A Prospective Study of Medication Surveillance of a Pediatric Tertiary Care Hospital in Lahore, Pakistan
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Setting
2.2. Ethical Consideration
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Obreli-Neto, P.R.; Nobili, A.; de Lyra, D.P., Jr.; Pilger, D.; Guidoni, C.M.; de Oliveira Baldoni, A.; Cruciol-Souza, J.M.; Freitas, A.L.d.; Tettamanti, M.; Gaeti, W.P.; et al. Incidence and predictors of adverse drug reactions caused by drug-drug interactions in elderly outpatients: A prospective cohort study. J. Pharm. Pharm. Sci. 2012, 15, 332–343. [Google Scholar] [PubMed] [Green Version]
- Masnoon, N.; Shakib, S.; Kalisch-Ellett, L.; Caughey, G.E. What is polypharmacy? A systematic review of definitions. Biomed. Cent. Geriatr. 2017, 17, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, A.; Mbamalu, D.; Ebrahimi, S.; Khan, A.A.; Chan, T.F. The prevalence of polypharmacy in elderly attenders to an emergency department-A problem with a need for an effective solution. Int. J. Emerg. Med. 2011, 4, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halli-Tierney, A.D.; Scarbrough, C.; Carroll, D. Polypharmacy: Evaluating risks and deprescribing. Am. Acad. Fam. Physician 2019, 100, 32–38. [Google Scholar]
- Rambhade, S.; Chakarborty, A.; Shrivastava, A.; Patil, U.K.; Rambhade, A. A survey on polypharmacy and use of inappropriate medications. Toxicol. Int. 2012, 19, 68–73. [Google Scholar]
- Dookeeram, D.; Bidaisee, S.; Paul, J.F.; Nunes, P.; Robertson, P.; Maharaj, V.R.; Sammy, I. Polypharmacy and potential drug-drug interactions in emergency department patients in the Caribbean. Int. J. Clin. Pharm. 2017, 39, 1119–1127. [Google Scholar] [CrossRef] [Green Version]
- Chhun, S.; Verstuyft, C.; Rizzo-Padoin, N.; Simoneau, G.; Becquemont, L.; Peretti, I.; Swaisland, A.; Wortelboer, R.; Bergmann, J.F.; Mouly, S. Gefitinib—Phenytoin interaction is not correlated with the 14 C-erythromycin breath test in healthy male volunteers. Br. J. Clin. Pharmacol. 2009, 68, 226–237. [Google Scholar] [CrossRef] [Green Version]
- Davies, E.C.; Green, C.F.; Taylor, S.; Williamson, P.R.; Mottram, D.R.; Pirmohamed, M. Adverse drug reactions in hospital in-patients: A prospective analysis of 3695 patient-episodes. Public Libr. Sci. One 2009, 4, e4439. [Google Scholar] [CrossRef] [Green Version]
- Kaushal, R.; Bates, D.W.; Landrigan, C.; Mckenna, K.J.; Clapp, M.D.; Federico, F.; Goldmann, D.A. Medication Errors and Adverse Drug Events in Pediatric Inpatients. J. Am. Med. Assoc. 2001, 285, 2114–2120. [Google Scholar] [CrossRef]
- Feinstein, J.; Dai, D.; Zhong, W.; Freedman, J.; Feudtner, C. Potential drug-drug interactions in infant, child, and adolescent patients in Children’s Hospitals. Pediatrics 2015, 135, e99-108. [Google Scholar] [CrossRef]
- Swaminathan, S.; Rekha, B. Pediatric tuberculosis: Global overview and challenges. Clin. Infect. Dis. 2010, 50, S184–S194. [Google Scholar] [CrossRef]
- Janchawee, B.; Owatranporn, T.; Mahatthanatrakul, W.; Chongsuvivatwong, V. Clinical drug interactions in outpatients of a university hospital in Thailand. J. Clin. Pharm. Ther. 2005, 30, 583–590. [Google Scholar] [CrossRef]
