Evaluation of the Multiple Tissue Factors in the Cartilage of Primary and Secondary Rhinoplasty in Cleft Lip and Palate Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Methods
2.3. Statistical Analysis of the Data
3. Results
3.1. MMP-2
3.2. MMP-8
3.3. MMP-9
3.4. TIMP-2
3.5. IL-1α
3.6. IL-10
3.7. bFGF
3.8. TGFβ1
3.9. Statistical Data
4. Discussion
4.1. Tissue Degradation Factors and Their Inhibitors
4.2. Interleukins
4.3. Growth Factors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manna, F.; Pensiero, S.; Clarich, G.; Guarneri, G.F.; Parodi, P.C. Cleft lip and palate: Current status from the literature and our experience. J. Craniofac. Surg. 2009, 20, 1383–1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín-Del-Campo, M.; Rosales-Ibañez, R.; Rojo, L. Biomaterials for Cleft Lip and Palate Regeneration. Int. J. Mol. Sci. 2019, 20, 2176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliver, J.; Jia, S.; Halpern, L.R.; Graham, E.M.; Turner, M.E.C.; Colombo, J.S.; Grainger, D.W.; D’Souza, R.N. Innovative Molecular and Cellular Therapeutics in Cleft Palate Tissue Engineering. Tissue Eng. Part B Rev. 2021, 27, 215–237. [Google Scholar] [CrossRef] [PubMed]
- Cuzalina, A.; Tolomeo, P.G. Challenging Rhinoplasty for the Cleft Lip and Palate Patient. Oral Maxillofac. Surg. Clin. N. Am. 2020, 33, 143–159. [Google Scholar] [CrossRef]
- Pagan, A.D.; Sterling, D.A.; Andrews, B.T. Cartilage Grafting Outcomes in Intermediate and Definitive Cleft Rhinoplasty. Cleft Palate-Craniofac. J. 2020, 58, 974–983. [Google Scholar] [CrossRef]
- Lewis, J.A.; Freeman, R.; Carrow, J.K.; Clemons, T.D.; Palmer, L.C.; Stupp, S.I. Transforming Growth Factor β-1 Binding by Peptide Amphiphile Hydrogels. ACS Biomater. Sci. Eng. 2020, 6, 4551–4560. [Google Scholar] [CrossRef]
- Sandy, J. Molecular, clinical and political approaches to the problem of cleft lip and palate. Surgeon 2003, 1, 9–16. [Google Scholar] [CrossRef]
- Yu, J.; Mursu, E.; Typpö, M.; Laaksonen, S.; Voipio, H.-M.; Pesonen, P.; Raustia, A.; Pirttiniemi, P. MMP-3 and MMP-8 in rat mandibular condylar cartilage associated with dietary loading, estrogen level, and aging. Arch. Oral Biol. 2018, 97, 238–244. [Google Scholar] [CrossRef]
- Henriet, P.; Emonard, H. Matrix metalloproteinase-2: Not (just) a “hero” of the past. Biochimie 2019, 166, 223–232. [Google Scholar] [CrossRef]
- Cook, R.N.; Sarker, H.; Fernandez-Patron, C. Pathologies of matrix metalloproteinase-2 underactivity: A perspective on a neglected condition. Can. J. Physiol. Pharmacol. 2019, 97, 486–492. [Google Scholar] [CrossRef]
- Luo, S.; Li, W.; Wu, W.; Shi, Q. Elevated expression of MMP8 and MMP9 contributes to diabetic osteoarthritis progression in a rat model. J. Orthop. Surg. Res. 2021, 16, 64. [Google Scholar] [CrossRef] [PubMed]
- Slovacek, H.; Khanna, R.; Poredos, P.; Poredos, P.; Jezovnik, M.; Hoppensteadt, D.; Fareed, J.; Hopkinson, W. Interrelationship of MMP-9, Proteoglycan-4, and Inflammation in Osteoarthritis Patients Undergoing Total Hip Arthroplasty. Clin. Appl. Thromb. Hemost. 2021, 27, 1076029621995569. [Google Scholar] [CrossRef] [PubMed]
