- Vandormael, C.; Schoenhals, L.; Hüppi, P.S.; Filippa, M.; Borradori Tolsa, C. Language in preterm born children: Atypical development and effects of early interventions on neuroplasticity. Neural Plast. 2019, 2019, 6873270. [Google Scholar] [CrossRef]
- Ver Loren van Themaat, A.H.; Hemager, N.; Korsgaard Johnsen, L.; Klee Burton, B.; Ellersgaard, D.; Christiani, C.; Brandt, J.; Gregersen, M.; Falkenberg Krantz, M.; Søborg Spang, K.; et al. Development of visual attention from age 7 to age 12 in children with familial high risk for schizophrenia or bipolar disorder. Schizophr. Res. 2021, 228, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.C.; Ketchabaw, W.T.; Turkeltaub, P.E. Plasticity of the language system in children and adults. Handb. Clin. Neurol. 2022, 184, 397–414. [Google Scholar] [CrossRef]
- Ismail, F.Y.; Saleem, G.T.; Ljubisavljevic, M.R. Brain data in pediatric disorders of consciousness: Special considerations. J. Clin. Neurophysiol. 2022, 39, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Sydnor, V.J.; Larsen, B.; Bassett, D.S.; Alexander-Bloch, A.; Fair, D.A.; Liston, C.; Mackey, A.P.; Milham, M.P.; Pines, A.; Roalf, D.R.; et al. Neurodevelopment of the association cortices: Patterns, mechanisms, and implications for psychopathology. Neuron 2021, 109, 2820–2846. [Google Scholar] [CrossRef]
- Higa, G.S.V.; Viana, F.J.C.; Francis-Oliveira, J.; Cruvinel, E.; Franchin, T.S.; Marcourakis, T.; Ulrich, H.; De Pasquale, R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024, 257, 110036. [Google Scholar] [CrossRef]
- Puetz, V.B.; Viding, E.; Maguire, E.A.; Mechelli, A.; Armbruster-Genç, D.; Sharp, M.; Rankin, G.; Gerin, M.I.; McCrory, E.J. Functional brain plasticity following childhood maltreatment: A longitudinal fMRI investigation of autobiographical memory processing. Dev. Psychopathol. 2023, 35, 1382–1389. [Google Scholar] [CrossRef]
- Komori, T.; Okamura, K.; Ikehara, M.; Yamamuro, K.; Endo, N.; Okumura, K.; Yamauchi, T.; Ikawa, D.; Ouji-Sageshima, N.; Toritsuka, M.; et al. Brain-derived neurotrophic factor from microglia regulates neuronal development in the medial prefrontal cortex and its associated social behavior. Mol. Psychiatry 2024, 29, 1338–1349. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.O.K.; Li, W.H.C.; Leung, Y.D.; Cheung, T.C.K.; Chiu, S.Y.; Pong, M.S.Y.; Chan, G.C.F. The feasibility, acceptability, and potential efficacy of a musical training program in promoting neuroplasticity among survivors of pediatric brain tumors: A cohort study. Eur. J. Oncol. Nurs. 2025, 76, 102851. [Google Scholar] [CrossRef] [PubMed]
- Lannon, M.M.; Duda, T.; Martyniuk, A.; Engels, P.T.; Sharma, S.V. Pediatric craniocerebral gunshot injuries: A National Trauma Database study. J. Trauma Acute Care Surg. 2022, 92, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, X.; Zhang, S.; Han, F. Neuroplasticity of children in autism spectrum disorder. Front. Psychiatry 2024, 15, 1362288. [Google Scholar] [CrossRef]
- Rebello, K.; Moura, L.M.; Bueno, A.P.A.; Picon, F.A.; Pan, P.M.; Gadelha, A.; Miguel, E.C.; Bressan, R.A.; Rohde, L.A.; Sato, J.R. Associations between family functioning and maternal behavior on default mode network connectivity in school-age children. Int. J. Environ. Res. Public Health 2022, 19, 6055. [Google Scholar] [CrossRef]
- Çalışkan, G.; Müller, A.; Albrecht, A. Long-term impact of early-life stress on hippocampal plasticity: Spotlight on astrocytes. Int. J. Mol. Sci. 2020, 21, 4999. [Google Scholar] [CrossRef]
