Early Postnatal Administration of Erythropoietin and Its Association with Neurodevelopmental Outcomes and Incidence of Intraventricular Hemorrhage and Hypoxic-Ischemic Encephalopathy: A Four-Week Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Ethics
2.2. Study Population and Inclusion Criteria
2.3. Study Variables and Protocols
2.4. Reference Values and Definitions
2.5. Data Analysis
3. Results
3.1. Background Characteristics
3.2. Laboratory Results
3.3. Clinical Outcomes at 1 Week
3.4. Clinical Outcomes at 4 Weeks
3.5. Statistical Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jelkmann, W. Physiology and pharmacology of erythropoietin. Transfus. Med. Hemother. 2013, 40, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Tsiftsoglou, A.S. Erythropoietin (EPO) as a Key Regulator of Erythropoiesis, Bone Remodeling and Endothelial Transdifferentiation of Multipotent Mesenchymal Stem Cells (MSCs): Implications in Regenerative Medicine. Cells 2021, 10, 2140. [Google Scholar] [CrossRef] [PubMed]
- Perrone, S.; Lembo, C.; Gironi, F.; Petrolini, C.; Catalucci, T.; Corbo, G.; Buonocore, G.; Gitto, E.; Esposito, S.M.R. Erythropoietin as a Neuroprotective Drug for Newborn Infants: Ten Years after the First Use. Antioxidants 2022, 11, 652. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.W.; Bauer, L.A.; Ballard, R.A.; Ferriero, D.M.; Glidden, D.V.; Mayock, D.E.; Chang, T.; Durand, D.J.; Song, D.; Bonifacio, S.L.; et al. Erythropoietin for neuroprotection in neonatal encephalopathy: Safety and pharmacokinetics. Pediatrics 2012, 130, 683–691. [Google Scholar] [CrossRef]
- Doandes, F.M.; Manea, A.M.; Lungu, N.; Cioboata, D.; Brandibur, T.; Costescu, O.; Hudisteanu, A.; Boia, E.R.; Boia, M. Clinical, biological and electroencephalographic monitoring of newborns with neurological risk in the Neonatal Intensive Care Unit. Exp. Ther. Med. 2021, 22, 760. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, A.I.; Manea, A.M.; Jinca, C.M.; Boia, M. Basic biochemical and hematological parameters in perinatal asphyxia and their correlation with hypoxic ischemic encephalopathy. Exp. Ther. Med. 2021, 21, 259. [Google Scholar] [CrossRef] [PubMed]
- Doandes, F.M.; Manea, A.M.; Lungu, N.; Brandibur, T.; Cioboata, D.; Costescu, O.C.; Zaharie, M.; Boia, M. The Role of Amplitude-Integrated Electroencephalography (aEEG) in Monitoring Infants with Neonatal Seizures and Predicting Their Neurodevelopmental Outcome. Children 2023, 10, 833. [Google Scholar] [CrossRef] [PubMed]
- Ballabh, P. Intraventricular hemorrhage in premature infants: Mechanism of disease. Pediatr. Res. 2010, 67, 1–8. [Google Scholar] [CrossRef]
- Poryo, M.; Boeckh, J.C.; Gortner, L.; Zemlin, M.; Duppré, P.; Ebrahimi-Fakhari, D.; Wagenpfeil, S.; Heckmann, M.; Mildenberger, E.; Hilgendorff, A.; et al. Ante-, peri- and postnatal factors associated with intraventricular hemorrhage in very premature infants. Early Hum Dev. 2018, 116, 1–8. [Google Scholar] [CrossRef]
- Al-Abdi, S.Y.; Al-Aamri, M.A. A Systematic Review and Meta-analysis of the Timing of Early Intraventricular Hemorrhage in Preterm Neonates: Clinical and Research Implications. J. Clin. Neonatol. 2014, 3, 76–88. [Google Scholar] [CrossRef]