- Murtaza, G.; Khan, M.Y.G.; Azhar, S.; Khan, S.A.; Khan, T.M. Assessment of potential drug-drug interactions and its associated factors in the hospitalized cardiac patients. Saudi Pharm. J. 2016, 24, 220–225. [Google Scholar] [CrossRef] [Green Version]
- Patel, P.S.; Rana, D.A.; Suthar, J.V.; Malhotra, S.D.; Patel, V.J. A study of potential adverse drug-drug interactions among prescribed drugs in medicine outpatient department of a tertiary care teaching hospital. J. Basic Clin. Pharm. 2014, 5, 44–48. [Google Scholar]
- Sharifi, H.; Hasanloei, M.A.V.; Mahmoudi, J. Polypharmacy-induced drug-drug interactions; Threats to patient safety. Drug Res. 2014, 64, 633–637. [Google Scholar] [CrossRef]
- Steadman, E.; Raisch, D.W.; Bennett, C.L.; Esterly, J.S.; Becker, T.; Postelnick, M.; McKoy, J.M.; Trifilio, S.; Yarnold, P.R.; Scheetz, M.H. Evaluation of a potential clinical interaction between ceftriaxone and calcium. Antimicrob. Agents Chemother. 2010, 54, 1534–1540. [Google Scholar] [CrossRef] [Green Version]
- Noor, S.; Ismail, M.; Khadim, F. Potential drug-drug interactions associated with adverse clinical outcomes and abnormal laboratory findings in patients with malaria. Malar. J. 2020, 19, 316. [Google Scholar] [CrossRef]
- Dasgupta, A.; Dennen, D.A.; Dean, R.; McLawhon, R.W. Displacement of phenytoin from serum protein carriers by antibiotics: Studies with ceftriazone, nafcillin, and sulfamethoxazole. Clin. Chem. 1991, 37, 98–100. [Google Scholar] [CrossRef]
- Kakkar, A.; Chilkoti, G.; Mohta, M.; Sethi, A.K.; Arora, M. Phenytoin induced sinoatrial bradyarrhythmia in the perioperative period. Indian J. Anaesth. 2013, 57, 628–630. [Google Scholar] [CrossRef]
- Macdougall, L.G.; Taylor-Smith, A.; Rothberg, A.D.; Thomson, P.D. Piroxicam poisoning in a 2-year-old child. A case report. South Afr. Med. J. 1984, 66, 31–33. [Google Scholar]
- Adefurin, A.; Sammons, H.; Jacqz-Aigrain, E.; Choonara, I. Ciprofloxacin safety in paediatrics: A systematic review. Arch. Dis. Child. 2011, 96, 874–880. [Google Scholar] [CrossRef] [Green Version]
- Kohler, G.I.; Bode-Boger, S.M.; Busse, R.; Hoopmann, M.; Welte, T.; Boger, R.H. Drug-drug interactions in medical patients: Effects of in-hospital treatment and relation to multiple drug use. Int. J. Clin. Pharmacol. Ther. 2000, 38, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Nobili, A.; Garattini, S.; Mannucci, P.M. Multiple Diseases and Polypharmacy in the Elderly: Challenges for the Internist of the Third Millennium. J. Comorbidity 2011, 1, 28–44. [Google Scholar] [CrossRef] [PubMed]
- Chatsisvili, A.; Sapounidis, I.; Pavlidou, G.; Zoumpouridou, E.; Karakousis, V.A.; Spanakis, M.; Teperikidis, L.; Niopas, I. Potential drug-drug interactions in prescriptions dispensed in community pharmacies in Greece. Pharm. World Sci. 2010, 32, 187–193. [Google Scholar] [CrossRef] [PubMed]
Sr. No. | Interaction | Interaction Severity | Clinical Outcomes | Class of Interaction | Prevalence |
---|---|---|---|---|---|
1 | Ceftriaxone + calcium gluconate | Severe | Fatal particulate precipitation in lungs and kidneys. | Pharmacokinetic | 25% |
2 | Ceftriaxone + phenytoin | Minor | Ceftriaxone increases toxicity of phenytoin. | Pharmacodynamic | 13.50% |