- Yoshiba, N.; Yoshiba, K.; Hosoya, A.; Saito, M.; Yokoi, T.; Okiji, T.; Amizuka, N.; Ozawa, H. Association of TIMP-2 with extracellular matrix exposed to mechanical stress and its co-distribution with periostin during mouse mandible development. Cell Tissue Res. 2007, 330, 133–145. [Google Scholar] [CrossRef] [PubMed]
- omczyk-Warunek, A.; Blicharski, T.; Jarecki, J.; Dobrowolski, P.; Muszyński, S.; Tomaszewska, E.; Rovati, L.C. The effect of maternal HMB supplementation on bone mechanical and geometrical properties, as well as histomorphometry and immunolocalization of VEGF, TIMP2, MMP13, BMP2 in the bone and cartilage tissue of the humerus of their newborn piglets. PLoS ONE 2021, 16, e0240642. [Google Scholar]
- Gandhi, S.D.; Maerz, T.; Mitchell, S.; Bachison, C.; Park, D.K.; Fischgrund, J.S.; Baker, K.C. Intradiscal Delivery of Anabolic Growth Factors and a Metalloproteinase Inhibitor in a Rabbit Acute Lumbar Disc Injury Model. Int. J. Spine Surg. 2020, 14, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Schett, G.; Dayer, J.-M.; Manger, B. Interleukin-1 function and role in rheumatic disease. Nat. Rev. Rheumatol. 2015, 12, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Conde, J.; Ruiz-Fernandez, C.; Francisco, V.; Scotece, M.; Gómez, R.; Lago, F.; Gonzalez-Gay, M.A.; Pino, J.; Mobasheri, A.; Gualillo, O. Dickkopf-3 (DKK3) Signaling in IL-1α-Challenged Chondrocytes: Involvement of the NF-κB Pathway. Cartilage 2021, 13 (Suppl. S2), 925s–934s. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.; Akhtar, S.; Porter, R.M.; Önnerfjord, P.; Bajpayee, A.G. Interleukin-1 receptor antagonist (IL-1Ra) is more effective in suppressing cytokine-induced catabolism in cartilage-synovium co-culture than in cartilage monoculture. Arthritis Res. Ther. 2019, 21, 238. [Google Scholar] [CrossRef] [Green Version]
- Behrendt, P.; Feldheim, M.; Preusse-Prange, A.; Weitkamp, J.T.; Haake, M.; Eglin, D.; Rolauffs, B.; Fay, J.; Seekamp, A.; Grodzinsky, A.J.; et al. Chondrogenic potential of IL-10 in mechanically injured cartilage and cellularized collagen ACI grafts. Osteoarthr. Cartil. 2018, 26, 264–275. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Zhu, T.; Xue, J.; Zhang, Y.; Lu, Y.; Yang, H.; Yu, Z.; Zhu, Y.; Zhu, X. Influence of bFGF on in vitro expansion and chondrogenic construction of articular cartilage-derived progenitor cells. Ann. Transl. Med. 2022, 10, 36. [Google Scholar] [CrossRef]
- Yang, N.Y.; Zhou, Y.; Zhao, H.Y.; Liu, X.Y.; Sun, Z.; Shang, J.J. Increased interleukin 1alpha and interleukin 1beta expression is involved in the progression of periapical lesions in primary teeth. BMC Oral Health 2018, 18, 124. [Google Scholar] [CrossRef]
- Kumar, V.; Abbas, A.; Aster, J. Robbins and Cotran Pathologic Basis of Disease, 9th ed.; Elsevier: Amsterdam, The Netherlands, 2014; Chapter 1; pp. 1–29. [Google Scholar]
- Kuang, B.; Zeng, Z.; Qin, Q. Biomechanically stimulated chondrocytes promote osteoclastic bone resorption in the mandibular condyle. Arch. Oral Biol. 2018, 98, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Pilmane, M.; Sidhoma, E.; Akota, I.; Kazoka, D. Characterization of Cytokines and Proliferation Marker Ki67 in Cleft Affected Lip Tissue. Medicina (Kaunas) 2019, 55, 518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Tang, X.; Long, R.; Wang, S.; Wang, P.; Cai, D.; Liu, Y. The Influence of bFGF on the Fabrication of Microencapsulated Cartilage Cells under Different Shaking Modes. Polymers 2019, 11, 471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, Y.; Grodzinsky, A.J. Cartilage diseases. Matrix Biol. 2018, 71–72, 51–69. [Google Scholar] [CrossRef]