- Blencowe, H.; Lee, A.C.; Cousens, S.; Bahalim, A.; Narwal, R.; Zhong, N.; Chou, D.; Say, L.; Modi, N.; Katz, J.; et al. Preterm birth-associated neurodevelopmental impairment estimates at regional and global levels for 2010. Pediatr. Res. 2013, 74, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Vogtmann, C.; Koch, R.; Gmyrek, D.; Kaiser, A.; Friedrich, A. Risk-adjusted intraventricular hemorrhage rates in very premature infants: Towards quality assurance between neonatal units. Dtsch. Arztebl. Int. 2012, 109, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Wang, Y.; Xu, F.; Sun, H.; Zhang, X.; Xia, L.; Zhang, S.; Li, K.; Peng, X.; Li, B.; et al. Erythropoietin Improves Poor Outcomes in Preterm Infants with Intraventricular Hemorrhage. CNS Drugs 2021, 35, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Hierro-Bujalance, C.; Infante-Garcia, C.; Sanchez-Sotano, D.; Del Marco, A.; Casado-Revuelta, A.; Mengual-Gonzalez, C.M.; Lu-cena-Porras, C.; Bernal-Martin, M.; Benavente-Fernandez, I.; Lubian-Lopez, S.; et al. Erythropoietin Improves Atrophy, Bleeding and Cognition in the Newborn Intraventricular Hemorrhage. Front. Cell. Dev. Biol. 2020, 8, 571258. [Google Scholar] [CrossRef]
- Rangarajan, V.; Juul, S.E. Erythropoietin: Emerging role of erythropoietin in neonatal neuroprotection. Pediatr. Neurol. 2014, 51, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.J.; Wu, Y.; Liu, Y.; Cheng, R.; Chen, X.Q.; Yang, Y. The effect of erythropoietin on neonatal hypoxic-ischemic encephalopathy: An updated meta-analysis of randomized control trials. Front. Pediatr. 2023, 10, 1074287. [Google Scholar] [CrossRef] [PubMed]
- Fahim, N.M.; Georgieff, M.K.; Zhang, L.; Naisbitt, S.; Rao, R.B.; Inder, T.E. Endogenous erythropoietin concentrations and association with retinopathy of prematurity and brain injury in preterm infants. PLoS ONE 2021, 16, e0252655. [Google Scholar] [CrossRef] [PubMed]
- Borțea, C.I.; Stoica, F.; Boia, M.; Iacob, E.R.; Dinu, M.; Iacob, R.; Iacob, D. Risk Factors Associated with Retinopathy of Prematurity in Very and Extremely Preterm Infants. Medicina 2021, 57, 420. [Google Scholar] [CrossRef]
- Wellmann, S.; Hagmann, C.F.; von Felten, S.; Held, L.; Klebermass-Schrehof, K.; Truttmann, A.C.; Knöpfli, C.; Fauchère, J.C.; Bührer, C.; Bucher, H.U.; et al. Safety and Short-term Outcomes of High-Dose Erythropoietin in Preterm Infants With Intraventricular Hemorrhage: The EpoRepair Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e2244744. [Google Scholar] [CrossRef]
- Fischer, H.S.; Reibel, N.J.; Bührer, C.; Dame, C. Effect of Early Erythropoietin on Retinopathy of Prematurity: A Stratified Meta-Analysis. Neonatology 2023, 120, 566–576. [Google Scholar] [CrossRef]
- Hoeber, D.; Sifringer, M.; van de Looij, Y.; Herz, J.; Sizonenko, S.V.; Kempe, K.; Serdar, M.; Palasz, J.; Hadamitzky, M.; Endesfelder, S.; et al. Erythropoietin Restores Long-Term Neurocognitive Function Involving Mechanisms of Neuronal Plasticity in a Model of Hyperoxia-Induced Preterm Brain Injury. Oxid. Med. Cell. Longev. 2016, 2016, 9247493. [Google Scholar] [CrossRef]
- Singh, M.; Zhao, Y.; Gastaldi, V.D.; Wojcik, S.M.; Curto, Y.; Kawaguchi, R.; Merino, R.M.; Garcia-Agudo, L.F.; Taschenberger, H.; Brose, N.; et al. Erythropoietin re-wires cognition-associated transcriptional networks. Nat. Commun. 2023, 14, 4777. [Google Scholar] [CrossRef] [PubMed]
- Dewan, M.V.; Serdar, M.; van de Looij, Y.; Kowallick, M.; Hadamitzky, M.; Endesfelder, S.; Fandrey, J.; Sizonenko, S.V.; Herz, J.; Felderhoff-Müser, U.; et al. Repetitive Erythropoietin Treatment Improves Long-Term Neurocognitive Outcome by Attenuating Hyperoxia-Induced Hypomyelination in the Developing Brain. Front. Neurol. 2020, 11, 804. [Google Scholar] [CrossRef] [PubMed]
- Mayo Clinic. Available online: https://pediatric.testcatalog.org/show/LD (accessed on 1 December 2023).
