Genome Sequence and Characterization of Bacillus cereus Endophytes Isolated from the Alectra sessiliflora and Their Biotechnological Potential
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation, Maintenance, and Growth of Bacterial Strains
2.2. Phenotypic Characterization of Bacillus cereus AS_3 and Bacillus cereus AS_5
2.3. Total DNA Extraction, Library Preparation, and Sequence
2.4. Genome De Novo Assembly and Annotation
2.5. Phylogenome Analysis
3. Results and Discussion
3.1. Basic Genomic Characteristics of Bacillus cereus AS_3 and Bacillus cereus AS_5
3.2. Functional Annotation
3.2.1. In Silico Identification and Characterization of Biosynthetic Gene Clusters
3.2.2. Genes Involved in Endophytic Lifestyle
3.2.3. Genes Responsible for Bioremediation
3.3. Phenotypic Characterisation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Husseiny, S.M.; Dishisha Soliman, H.A.; Adeleke, R.; Raslan, M. Characterization of growth-promoting bacterial endophytes isolated from Artemisia annua L. S. Afr. J. Bot. 2021, 143, 238–247. [Google Scholar] [CrossRef]
- Hardoim, P.R.; van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol. Mol. Biol. 2015, 79, 293–320. [Google Scholar] [CrossRef] [PubMed]
- Nair, D.N.; Padmavathy, S. Impact of endophytic microorganisms on plants, environment, and humans. Sci. World J. 2014, 2014, 250693. [Google Scholar] [CrossRef]
- Sturz, A.V.; Christie, B.R.; Nowak, J. Bacterial endophytes: Potential role in developing sustainable systems of Crop Production. CRC Crit. Rev. Plant Sci. 2000, 19, 1–30. [Google Scholar] [CrossRef]
- Ma, Y.; Rajkumar, M.; Zhang, C.; Freitas, H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J. Environ. Manag. 2016, 174, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Vejan, P.; Abdullah, R.; Khadiran, T.; Ismail, S.; Nasrulhaq, B.A. Role of plant growth promoting rhizobacteria in agricultural sustainability a review. Molecules 2016, 21, 573. [Google Scholar] [CrossRef]
- Sharma, I.P.; Chandra, S.; Kumar, N.; Chandra, D. PGPR: Heart of soil and their role in soil fertility. In Agriculturally Important Microbes for Sustainable Agriculture; Meena, S., Mishra, P.K., Bisht, J.K., Pattanayak, A., Eds.; Springer: Singapore, 2017; Volume 1, pp. 51–67. [Google Scholar]
- Gouda, S.; Das, G.; Sen, S.K.; Shin, H.S.; Patra, J.K. Endophytes: A Treasure House of Bioactive Compounds of Medicinal Importance. Front. Microbiol. 2016, 7, 1538. [Google Scholar] [CrossRef]
- Chu, L.L.; Bae, H. Bacterial endophytes from ginseng and their biotechnological application. J. Ginseng. Res. 2022, 46, 1–10. [Google Scholar] [CrossRef]
- Strobel, G.A. Endophytes as sources of bioactive products. Microbes Infect. 2003, 5, 535–544. [Google Scholar] [CrossRef]
- Maela, M.P.; Serepa-Dlamini, M.H. Genome Sequence and Characterisation of PeriBacillus cereus AS_2, a Bacterial Endophyte Isolated from Alectra sessiliflora. Res. J. Microbiol. 2023, 15, 50–65. [Google Scholar]
- Foysal, M.J.; Lisa, A.K. Isolation and characterization of Bacillus sp. strain BC01 from soil displaying potent antagonistic activity against plant and fish pathogenic fungi and bacteria. J. Genet. Eng. Biotechnol. 2018, 16, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, W.L.; Munakata, N.; Horneck, G.; Melosh, H.J.S.P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 2000, 64, 548–572. [Google Scholar] [CrossRef]