- Ho, T.C.; King, L.S. Mechanisms of neuroplasticity linking early adversity to depression: Developmental considerations. Transl. Psychiatry 2021, 11, 517. [Google Scholar] [CrossRef]
- Oswald, L.M.; Dunn, K.E.; Seminowicz, D.A.; Storr, C.L. Early life stress and risks for opioid misuse: Review of data supporting neurobiological underpinnings. J. Pers. Med. 2021, 11, 315. [Google Scholar] [CrossRef]
- Lanza, G.; DelRosso, L.M.; Ferri, R. Sleep and homeostatic control of plasticity. Handb. Clin. Neurol. 2022, 184, 53–72. [Google Scholar] [CrossRef]
- Ugarte, G.; Piña, R.; Contreras, D.; Godoy, F.; Rubio, D.; Rozas, C.; Zeise, M.; Vidal, R.; Escobar, J.; Morales, B. Attention deficit-hyperactivity disorder (ADHD): From abnormal behavior to impairment in synaptic plasticity. Biology 2023, 12, 1241. [Google Scholar] [CrossRef]
- Patra, K.P.; Kumar, R. Screening for Depression and Suicide in Children; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar] [PubMed]
- Watson, C.; Ban, S. Body dysmorphic disorder in children and young people. Br. J. Nurs. 2021, 30, 160–164. [Google Scholar] [CrossRef]
- da Silva Chagas, L.; Sandre, P.C.; de Velasco, P.C.; Marcondes, H.; Ribeiro, E.; Ribeiro, N.C.A.; Serfaty, C.A.; Serfaty, C.A.; Ferreira, J.H.; Mauro, L.B.A. Neuroinflammation and brain development: Possible risk factors in COVID-19-infected children. Neuroimmunomodulation 2021, 28, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Chagas, L.D.S.; Serfaty, C.A. The influence of microglia on neuroplasticity and long-term cognitive sequelae in long COVID: Impacts on brain development and beyond. Int. J. Mol. Sci. 2024, 25, 3819. [Google Scholar] [CrossRef]
- Lopatina, O.L.; Panina, Y.A.; Malinovskaya, N.A.; Salmina, A.B. Early life stress and brain plasticity: From molecular alterations to aberrant memory and behavior. Rev. Neurosci. 2020, 32, 131–142. [Google Scholar] [CrossRef]
- Phan, T.V.; Sima, D.; Smeets, D.; Ghesquière, P.; Wouters, J.; Vandermosten, M. Structural brain dynamics across reading development: A longitudinal MRI study from kindergarten to grade 5. Hum. Brain Mapp. 2021, 42, 4497–4509. [Google Scholar] [CrossRef]
- Page, C.E.; Biagiotti, S.W.; Alderman, P.J.; Sorrells, S.F. Immature excitatory neurons in the amygdala come of age during puberty. Dev. Cogn. Neurosci. 2022, 56, 101133. [Google Scholar] [CrossRef]
- Mammen, L.; Zlatopolsky, A.; Tu, N. Cochlear implantation in children with single-sided deafness under the age of 5 years: A review of current literature. Curr. Opin. Otolaryngol. Head Neck Surg. 2024, 32, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Mana, S.; Paillère Martinot, M.L.; Martinot, J.L. Brain imaging findings in children and adolescents with mental disorders: A cross-sectional review. Eur. Psychiatry 2010, 25, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Kuperman, S.; Gaffney, G.R.; Hamdan-Allen, G.; Preston, D.F.; Venkatesh, L. Neuroimaging in child and adolescent psychiatry. J. Am. Acad. Child. Adolesc. Psychiatry 1990, 29, 159–172. [Google Scholar] [CrossRef]
- Fischl, B. FreeSurfer. Neuroimage 2012, 62, 774–781. [Google Scholar] [CrossRef]
- Eliez, S.; Reiss, A.L. MRI neuroimaging of childhood psychiatric disorders: A selective review. J. Child Psychol. Psychiatry 2000, 41, 679–694. [Google Scholar] [CrossRef] [PubMed]
- Hulvershorn, L.A.; Cullen, K.; Anand, A. Toward dysfunctional connectivity: A review of neuroimaging findings in pediatric major depressive disorder. Brain Imaging Behav. 2011, 5, 307–328. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R., Jr.; Lowe, V.J.; Weigand, S.D.; Wiste, H.J.; Senjem, M.L.; Knopman, D.S.; Shiung, M.M.; Gunter, J.L.; Boeve, B.F.; Kemp, B.J.; et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: Implications for sequence of pathological events in Alzheimer’s disease. Brain 2009, 132, 1355–1365. [Google Scholar] [CrossRef]