3 | Amikacin + vancomycin | Moderate | Both increase nephrotoxicity. | Pharmacodynamic | 9.60% |
4 | Piroxicam + captopril | Moderate | Pharmacodynamic antagonism increases toxicity. | Pharmacodynamic | 9.60% |
5 | Captopril + ciprofloxacin | Moderate | Captopril increases toxicity of ciprofloxacin. | Pharmacodynamic | 7.70% |
6 | Losartan + captopril | Severe | Increases toxicity by pharmacodynamic synergism. | Pharmacodynamic | 5.80% |
7 | Piperacillin + vancomycin | Severe | Increases nephrotoxicity and ototoxicity. | Pharmacodynamic | 3.80% |
8 | Furosemide + amikacin | Severe | Increase toxicity by pharmacodynamic synergism. | Pharmacodynamic | 3.80% |
9 | Sodium bicarbonate + digoxin | Severe | Sodium bicarbonate enhances the digoxin levels by increasing gastric pH. | Pharmacokinetic | 3.80% |
10 | Clarithromycin + moxifloxacin | Severe | Clarithromycin and moxifloxacin both increase QTc interval. | Pharmacodynamic | 3.80% |
11 | Aspirin + spiranolactone | Moderate | Aspirin decreases effect of spironolactone. | Pharmacodynamic | 1.90% |
12 | Carbamazepine + nitrazipam | Moderate | Carbamazepine affects the hepatic/intestinal enzyme CYP3A4 metabolism and decreases the level or effect of diazepam. | Pharmacokinetic | 1.90% |
13 | Linezolid + tramadol | Severe | Both increase serotonin level. Linezolid increases serotonin by inhibition of MAO. | Pharmacodynamic | 1.90% |
14 | Promethazine + clarithromycin | Severe | Both increase QT interval. | Pharmacodynamic | 1.90% |
15 | Clarithromycin + hydrocortisone | Severe | Clarithromycin affects the hepatic/intestinal enzyme CYP3A4 metabolism and enhances the hydrocortisone level/effect. | Pharmacokinetic | 1.90% |
16 | Rifampicin + isoniazid | Severe | Rifampicin increases toxicity of isoniazid. | Pharmacokinetic | 1.90% |
17 | Rifampicin + pyrazinamide | Severe | Rifampicin increases toxicity of pyrazinamide. | Pharmacodynamic | 1.90% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawaz, H.A.; Khan, T.M.; Adil, Q.; Goh, K.W.; Ming, L.C.; Blebil, A.Q.; Lee, K.S.; Dhaliwal, J.S. A Prospective Study of Medication Surveillance of a Pediatric Tertiary Care Hospital in Lahore, Pakistan. Pediatr. Rep. 2022, 14, 312-319. https://doi.org/10.3390/pediatric14020038
Nawaz HA, Khan TM, Adil Q, Goh KW, Ming LC, Blebil AQ, Lee KS, Dhaliwal JS. A Prospective Study of Medication Surveillance of a Pediatric Tertiary Care Hospital in Lahore, Pakistan. Pediatric Reports. 2022; 14(2):312-319. https://doi.org/10.3390/pediatric14020038
Chicago/Turabian StyleNawaz, Hafiz Awais, Tahir Mehmood Khan, Qendeel Adil, Khang Wen Goh, Long Chiau Ming, Ali Qais Blebil, Kah Seng Lee, and Jagjit Singh Dhaliwal. 2022. "A Prospective Study of Medication Surveillance of a Pediatric Tertiary Care Hospital in Lahore, Pakistan" Pediatric Reports 14, no. 2: 312-319. https://doi.org/10.3390/pediatric14020038
APA StyleNawaz, H. A., Khan, T. M., Adil, Q., Goh, K. W., Ming, L. C., Blebil, A. Q., Lee, K. S., & Dhaliwal, J. S. (2022). A Prospective Study of Medication Surveillance of a Pediatric Tertiary Care Hospital in Lahore, Pakistan. Pediatric Reports, 14(2), 312-319. https://doi.org/10.3390/pediatric14020038