- Romero, D.; García, A.P.; Rivera, M.E.; Cazorla, F.M.; Vicente, A. Isolation and evaluation of antagonistic bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca. Appl. Microbiol. Biotechnol. 2004, 64, 263–269. [Google Scholar] [CrossRef]
- Ran, C.; Carrias, A.; Williams, M.A.; Capps, N.; Dan, B.C.T.; Newton, J.C. Identification of Bacillus strains for biological control of catfish pathogens. PLoS ONE 2012, 7, e45793. [Google Scholar] [CrossRef]
- Santoyo, G.; del Orozco-Mosqueda, M.C.; Govindappa, M. Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: A review. Biocontrol Sci. Technol. 2012, 22, 855–872. [Google Scholar] [CrossRef]
- Shrestha, B.K.; Karki, H.S.; Growth, D.E.; Jungkhun, N.; Ham, J.H. Biological control activities of rice-associated Bacillus sp. strains against sheath blight and bacterial panicle blight of rice. PLoS ONE 2016, 11, e0146764. [Google Scholar] [CrossRef]
- Maela, M.P.; van der Walt, H.; Serepa-Dlamini, M.H. The Antibacterial, Antitumor Activities, and Bioactive Constituents’ Identification of Alectra sessiliflora Bacterial Endophytes. Front. Microbiol. 2022, 5, 870821. [Google Scholar] [CrossRef]
- Morawetz, J.J.; and Wolfe, A.D. Taxonomic revision of the Alectra sessiliflora complex (Orobanchaceae). Syst. Bot. 2011, 36, 141–152. [Google Scholar] [CrossRef]
- Gasa, N. Antibiofilm Activity of South African Plant Extracts Against Mycobacterium spp. and Their Mechanism of Action Using Mycothiol Reductase. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2015. [Google Scholar]
- Katembo, S.P.; Mukatakamba, G.K.; Charles, V.; Ngulusansi, A. Clinical trial of Alectra sessiliflora (VAHL.) Kunze powder in the treatment of sheep’s foot rot in Lubero territory (North-Kivu/DR Congo). J. Anim. Plant. Sci. 2021, 48, 8722–8728. [Google Scholar]
- Ogbole, O.; Ajaiyeoba, E. Traditional management of tuberculosis in Ogun State of Nigeria: The practice and ethnobotanical survey. Afr. J. Tradit.Complement. Altern. Med. 2010, 7, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Oosthuizen, C.B.; Gasa, N.; Hamilton, C.J.; Lall, N. Inhibition of mycothione disulphide reductase and mycobacterial biofilm by selected South African plants. S. Afr. J. Bot. 2019, 120, 291–297. [Google Scholar] [CrossRef]
- Ding, T.; Melcher, U. Influences of plant species, season, and location on leaf endophytic bacterial communities of non-cultivated plants. PLoS ONE 2016, 11, e0150895. [Google Scholar] [CrossRef]
- Logan, N.A.; Berge, O.; Bishop, A.H.; Busse, H.J.; De Vos, P.; Fritze, D.; Heyndrickx, M.; Kampfer, P.; Rabinovitch, L.; Salkinoja-Salonen, M.S.; et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int. J. Syst. Evol. Microbiol. 2009, 59, 2114–2121. [Google Scholar] [CrossRef]
- Cappuccino, J.G.; Sherman, N. Microbiology: A Laboratory Manual, 10th ed.; Pearson India Education Services Pvt. Ltd.: Noida, India, 2014. [Google Scholar]
- Afgan, E.; Baker, D.; Batut, B.; Van Den Beek, M.; Bouvier, D.; Čech, M.; Chilton, J.; Clements, D.; Coraor, N.; Grüning, B.A.; et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. J. Nucleic Acids 2018, 46, W537–W544. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 20 June 2024).