- Bilandžija, T.; Vukojević, K.; Ćorić, A.; Kekez, I.V.; Mikić, I.M.; Arapović, L.L.; Filipović, N.; Anđelić, J.; Saraga-Babić, M.; Govorko, D.K. Spatio-Temporal Expression Pattern of Ki-67, pRB, MMP-9 and Bax in Human Secondary Palate Development. Life 2021, 11, 164. [Google Scholar] [CrossRef]
- Mosig, R.A.; Dowling, O.; DiFeo, A.; Ramirez, M.C.M.; Parker, I.C.; Abe, E.; Diouri, J.; Al Aqeel, A.; Wylie, J.; Oblander, S.A.; et al. Loss of MMP-2 disrupts skeletal and craniofacial development and results in decreased bone mineralization, joint erosion and defects in osteoblast and osteoclast growth. Hum. Mol. Genet. 2007, 16, 1113–1123. [Google Scholar] [CrossRef] [Green Version]
- Lipari, L.; Gerbino, A. Expression of Gelatinases (MMP-2, MMP-9) in Human Articular Cartilage. Int. J. Immunopathol. Pharmacol. 2013, 26, 817–823. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez-Fernandez, A.; Inada, M.; Balbín, M.; Fueyo-Silva, A.; Pitiot, A.; Astudillo, A.; Hirose, K.; Hirata, M.; Shapiro, S.D.; Noel, A.; et al. Increased inflammation delays wound healing in mice deficient in collagenase-2 (MMP-8). FASEB J. 2007, 21, 2580–2591. [Google Scholar] [CrossRef] [Green Version]
- Arpino, V.; Brock, M.; Gill, S.E. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol. 2015, 44–46, 247–254. [Google Scholar] [CrossRef]
- Letra, A.; Silva, R.M.; Motta, L.G.; Blanton, S.H.; Hecht, J.T.; Granjeirol, J.M.; Vieira, A.R. Association of MMP3 and TIMP2 promoter polymorphisms with nonsyndromic oral clefts. Birth Defects Res. Part A Clin. Mol. Teratol. 2012, 94, 540–548. [Google Scholar] [CrossRef] [PubMed]
- de Bruyn, M.; Vandooren, J.; Ugarte-Berzal, E.; Arijs, I.; Vermeire, S.; Opdenakker, G. The molecular biology of matrix metalloproteinases and tissue inhibitors of metalloproteinases in inflammatory bowel diseases. Crit. Rev. Biochem. Mol. Biol. 2016, 51, 295–358. [Google Scholar] [CrossRef] [PubMed]
- Verstappen, J.; Hoff, J.V.D. Tissue Inhibitors of Metalloproteinases (TIMPs): Their Biological Functions and Involvement in Oral Disease. J. Dent. Res. 2006, 85, 1074–1084. [Google Scholar] [CrossRef]
- Cavalli, G.; Colafrancesco, S.; Emmi, G.; Imazio, M.; Lopalco, G.; Maggio, M.C.; Sota, J.; Dinarello, C.A. Interleukin 1α: A comprehensive review on the role of IL-1α in the pathogenesis and treatment of autoimmune and inflammatory diseases. Autoimmun. Rev. 2021, 20, 102763. [Google Scholar] [CrossRef]
- Hubbard, J.R.; Steinberg, J.J.; Bednar, M.S.; Sledge, C.B. Effect of purified human interleukin-1 on cartilage degradation. J. Orthop. Res. 1988, 6, 180–187. [Google Scholar] [CrossRef]
- Lee, W.; Nims, R.J.; Savadipour, A.; Zhang, Q.; Leddy, H.A.; Liu, F.; McNulty, A.L.; Chen, Y.; Guilak, F.; Liedtke, W.B. Inflammatory signaling sensitizes Piezo1 mechanotransduction in articular chondrocytes as a pathogenic feed-forward mechanism in osteoarthritis. Proc. Natl. Acad. Sci. USA 2021, 118, e2001611118. [Google Scholar] [CrossRef]