- Meyer, J.H.; Cervenka, S.; Kim, M.J.; Kreisl, W.C.; Henter, I.D.; Innis, R.B. Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry 2020, 7, 1064–1074. [Google Scholar] [CrossRef]
- Feldman, H.M.; Yeatman, J.D.; Lee, E.S.; Barde, L.H.; Gaman-Bean, S. Diffusion tensor imaging: A review for pediatric researchers and clinicians. J. Dev. Behav. Pediatr. 2010, 31, 346–356. [Google Scholar] [CrossRef]
- Pavuluri, M.N.; Yang, S.; Kamineni, K.; Passarotti, A.M.; Srinivasan, G.; Harral, E.M.; Sweeney, J.A.; Zhou, X.J. Diffusion tensor imaging study of white matter fiber tracts in pediatric bipolar disorder and attention-deficit/hyperactivity disorder. Biol. Psychiatry 2009, 65, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Basser, P.J.; Mattiello, J.; LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 1994, 66, 259–267. [Google Scholar] [CrossRef]
- Dennis, E.L.; Disner, S.G.; Fani, N.; Salminen, L.E.; Logue, M.; Clarke, E.K.; Haswell, C.C.; Averill, C.L.; Baugh, L.A.; Bomyea, J.; et al. Altered white matter microstructural organization in posttraumatic stress disorder across 3047 adults: Results from the PGC-ENIGMA PTSD consortium. Mol. Psychiatry 2021, 26, 4315–4330. [Google Scholar] [CrossRef]
- Brooks, S.J.; Stein, D.J. A systematic review of the neural bases of psychotherapy for anxiety and related disorders. Dialogues Clin. Neurosci. 2015, 17, 261–279. [Google Scholar] [CrossRef]
- Dunlop, B.W.; Mayberg, H.S. Neuroimaging-based biomarkers for treatment selection in major depressive disorder. Dialogues Clin. Neurosci. 2014, 16, 479–490. [Google Scholar] [CrossRef]
- Sequeira, S.L.; Silk, J.S.; Ladouceur, C.D.; Hanson, J.L.; Ryan, N.D.; Morgan, J.K.; McMakin, D.L.; Kendall, P.C.; Dahl, R.E.; Forbes, E.E. Association of neural reward circuitry function with response to psychotherapy in youths with anxiety disorders. Am. J. Psychiatry 2021, 178, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Westlund Schreiner, M.; Jacobsen, A.M.; Farstead, B.W.; Miller, R.H.; Jacobs, R.H.; Thomas, L.R.; Bessette, K.L.; Pazdera, M.; Crowell, S.E.; Kaufman, E.A.; et al. Rumination induction task in fMRI: Effects of rumination-focused cognitive behavioral therapy and stability in youth. J. Affect. Disord. 2025, 372, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Villa, L.M.; Goodyer, I.M.; Tait, R.; Kelvin, R.; Reynolds, S.; Wilkinson, P.O.; Suckling, J. Cognitive behavioral therapy may have a rehabilitative, not normalizing, effect on functional connectivity in adolescent depression. J. Affect. Disord. 2020, 268, 1–11. [Google Scholar] [CrossRef]
- Leerssen, J.; Aghajani, M.; Bresser, T.; Rösler, L.; Winkler, A.M.; Foster-Dingley, J.C.; Van Someren, E.J.W. Cognitive, behavioral, and circadian rhythm interventions for insomnia alter emotional brain responses. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2024, 9, 60–69. [Google Scholar] [CrossRef]
- Yang, J.; Lei, D.; Suo, X.; Tallman, M.J.; Qin, K.; Li, W.; Bruns, K.M.; Blom, T.J.; Duran, L.R.P.; Cotton, S.; et al. A preliminary study of the effects of mindfulness-based cognitive therapy on structural brain networks in mood-dysregulated youth with a familial risk for bipolar disorder. Early Interv. Psychiatry 2022, 16, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Piguet, C.; Klauser, P.; Celen, Z.; James Murray, R.; Magnus Smith, M.; Merglen, A. Randomized controlled trial of a mindfulness-based intervention in adolescents from the general population: The Mindfulteen neuroimaging study protocol. Early Interv. Psychiatry 2022, 16, 891–901. [Google Scholar] [CrossRef]