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS. Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. J. Bioinform. 2013, 15, 1072–1075. [Google Scholar] [CrossRef]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. J. Nucleic Acids 2016, 44, 6614–6624. [Google Scholar] [CrossRef] [PubMed]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Ouk Kim, Y.; Park, S.C.; Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef]
- Bertelli, C.; Laird, M.R.; Williams, K.P.; Simon, F.; Lau, B.Y.; Hoad, G.; Winsor, G.L.; Brinkman, F.S. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017, 45, W30–W35. [Google Scholar] [CrossRef]
- Blom, J.; Kreis, J.; Spanig, S.; Juhre, T.; Bertelli, C.; Ernst, C. EDGAR 2.0: An enhanced software platform for comparative gene content analyses. Nucleic Acids Res. 2016, 44, W22–W28. [Google Scholar] [CrossRef]
- Grissa, I.; Vergnaud, G.; Pourcel, C. CRISPRFinder: A web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 2007, 35, W52–W57. [Google Scholar] [CrossRef]
- Abby, S.S.; Néron, B.; Ménager, H.; Touchon, M.; Rocha, E.P. MacSyFinder: A program to mine genomes for molecular systems with an application to CRISPR-Cas systems. PLoS ONE 2014, 9, e110726. [Google Scholar] [CrossRef]
- Couvin, D.; Bernheim, A.; Toffano-Nioche, C.; Touchon, M.; Michalik, J.; Néron, B.; Rocha, E.P.; Vergnaud, G.; Gautheret, D.; Pourcel, C. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018, 46, W246–W251. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Steinke, K.; Villebro, R.; Ziemert, N.; Lee, S.Y.; Medema, M.H.; Weber, T. antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019, 47, W81–W87. [Google Scholar] [CrossRef]
- Auch, A.F.; von Jan, M.; Klenk, H.P.; Göker, M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genom. Sci. 2010, 2, 117–134. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidis, K.T.; Tiedje, J.M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. USA 2005, 102, 2567–2572. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.; Rosselló-Móra, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef] [PubMed]
- Pinski, A.; Betekhtin, A.; Hupert-Kocurek, K.; Mur, L.A.J.; Hasterok, R. Defining the genetic basis of plant–endophytic bacteria interactions. Int. J. Mol. Sci. 2018, 20, 1947. [Google Scholar] [CrossRef]
- Okoduwa, S.I.R.; Igiri, B.; Udeh, C.B.; Edenta, C.; Gauje, B. Tannery effluent treatment by yeast species isolates from watermelon. Toxics 2017, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Egamberdieva, D.; Wirth, S.J.; Alqarawi, A.A.; Abd_Allah, E.F.; Hashem, A. Phytohormones and beneficial microbes: Essential components for plants to balance stress and fitness. Front. Microbiol. 2017, 8, 2104. [Google Scholar] [CrossRef]
- Taghavi, S.; van der Lelie, D.; Hoffman, A.; Zhang, Y.B.; Walla, M.D.; Vangronsveld, J.; Newman, L.; Monchy, S. Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet. 2010, 6, e1000943. [Google Scholar] [CrossRef]
- Ali, D.; Duan, J.; Charles, T.C.; Glick, B.R. A bioinformatics approach to the determination of genes involved in endophytic behaviour in Burkholderia spp. J. Theor. Biol. 2014, 343, 193–198. [Google Scholar] [CrossRef]
- Hall, R.J.; Whelan, F.J.; McInerney, J.O.; Ou, Y.; Domingo-Sananes, M.R. Horizontal Gene Transfer as a Source of Conflict and Cooperation in Prokaryotes. Front. Microbiol. 2020, 11, 1569. [Google Scholar] [CrossRef]
- Gogarten, J.P.; Townsend, J.P. Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Microbiol. 2005, 3, 679–687. [Google Scholar] [CrossRef]
- Baltrus, D.A. Exploring the costs of horizontal gene transfer. Trends Ecol. Evol. 2013, 28, 489–495. [Google Scholar] [CrossRef]
- Polz, M.F.; Alm, E.J.; Hanage, W.P. Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet. 2013, 29, 170–175. [Google Scholar] [CrossRef] [PubMed]