- Royal College of Paediatrics and Child Health. Available online: https://www.rcpch.ac.uk/sites/default/files/rcpch/HTWQv8.7/Reference%20ranges%20Feb%2018%20FINAL.pdf (accessed on 1 December 2023).
- WHO. Available online: https://www.who.int/data/nutrition/nlis/info/low-birth-weight (accessed on 1 December 2023).
- WHO. Available online: https://www.who.int/news-room/fact-sheets/detail/preterm-birth (accessed on 1 December 2023).
- American College of Obstetrics and Gynecology; American Academy of Pediatrics. Neonatal Encephalopathy and Neurologic Outcome, 2nd ed.; American College of Obstetricians and Gynecologists: Washington, DC, USA, 2014; Volume 133, pp. e1482–e1488. [Google Scholar]
- Centre of Clinical Excellence—Women and Children Safer Care Victoria. Available online: https://www.safercare.vic.gov.au/clinical-guidance/neonatal/normal-laboratory-values-for-neonates (accessed on 1 December 2023).
- WHO. Nutritional Anaemias: Tools for Effective Prevention and Control, 1st ed.; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Ivain, P.; Montaldo, P.; Khan, A.; Elagovan, R.; Burgod, C.; Morales, M.M.; Pant, S.; Thayyil, S. Erythropoietin monotherapy for neuroprotection after neonatal encephalopathy in low-to-middle income countries: A systematic review and meta-analysis. J. Perinatol. 2021, 41, 2134–2140. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.W.; Mathur, A.M.; Chang, T.; McKinstry, R.C.; Mulkey, S.B.; Mayock, D.E.; Van Meurs, K.P.; Rogers, E.E.; Gonzalez, F.F.; Comstock, B.A.; et al. High-dose erythropoietin and hypothermia for hypoxic-ischemic encephalopathy: A phase II trial. Pediatrics 2016, 137, e20160191. [Google Scholar] [CrossRef] [PubMed]
- Ohlsson, A.; Aher, S.M. Early erythropoiesis-stimulating agents in preterm or low birth weight infants. Cochrane Database Syst. Rev. 2017, 11, CD004863. [Google Scholar] [CrossRef]
- Kandasamy, Y.; Kumar, P.; Hartley, L. The effect of erythropoietin on the severity of retinopathy of prematurity. Eye 2014, 28, 814–818. [Google Scholar] [CrossRef] [PubMed]
- Juul, S. Recombinant erythropoietin as a neuroprotective treatment: In vitro and in vivo models. Clin. Perinatol. 2004, 31, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Traudt, C.M.; Juul, S.E. Erythropoietin as a neuroprotectant for neonatal brain injury: Animal models. Methods Mol. Biol. 2013, 982, 113–126. [Google Scholar]
- Pang, R.; Avdic-Belltheus, A.; Meehan, C.; Martinello, K.; Mutshiya, T.; Yang, Q.; Sokolska, M.; Torrealdea, F.; Hristova, M.; Bainbridge, A.; et al. Melatonin and/or erythropoietin combined with hypothermia in a piglet model of perinatal asphyxia. Brain Commun. 2020, 3, fcaa211. [Google Scholar] [CrossRef]
- Wassink, G.; Davidson, J.O.; Crisostomo, A.; Zhou, K.Q.; Galinsky, R.; Dhillon, S.K.; Lear, C.A.; Bennet, L.; Gunn, A.J. Recombinant erythropoietin does not augment hypothermic white matter protection after global cerebral ischaemia in near-term fetal sheep. Brain Commun. 2021, 3, fcab172. [Google Scholar] [CrossRef]