- Chen, F.; Lv, X.; Fang, J.; Li, T.; Xu, J.; Wang, X.; Hong, Y.; Hong, L.; Wang, J.; Wang, W.; et al. Body-mind relaxation meditation modulates the thalamocortical functional connectivity in major depressive disorder: A preliminary resting-state fMRI study. Transl. Psychiatry 2021, 11, 546. [Google Scholar] [CrossRef]
- Joss, D.; Lazar, S.W.; Teicher, M.H. Effects of a mindfulness-based behavioral intervention for young adults with childhood maltreatment history on hippocampal morphometry: A pilot MRI study with voxel-based morphometry. Psychiatry Res. Neuroimaging 2020, 301, 111087. [Google Scholar] [CrossRef]
- Hafeman, D.M.; Ostroff, A.N.; Feldman, J.; Hickey, M.B.; Phillips, M.L.; Creswell, D.; Birmaher, B.; Goldstein, T.R. Mindfulness-based intervention to decrease mood lability in at-risk youth: Preliminary evidence for changes in resting state functional connectivity. J. Affect. Disord. 2020, 276, 23–29. [Google Scholar] [CrossRef]
- Ahmed, S.P.; Bittencourt-Hewitt, A.; Sebastian, C.L. Neurocognitive bases of emotion regulation development in adolescence. Dev. Cogn. Neurosci. 2015, 15, 11–25. [Google Scholar] [CrossRef]
- Khafif, T.C.; Rotenberg, L.S.; Nascimento, C.; Beraldi, G.H.; Lafer, B. Emotion regulation in pediatric bipolar disorder: A meta-analysis of published studies. J. Affect. Disord. 2021, 285, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Malhi, G.S.; Jadidi, M.; Bell, E. The diagnosis of bipolar disorder in children and adolescents: Past, present and future. Bipolar Disord. 2023, 25, 469–477. [Google Scholar] [CrossRef]
- Post, R.M.; Grunze, H. The challenges of children with bipolar disorder. Medicina 2021, 57, 601. [Google Scholar] [CrossRef]
- Quevedo, K.; Yuan Teoh, J.; Engstrom, M.; Wedan, R.; Santana-Gonzalez, C.; Zewde, B.; Porter, D.; Cohen Kadosh, K. Amygdala circuitry during neurofeedback training and symptoms’ change in adolescents with varying depression. Front. Behav. Neurosci. 2020, 14, 110. [Google Scholar] [CrossRef] [PubMed]
- Arruda-Carvalho, M.; Wu, W.C.; Cummings, K.A.; Clem, R.L. Optogenetic examination of prefrontal-amygdala synaptic development. J. Neurosci. 2017, 37, 2976–2985. [Google Scholar] [CrossRef] [PubMed]
- Ravindranath, O.; Ordaz, S.J.; Padmanabhan, A.; Foran, W.; Jalbrzikowski, M.; Calabro, F.J.; Luna, B. Influences of affective context on amygdala functional connectivity during cognitive control from adolescence through adulthood. Dev. Cogn. Neurosci. 2020, 45, 100836. [Google Scholar] [CrossRef] [PubMed]
- Linhartová, P.; Látalová, A.; Kóša, B.; Kašpárek, T.; Schmahl, C.; Paret, C. fMRI neurofeedback in emotion regulation: A literature review. Neuroimage 2019, 193, 75–92. [Google Scholar] [CrossRef]
- Ross, M.C.; Heilicher, M.; Cisler, J.M. Functional imaging correlates of childhood trauma: A qualitative review of past research and emerging trends. Pharmacol. Biochem. Behav. 2021, 211, 173297. [Google Scholar] [CrossRef] [PubMed]
- Zaehringer, J.; Ende, G.; Santangelo, P.; Kleindienst, N.; Ruf, M.; Bertsch, K.; Bohus, M.; Schmahl, C.; Paret, C. Improved emotion regulation after neurofeedback: A single-arm trial in patients with borderline personality disorder. Neuroimage Clin. 2019, 24, 102032. [Google Scholar] [CrossRef]