- Yi, L.; Li, Z.; Jiang, H.; Cao, Z.; Liu, J.; Zhang, X. Gene Modification of Transforming Growth Factor β (TGF-β) and Interleukin 10 (IL-10) in Suppressing Mt Sonicate Induced Osteoclast Formation and Bone Absorption. Med. Sci. Monit. 2018, 24, 5200–5207. [Google Scholar] [CrossRef]
- Ge, J.; Yan, Q.; Wang, Y.; Cheng, X.; Song, D.; Wu, C.; Yu, H.; Yang, H.; Zou, J. IL-10 delays the degeneration of intervertebral discs by suppressing the p38 MAPK signaling pathway. Free Radic. Biol. Med. 2019, 147, 262–270. [Google Scholar] [CrossRef]
- Yu, L.K.; Zhang, J.; Sun, Z.Y.; Ruan, C.L.; Li, H.; Ruan, X.J. Coculture with interleukin-10 overexpressed chondrocytes: A cell therapy model to ameliorate the post-traumatic osteoarthritis development. J. Biol. Regul. Homeost. Agents 2021, 35, 593–603. [Google Scholar]
- Ornitz, D.M.; Marie, P.J. Fibroblast growth factor signaling in skeletal development and disease. Genes Dev. 2015, 29, 1463–1486. [Google Scholar] [CrossRef] [Green Version]
- Powers, C.J.; McLeskey, S.W.; Wellstein, A. Fibroblast growth factors, their receptors and signaling. Endocr. Relat. Cancer 2000, 7, 165–197. [Google Scholar] [CrossRef] [Green Version]
- Weng, M.; Chen, Z.; Xiao, Q.; Li, R.; Chen, Z. A review of FGF signaling in palate development. Biomed. Pharmacother. 2018, 103, 240–247. [Google Scholar] [CrossRef]
- Tuan, R.S.; Chen, A.F.; Klatt, B.A. Cartilage regeneration. J. Am. Acad. Orthop. Surg. 2013, 21, 303–311. [Google Scholar] [CrossRef]
- Wang, C.; Shen, J.; Ying, J.; Xiao, D.; O’Keefe, R.J. FoxO1 is a crucial mediator of TGF-β/TAK1 signaling and protects against osteoarthritis by maintaining articular cartilage homeostasis. Proc. Natl. Acad. Sci. USA 2020, 117, 30488–30497. [Google Scholar] [CrossRef]
- Nakajima, A.; Ito, Y.; Tanaka, E.; Sano, R.; Karasawa, Y.; Maeno, M.; Iwata, K.; Shimizu, N.; Shuler, C.F. Functional role of TGF-β receptors during palatal fusion in vitro. Arch. Oral Biol. 2014, 59, 1192–1204. [Google Scholar] [CrossRef] [Green Version]
- Gehris, A.L.; D’Angelo, M.; Greene, R.M. Immunodetection of the transforming growth factors beta 1 and beta 2 in the developing murine palate. Int. J. Dev. Biol. 1991, 35, 17–24. [Google Scholar]
- Zhen, G.; Guo, Q.; Li, Y.; Wu, C.; Zhu, S.; Wang, R.; Guo, X.E.; Kim, B.C.; Huang, J.; Hu, Y.; et al. Mechanical stress determines the configuration of TGFβ activation in articular cartilage. Nat. Commun. 2021, 12, 1706. [Google Scholar] [CrossRef]
Patient | Sex | Age |
---|---|---|
No. 1. | Male | 17 years |
No. 2. | Male | 13 years 1 month |
No. 3. | Female | 18 years |
No. 4. | Female | 12 years 11 months |
No. 5. | Male | 13 years 11 months |
No. 6. | Male | 13 years 11 months |
No. 7. | Female | 16 years 10 months |
No. 8. | Male | 16 years 7 months |
No. 9. | Male | 16 years 7 months |
No. 10. | Female | 5 years 7 months |
No. 11. | Male | 16 years 3 months |
No. 12. | Female | 12 years 7 months |
No. 13. | Male | 13 years 9 months |
No. 14. | Male | 13 years 9 months |
No. 15. | Female | 12 years 11 months |
No. 16. | Male | 16 years 6 months |
No. 17. | Female | 9 years 6 months |
No. 18. | Female | 8 years 3 months |
No. 19. | Male | 12 years 2 months |
No. 20. | Male | 18 years 7 months |