- Bolte, K.; Maier, R.F. Survey on clinical use and non-use of recombinant human erythropoietin in European neonatal units. J. Perinat. Med. 2020, 48, 744–750. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, P.; Zhou, W.; Xia, S.; Zhou, W.; Zhou, X.; Cheng, X.; Shi, Y.; Lin, Z.; Song, D.; et al. Neonatal hypoxic-ischemic encephalopathy diagnosis and treatment: A national survey in China. BMC Pediatr. 2021, 21, 261. [Google Scholar] [CrossRef]
- Larpthaveesarp, A.; Georgevits, M.; Ferriero, D.M.; Gonzalez, F.F. Delayed erythropoietin therapy improves histological and behavioral outcomes after transient neonatal stroke. Neurobiol. Dis. 2016, 93, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Juul, S.E.; Comstock, B.A.; Wadhawan, R.; Mayock, D.E.; Courtney, S.E.; Robinson, T.; Ahmad, K.A.; Bendel-Stenzel, E.; Baserga, M.; LaGamma, E.F.; et al. A randomized trial of erythropoietin for neuroprotection in preterm infants. N. Engl. J. Med. 2020, 382, 233–243. [Google Scholar] [CrossRef]
- Wu, Y.W.; Comstock, B.A.; Gonzalez, F.F.; Mayock, D.E.; Goodman, A.M.; Maitre, N.L.; Chang, T.; Van Meurs, K.P.; Lampland, A.L.; Bendel-Stenzel, E.; et al. Trial of Erythropoietin for Hypoxic-Ischemic Encephalopathy in Newborns. N. Engl. J. Med. 2022, 387, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Ehrenreich, H.; Weissenborn, K.; Prange, H.; Schneider, D.; Weimar, C.; Wartenberg, K.; Schellinger, P.D.; Bohn, M.; Becker, H.; Wegrzyn, M.; et al. Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke 2009, 40, e647–e656. [Google Scholar] [CrossRef]
- Osredkar, D.; Sall, J.W.; Bickler, P.E.; Ferriero, D.M. Erythropoietin promotes hippocampal neurogenesis in in vitro models of neonatal stroke. Neurobiol. Dis. 2010, 38, 259–265. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Z.; Wang, Y.; Zhang, R.; Chopp, M. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 2004, 35, 1732–1737. [Google Scholar] [CrossRef] [PubMed]
- Benders, M.J.; van der Aa, N.E.; Roks, M.; van Straaten, H.L.; Isgum, I.; Viergever, M.A.; Groenendaal, F.; de Vries, L.S.; van Bel, F. Feasibility and safety of erythropoietin for neuroprotection after perinatal arterial ischemic stroke. J. Pediatr. 2014, 164, 481–486.e2. [Google Scholar] [CrossRef]
- Rüegger, C.M.; Hagmann, C.F.; Bührer, C.; Held, L.; Bucher, H.U.; Wellmann, S.; EpoRepair Investigators. Erythropoietin for the Repair of Cerebral Injury in Very Preterm Infants (EpoRepair). Neonatology 2015, 108, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.M.; Cho, D.H.; Kim, J.K. Developmental outcomes of very low birth weight infants with catch-up head growth: A nationwide cohort study. BMC Pediatr. 2023, 23, 392. [Google Scholar] [CrossRef] [PubMed]
Variables | EPO (n = 121) | No EPO (n = 130) | p-Value * |
---|---|---|---|
GA (mean ± SD) | 34.4 ± 3.3 | 34.5 ± 3.1 | 0.804 |
GA | 0.111 | ||
Extremely preterm | 6 (5.0%) | 5 (3.8%) | |
Very preterm | 24 (19.8%) | 11 (8.5%) | |
Moderate preterm | 23 (19.0%) | 26 (20.0%) | |
Late preterm | 54 (44.6%) | 72 (55.4%) | |
Normal | 14 (11.6%) | 16 (12.3%) | |
BW, grams (mean ± SD) | 2333.0 ± 840.3 | 2251.0 ± 696.0 | 0.399 |
BW | 0.978 | ||