- Himmelmeier, L.; Werheid, K. Neurofeedback training in children with ADHD: A systematic review of personalization and methodological features facilitating training conditions. Clin. EEG Neurosci. 2024, 55, 625–635. [Google Scholar] [CrossRef]
- Kloiber, S.; Rosenblat, J.D.; Husain, M.I.; Ortiz, A.; Berk, M.; Quevedo, J.; Vieta, E.; Maes, M.; Birmaher, B.; Soares, J.C.; et al. Neurodevelopmental pathways in bipolar disorder. Neurosci. Biobehav. Rev. 2020, 112, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Otten, M.; Meeter, M. Hippocampal structure and function in individuals with bipolar disorder: A systematic review. J. Affect. Disord. 2015, 174, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Kiani, I.; Aarabi, M.H.; Cattarinussi, G.; Sambataro, F.; Favalli, V.; Moltrasio, C.; Delvecchio, G. White matter changes in paediatric bipolar disorder: A systematic review of diffusion magnetic resonance imaging studies. J. Affect. Disord. 2025, 373, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Liang, K.; Lu, L.; Gao, Y.; Li, H.; Hu, X.; Xing, H.; Huang, X.; Gong, Q. Efficacy and safety of repetitive transcranial magnetic stimulation in children and adolescents with depression: A systematic review and preliminary meta-analysis. J. Affect. Disord. 2023, 320, 305–312. [Google Scholar] [CrossRef]
- Singh, M.K.; Garrett, A.S.; Chang, K.D. Using neuroimaging to evaluate and guide pharmacological and psychotherapeutic treatments for mood disorders in children. CNS Spectr. 2015, 20, 359–368. [Google Scholar] [CrossRef]
- Kim, S.; Rush, B.S.; Rice, T.R. A systematic review of therapeutic ketamine use in children and adolescents with treatment-resistant mood disorders. Eur. Child Adolesc. Psychiatry 2021, 30, 1485–1501. [Google Scholar] [CrossRef]
- Bruton, A.M.; Wesemann, D.G.; Machingo, T.A.; Majak, G.; Johnstone, J.M.; Marshall, R.D. Ketamine for mood disorders, anxiety, and suicidality in children and adolescents: A systematic review. Eur. Child Adolesc. Psychiatry 2025, 34, 141–157. [Google Scholar] [CrossRef]
- Luciano, M.; Di Vincenzo, M.; Mancuso, E.; Marafioti, N.; Di Cerbo, A.; Giallonardo, V.; Sampogna, G.; Fiorillo, A. Does the brain matter? Cortical alterations in pediatric bipolar disorder: A critical review of structural and functional magnetic resonance studies. Curr. Neuropharmacol. 2023, 21, 1302–1318. [Google Scholar] [CrossRef]
- Özerdem, A.; Ceylan, D.; Can, G. Neurobiology of risk for bipolar disorder. Curr. Treat. Options Psychiatry 2016, 3, 315–329. [Google Scholar] [CrossRef]
- Goodkind, M.; Eickhoff, S.B.; Oathes, D.J.; Jiang, Y.; Chang, A.; Jones-Hagata, L.B.; Ortega, B.N.; Zaiko, Y.V.; Roach, E.L.; Korgaonkar, M.S.; et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 2015, 72, 305–315. [Google Scholar] [CrossRef]
- Raschle, N.; Zuk, J.; Ortiz-Mantilla, S.; Sliva, D.D.; Franceschi, A.; Grant, P.E.; Benasich, A.A.; Gaab, N. Pediatric neuroimaging in early childhood and infancy: Challenges and practical guidelines. Ann. N. Y Acad. Sci. 2012, 1252, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Abi-Dargham, A.; Moeller, S.J.; Ali, F.; DeLorenzo, C.; Domschke, K.; Horga, G.; Jutla, A.; Kotov, R.; Paulus, M.P.; Rubio, J.M.; et al. Candidate biomarkers in psychiatric disorders: State of the field. World Psychiatry 2023, 22, 236–262. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.R.; Garza, A.; Church, J.A. Key considerations for child and adolescent MRI data collection. Front. Neuroimaging 2022, 1, 981947. [Google Scholar] [CrossRef] [PubMed]
- Evans, A.C. Brain Development Cooperative Group. The NIH MRI Study of Normal Brain Development. NeuroImage 2006, 30, 184–202. [Google Scholar] [CrossRef]