No. 21. | Female | 12 years 8 months |
No. 22. | Female | 12 years 8 months |
No. 23. | Male | 13 years 9 months |
No. 24. | Female | 12 years 8 months |
No. 25. | Male | 6 years 7 months |
No. 26. | Male | 15 years |
No. 27. | Female | 5 years 7 months |
No. 28. | Male | 16 years 3 months |
No. 29. | Male | 15 years 1 month |
No. 30. | Male | 15 years 1 month |
No. 31. | Male | 15 years 10 months |
No. 32. | Male | 7 years 7 months |
No. 33. | Male | 7 years 5 months |
No. 34. | Male | 17 years |
No. 35. | Male | 15 years 1 month |
Patient | Sex | Age |
---|---|---|
No. 1. | Male | 8 years 3 months |
No. 2. | Male | 8 years |
No. 3. | Male | 11 years 6 months |
No. 4. | Female | 11 years 9 months |
No. 5. | Female | 11 years 9 months |
No. 6. | Male | 7 years |
No. 7. | Female | 9 years 4 months |
MMP-2 | MMP-8 | MMP-9 | TIMP-2 | IL-1α | Il-10 | bFGF | TGFB1 | |
---|---|---|---|---|---|---|---|---|
First-time surgery CLP | +/++–++++ | ++–++++ | ++–++++ | +/++–++++ | ++–++++ | ++–++++ | +–++++ | 0/+–++++ |
Median value | +++ | +++/++++ | +++ | ++ | +++/++++ | ++/+++ | +++ | +++ |
Second-time surgery CLP | ++/+++–+++/++++ | ++–+++/++++ | ++/+++–+++/++++ | ++/+++–+++/++++ | ++–++++ | ++/+++–+++/++++ | +++–+++/++++ | ++–++++ |
Median value | +++ | +++ | +++ | +++ | +++ | +++ | +++/++++ | +++/++++ |
Control group | +/++–+++ | ++/+++–++++ | +–+++ | +/++–+++/++++ | ++–++++ | +/++–+++ | +/++–+++ | +/++–+++/++++ |
Median value | ++ | +++/++++ | +/++ | ++/+++ | ++/+++ | ++ | ++ | ++/+++ |
Factor 1 | Factor 2 | p Value | rs |
---|---|---|---|
Statistically Significant (p < 0.05) Strong Correlations (rs = 0.6–0.79) | |||
IL-1α | IL-10 | p = 0.000 | rs = 0.698 |
IL-1α | MMP-8 | p = 0.000 | rs = 0.604 |
Factor 1 | Factor 2 | p Value | rs |
---|---|---|---|
Statistically Significant (p < 0.05) Strong Correlations (rs = 0.6–0.79) | |||
IL-1α | IL-10 | p = 0.010 | rs = 0.877 |
Factor 1 | Factor 2 | p Value | rs |
---|---|---|---|
Statistically Significant (p < 0.05) Strong Correlations (rs = 0.6–0.79) | |||
MMP-2 | TIMP-2 | p = 0.001 | rs = 0.867 |
MMP-2 | MMP-8 | p = 0.009 | rs = 0.743 |
MMP-9 | IL-1α | p = 0.001 | rs = 0.850 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buile, D.; Pilmane, M.; Akota, I. Evaluation of the Multiple Tissue Factors in the Cartilage of Primary and Secondary Rhinoplasty in Cleft Lip and Palate Patients. Pediatr. Rep. 2022, 14, 419-433. https://doi.org/10.3390/pediatric14040050
Buile D, Pilmane M, Akota I. Evaluation of the Multiple Tissue Factors in the Cartilage of Primary and Secondary Rhinoplasty in Cleft Lip and Palate Patients. Pediatric Reports. 2022; 14(4):419-433. https://doi.org/10.3390/pediatric14040050
Chicago/Turabian StyleBuile, Dace, Mara Pilmane, and Ilze Akota. 2022. "Evaluation of the Multiple Tissue Factors in the Cartilage of Primary and Secondary Rhinoplasty in Cleft Lip and Palate Patients" Pediatric Reports 14, no. 4: 419-433. https://doi.org/10.3390/pediatric14040050
APA StyleBuile, D., Pilmane, M., & Akota, I. (2022). Evaluation of the Multiple Tissue Factors in the Cartilage of Primary and Secondary Rhinoplasty in Cleft Lip and Palate Patients. Pediatric Reports, 14(4), 419-433. https://doi.org/10.3390/pediatric14040050