Extremely low | 2 (1.7%) | 3 (2.3%) | |
Very low | 14 (11.6%) | 15 (11.5%) | |
Low | 61 (50.4%) | 67 (51.5%) | |
Normal | 44 (36.4%) | 45 (34.6%) | |
Sex (n, %) | 0.294 | ||
Male | 74 (61.2%) | 71 (54.6%) | |
Female | 47 (38.8%) | 59 (45.4%) | |
APGAR score 1min (mean ± SD) | 6.8 ± 1.9 | 7.0 ± 1.2 | 0.316 |
APGAR score 1min <8 (n, %) | 69 (57.0%) | 88 (67.7%) | 0.081 |
APGAR score 5min (mean ± SD) | 7.4 ± 1.4 | 7.5 ± 1.1 | 0.528 |
APGAR score 5min <8 (n, %) | 62 (51.2%) | 62 (47.7%) | 0.574 |
Variables, Median (IQR) | EPO (n = 121) | No EPO (n = 130) | p-Value * |
---|---|---|---|
LDH, days 1–3 (255–600 U/L) | 695.0 (513.5–933.0) | 679.0 (435.8–920.8) | 0.025 |
LDH, days 7–10 (255–600 U/L) | 442.0 (317.0–624.0) | 601.5 (399.5–890.0) | <0.001 |
Blood glucose levels (3.88–6.38 mmol/L) | 3.4 (2.5–4.1) | 3.8 (2.9–4.7) | <0.001 |
Urea (1.4–8.3) | 4.3 (3.0–5.8) | 5.2 (3.6–7.1) | <0.001 |
Creatinine (21–75 µmol/L) | 63.0 (45.5–79.5) | 76.5 (59.5–87.3) | <0.001 |
CPK (24–228 U/L) | 233.0 (156.5–347.5) | 187.5 (109.0–281.5) | <0.001 |
CRP, day 1 (0–5 mg/L) | 3.1 (1.1–8.8) | 6.8 (2.8–15.8) | <0.001 |
CRP, day 3 (0–5 mg/L) | 2.5 (1.0–9.5) | 4.8 (2.2–11.5) | <0.001 |
PCT, day 1 (0–0.5 ng/mL) | 2.5 (0.6–13.4) | 2.8 (0.5–8.8) | 0.262 |
PCT, day 3 (0–0.5 ng/mL) | 0.5 (0.2–3.6) | 2.3 (0.5–5.2) | <0.001 |
Blood pH (7.35–7.45) | 7.4 (7.3–7.8) | 7.3 (7.3–7.4) | 0.307 |
PCO2 (35–46 mmHg) | 39.0 (37.0–45.0) | 42.0 (38.0–46.0) | <0.001 |
PO2 (70–100 mmHg) | 65.0 (58.0–70.0) | 66.5 (58.0–74.0) | <0.001 |
Lactic acid (0.50–2.20 mmol/L) | 3.2 (2.2–5.0) | 3.2 (2.1–5.1) | 0.554 |
EPO, 1 week (4.3–29.0 mUI/mL) | 7.2 (4.2–13.1) | 5.1 (3.0–12.1) | 0.027 |
EPO, 3 weeks (4.3–29.0 mUI/mL) | 27.7 (19.5–38.4) | 23.5 (16.4–35.2) | 0.006 |
Hematocrit, day 1 (53–65%) | 43.8 (37.8–49.0) | 43.0 (37.0–47.0) | 0.052 |
Hemoglobin, day 1 (15.5–21.5 g/dL) | 15.2 (13.4–16.9) | 15.0 (13.8–16.7) | 0.647 |
RBCs (4.7–6.3 × 106/uL) | 4.2 (3.8–4.7) | 4.0 (3.8–4.4) | 0.090 |
APTT (25–50 s) | 54.0 (34.0–67.0) | 38.0 (33.8–43.0) | <0.001 |
PT (9.5–14 s) | 13.9 (12.6–15.9) | 13.0 (12.0–15.0) | 0.063 |
Variables (n, %) | EPO (n = 121) | No EPO (n = 130) | p-Value * |
---|---|---|---|
Ventriculomegaly—Week 1 | 1 (0.8%) | 1 (0.8%) | 0.959 |
HIE—Week 1 | 0.147 | ||
Mild | 13 (10.7%) | 23 (17.7%) | |
Moderate | 35 (28.9%) | 34 (26.2%) | |
Severe | 18 (14.9%) | 34 (26.2%) | |
IVH—Week 1 | 0.142 | ||
Grade 1 | 17 (14.0%) | 17 (13.1%) | |
Grade 2 | 44 (36.4%) | 45 (34.6%) | |
Grade 3 | 3 (2.5%) | 13 (10.0%) | |
Grade 4 | 1 (0.8%) | 1 (0.8%) | |
Apnea | 48 (39.7%) | 54 (41.5%) | 0.100 |
Bradycardia | 50 (41.3%) | 35 (26.9%) | 0.016 |
Variables (n, %) | EPO (n = 121) | No EPO (n = 130) | p-Value * |
---|---|---|---|
Ventriculomegaly—Week 4 | 0 (0.0%) | 5 (3.8%) | 0.029 |
HIE—Week 4 | 0.001 | ||
Mild | 19 (15.7%) | 21 (16.2%) | |
Moderate | 6 (5.0%) | 27 (20.8%) | |
Severe | 2 (1.7%) | 21 (16.2%) | |
IVH—Week 4 | 0.046 | ||
Grade 1 | 20 (16.5%) | 23 (17.7%) | |
Grade 2 | 5 (4.1%) | 17 (13.1%) | |
Grade 3 | 1 (0.8%) | 7 (5.4%) | |
Grade 4 | 0 (0.0%) | 4 (3.1%) | |
Hydrocephalus—Week 4 | 2 (1.7%) | 1 (0.8%) | 0.519 |