- Ayling, E.; Aghajani, M.; Fouche, J.P.; van der Wee, N. Diffusion tensor imaging in anxiety disorders. Curr. Psychiatry Rep. 2012, 14, 197–202. [Google Scholar] [CrossRef]
- Young, K.D.; Siegle, G.J.; Zotev, V.; Phillips, R.; Misaki, M.; Yuan, H.; Drevets, W.C.; Bodurka, J. Randomized clinical trial of real-time fMRI amygdala neurofeedback for major depressive disorder: Effects on symptoms and autobiographical memory recall. Am. J. Pschiatry 2017, 174, 748–755. [Google Scholar] [CrossRef]
- Marano, G.; Rossi, S.; Sfratta, G.; Traversi, G.; Lisci, F.M.; Anesini, M.B.; Pola, R.; Gasbarrini, A.; Gaetani, E.; Mazza, M. Gut Microbiota: A New Challenge in Mood Disorder Research. Life 2025, 15, 593. [Google Scholar] [CrossRef]
- Hortensius, L.M.; van den Hooven, E.H.; Dudink, J.; Tataranno, M.L.; van Elburg, R.M.; Benders, M.J.N.L. NutriBrain: Protocol for a randomised, double-blind, controlled trial to evaluate the effects of a nutritional product on brain integrity in preterm infants. BMC Pediatr. 2021, 21, 132. [Google Scholar] [CrossRef]
- Marano, G.; Traversi, G.; Nannarelli, C.; Pitrelli, S.; Mazza, S.; Mazza, M. Functional neuroimaging: Points of intersection between biology and psychotherapy. Clin. Ter. 2012, 163, e443–e456. [Google Scholar] [PubMed]
Brain Area | Main Functions | Relevance in Disorders/Emotions |
---|---|---|
Prefrontal Cortex (PFC) | Emotion regulation, impulse control, long-term planning, strategic decision-making, stress management. | Controls the emotional responses generated by the limbic system; dysfunctions are associated with ADHD and alterations in bipolar disorder, where insufficient control can lead to exaggerated emotional responses. |
Dorsolateral PFC (DLPFC) | Cognitive control, working memory, planning, and integration of complex emotional information. | Dysfunctions are linked to attention and self-regulation issues, often observed in ADHD and certain aspects of bipolar disorder. |
Ventromedial PFC (VMPFC) | Emotion processing; decision-making based on values and rewards; integration with the amygdala, hippocampus, and nucleus accumbens. | Reduced control in this area can contribute to inappropriate or excessive emotional responses, affecting emotion regulation in bipolar disorder. |
Orbitofrontal Cortex (OFC) | Integration and manipulation of sensory information, mediation of empathetic and socially appropriate responses, connectivity with the insula and ACC. | Dysfunctions can lead to compulsive behaviors and loss of emotional control, contributing to difficulties in modulating emotional responses. |
Anterior Cingulate Cortex (ACC) | Mediation between emotions and cognitive processes, error monitoring, conflict resolution, management of physical and social pain. | Reduced ACC activity is associated with depression, difficulties in pain regulation, and problems in integrating emotions and executive functions, as observed in schizophrenia and bipolar disorder. |
Insula | Integration of sensory, emotional, and cognitive signals; monitoring of bodily states; perception of pain; empathy; regulation of internal states. | Alterations in the insula are linked to dysfunctions in emotional perception, pain management, and certain compulsive behaviors and addictions; in bipolar disorder, its activity often correlates with symptom severity. |
Limbic System | Processing of emotions, formation and retrieval of emotional memories, coordination of “fight or flight” responses. | An overactive amygdala can lead to exaggerated emotional responses; reductions in hippocampal volume and connectivity alterations may impair the contextualization of emotional experiences, as observed in bipolar disorder. |
Cerebellum | Motor coordination, emotion regulation, identification and expression of emotions, support for empathy. | Lesions or anomalies in cerebellar–limbic connections can result in deficits in executive and emotional functions (e.g., cerebellar cognitive affective syndrome—CCAS) and have been associated with maladaptive behaviors and social difficulties in bipolar disorder. |
Neuroimaging Technique | Description | Application |
---|---|---|
sMRI (Structural Magnetic Resonance) | Provides detailed images of the brain’s structure and morphology using strong magnetic fields and radiofrequency waves | Used to assess the anatomical structure of the brain, identifying abnormalities like tumors, strokes, and atrophy. It is also useful in monitoring neurodegenerative diseases and psychiatric disorders |
fMRI (Functional Magnetic Resonance) | Measures brain activity by detecting changes in blood oxygenation levels (BOLD signals) | Used to map functional brain areas responsible for tasks like language, emotional regulation, and movement. It also assesses changes in brain function in psychiatric disorders like depression and anxiety |
PET (Positron Emission Tomography) | Measures brain metabolic activity using radioactive tracers, highlighting areas of higher or lower activity | Used to study brain metabolism, showing activity in different brain regions. It is also used to assess neurotransmitter systems and understand neurochemical imbalances, and to evaluate neurodegenerative conditions like Alzheimer’s disease |
DTI (Diffusion Tensor Imaging) | An MRI technique that allows the quantitative assessment of neuronal architecture by measuring the diffusion of water molecules along white matter pathways | Used to evaluate the integrity of white matter pathways. It is helpful in diagnosing and monitoring brain diseases like multiple sclerosis and strokes. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marano, G.; Anesini, M.B.; Milintenda, M.; Acanfora, M.; Calderoni, C.; Bardi, F.; Lisci, F.M.; Brisi, C.; Traversi, G.; Mazza, O.; et al. Neuroimaging and Emotional Development in the Pediatric Population: Understanding the Link Between the Brain, Emotions, and Behavior. Pediatr. Rep. 2025, 17, 65. https://doi.org/10.3390/pediatric17030065
Marano G, Anesini MB, Milintenda M, Acanfora M, Calderoni C, Bardi F, Lisci FM, Brisi C, Traversi G, Mazza O, et al. Neuroimaging and Emotional Development in the Pediatric Population: Understanding the Link Between the Brain, Emotions, and Behavior. Pediatric Reports. 2025; 17(3):65. https://doi.org/10.3390/pediatric17030065
Chicago/Turabian StyleMarano, Giuseppe, Maria Benedetta Anesini, Miriam Milintenda, Mariateresa Acanfora, Claudia Calderoni, Francesca Bardi, Francesco Maria Lisci, Caterina Brisi, Gianandrea Traversi, Osvaldo Mazza, and et al. 2025. "Neuroimaging and Emotional Development in the Pediatric Population: Understanding the Link Between the Brain, Emotions, and Behavior" Pediatric Reports 17, no. 3: 65. https://doi.org/10.3390/pediatric17030065
APA StyleMarano, G., Anesini, M. B., Milintenda, M., Acanfora, M., Calderoni, C., Bardi, F., Lisci, F. M., Brisi, C., Traversi, G., Mazza, O., Pola, R., Sani, G., Gaetani, E., & Mazza, M. (2025). Neuroimaging and Emotional Development in the Pediatric Population: Understanding the Link Between the Brain, Emotions, and Behavior. Pediatric Reports, 17(3), 65. https://doi.org/10.3390/pediatric17030065