Status post-intraventricular hemorrhage—Week 4 | 28 (23.1%) | 16 (12.3%) | 0.024 |
Status post-hypoxic-ischemic encephalopathy—Week 4 | 37 (30.6%) | 15 (11.5%) | 0.002 |
Variables (n, %) | EPO Group Week 1 | EPO Group Week 4 | No EPO Group Week 1 | No EPO Group Week 4 | Change in EPO Group (p-Value) * | Change in No EPO Group (p-Value) * |
---|---|---|---|---|---|---|
Ventriculomegaly | 1 (0.8%) | 0 (0.0%) | 1 (0.8%) | 5 (3.8%) | 0.962 | 0.209 |
HIE (Mild/Moderate/Severe) | 66 (54.5%) | 27 (22.3%) | 91 (70.0%) | 49 (37.7%) | <0.001 | <0.001 |
IVH (Grade 1–4) | 65 (53.7%) | 26 (21.5%) | 76 (58.5%) | 51 (39.2%) | <0.001 | <0.001 |
Predictor Variable | Beta Coefficient | 95% CI | p-Value |
---|---|---|---|
Early EPO administration (<48h) | −0.38 * | −0.57–−0.19 | 0.001 * |
No EPO (reference) | – | – | – |
Extremely preterm GA | 0.72 * | 0.31–1.13 | 0.005 * |
Very preterm GA | 0.47 * | 0.18–0.76 | 0.011 * |
Moderate–Late preterm GA | 0.29 | −0.02–0.60 | 0.065 |
Normal GA (reference) | – | – | – |
Extremely low BW | 0.55 * | 0.23–0.87 | 0.002 * |
Very low BW | 0.31 * | 0.09–0.53 | 0.007 * |
Low BW | 0.2 | −0.04–0.44 | 0.166 |
Normal BW (reference) | – | – | – |
Low hemoglobin level | 0.27 * | 0.05–0.49 | 0.028 * |
Normal hemoglobin level (reference) | – | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costescu, O.C.; Manea, A.M.; Boia, E.R.; Cioboata, D.M.; Doandes, F.M.; Enatescu, I.; Costescu, S.; Prodan, M.; Boia, M. Early Postnatal Administration of Erythropoietin and Its Association with Neurodevelopmental Outcomes and Incidence of Intraventricular Hemorrhage and Hypoxic-Ischemic Encephalopathy: A Four-Week Observational Study. Pediatr. Rep. 2024, 16, 339-352. https://doi.org/10.3390/pediatric16020030
Costescu OC, Manea AM, Boia ER, Cioboata DM, Doandes FM, Enatescu I, Costescu S, Prodan M, Boia M. Early Postnatal Administration of Erythropoietin and Its Association with Neurodevelopmental Outcomes and Incidence of Intraventricular Hemorrhage and Hypoxic-Ischemic Encephalopathy: A Four-Week Observational Study. Pediatric Reports. 2024; 16(2):339-352. https://doi.org/10.3390/pediatric16020030
Chicago/Turabian StyleCostescu, Oana Cristina, Aniko Maria Manea, Eugen Radu Boia, Daniela Mariana Cioboata, Florina Marinela Doandes, Ileana Enatescu, Sergiu Costescu, Mihaela Prodan, and Marioara Boia. 2024. "Early Postnatal Administration of Erythropoietin and Its Association with Neurodevelopmental Outcomes and Incidence of Intraventricular Hemorrhage and Hypoxic-Ischemic Encephalopathy: A Four-Week Observational Study" Pediatric Reports 16, no. 2: 339-352. https://doi.org/10.3390/pediatric16020030
APA StyleCostescu, O. C., Manea, A. M., Boia, E. R., Cioboata, D. M., Doandes, F. M., Enatescu, I., Costescu, S., Prodan, M., & Boia, M. (2024). Early Postnatal Administration of Erythropoietin and Its Association with Neurodevelopmental Outcomes and Incidence of Intraventricular Hemorrhage and Hypoxic-Ischemic Encephalopathy: A Four-Week Observational Study. Pediatric Reports, 16(2), 339-352. https://doi.org/10.3390/pediatric16020030