- McInerney, J.O.; McNally, A.; O’Connell, M.J. Why prokaryotes have pangenomes. Nat. Microbiol. 2017, 2, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.B.; Xiong, L.; Zhang, K.Y.; Dong, C.; Zhang, F.Z.; Woo, P.C. Identification and analysis of genomic islands in Burkholderia cenocepacia AU 1054 with emphasis on pathogenicity islands. BMC. Microbiol. 2017, 17, 73. [Google Scholar] [CrossRef]
- Koumoutsi, A.; Chen, X.H.; Henne, A.; Liesegang, H.; Hitzeroth, G.; Franke, P.; Vater, J.; Borriss, R. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 2004, 186, 1084–1096. [Google Scholar] [CrossRef]
- Ton, S.G.; Kim, T.; Pham, V.C.; Smidt, H.; Detmer, S. Diversity of Bacterial Secondary Metabolite Biosynthetic Gene Clusters in Three Vietnamese Sponges. Mar. Drugs 2022, 21, 29. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, C.; Mendez, C.; Salas, J.A. Indolocarbazole Natural Products: Occurrence, Biosynthesis, and Biological Activity. Nat. Prod. Rep. 2006, 23, 1007–1045. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, K.; Kizhakkekalam, V.K.; Joy, M.; Chakraborty, R.D. Bacillibactin class of siderophore antibiotics from a marine symbiotic Bacillus as promising antibacterial agents. Appl. Microbiol. Biotechnol. 2022, 106, 329–340. [Google Scholar] [CrossRef]
- Neubauer, H. Characterization of moeB—Part of the molybdenum cofactor biosynthesis gene cluster in Staphylococcus carnosus. FEMS Microbiol. Lett. 1998, 164, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Cendrowski, S.; MacArthur, W.; Hanna, P. Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol. Microbiol. 2004, 51, 407–417. [Google Scholar] [CrossRef]
- Kunst, F.; Ogasawara, N.; Moszer, I.; Albertini, A.M.; Alloni, G.; Azevedo, V.; Bertero, M.G.; Bessières, P.; Bolotin, A.; Borchert, S.; et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 1997, 390, 249–256. [Google Scholar] [CrossRef]
- Shastry, R.P.; Welch, M.; Rai, V.R.; Ghate, S.D.; Sandeep, K.; Rekha, P.D. The whole-genome sequence analysis of Enterobacter cloacae strain Ghats1: Insights into endophytic lifestyle-associated genomic adaptations. Arch. Microbiol. 2020, 202, 1571–1579. [Google Scholar] [CrossRef]
- Compant, S.; Clément, C.; Sessitsch, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil. Biol. Biochem. 2010, 42, 669–678. [Google Scholar] [CrossRef]
- Scharf, B.E.; Hynes, M.J.; Alexandre, G. Chemotaxis signaling systems in model beneficial plant–bacteria associations. Plant Mol. Biol. 2016, 90, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.F.; Qian, W. The roles of histidine kinases in sensing host plant and cell–cell communication signal in a phytopathogenic bacterium. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20180311. [Google Scholar] [CrossRef]
- Badri, D.V.; Weir, T.L.; van der Lelie, D.; Vivanco, J.M. Rhizosphere chemical dialogues: Plant–microbe interactions. Curr. Res. Biotechnol. 2009, 20, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Li, C.; Xie, J. The underling mechanism of bacterial TetR/AcrR family transcriptional repressors. Cell. Signal. 2013, 25, 1608–1613. [Google Scholar] [CrossRef]
- Liu, G.F.; Wang, X.X.; Su, H.Z.; Lu, G.T. Progress on the GntR family transcription regulators in bacteria. Yi Chuan. 2021, 43, 66–73. [Google Scholar]
- Ko, M.; Park, C. H-NS-Dependent regulation of flagellar synthesis is mediated by a LysR family protein. J. Bacteriol. 2000, 182, 4670–4672. [Google Scholar] [CrossRef]
- Park, S.C.; Kwak, Y.M.; Song, W.S.; Hong, M.; Yoon, S. Structural basis of effector and operator recognition by the phenolic acid-responsive transcriptional regulator PadR. Nucleic Acids Res. 2017, 45, 13080–13093. [Google Scholar] [CrossRef]
- Kamimura, N.; Takahashi, K.; Mori, K.; Araki, T.; Fujita, M.; Higuchi, Y.; Eiji, M. Bacterial catabolism of lignin-derived aromatics: New findings in a recent decade: Update on bacterial lignin catabolism. Environ. Microbiol. Rep. 2017, 9, 679–705. [Google Scholar] [CrossRef]
- Fernandez, R.C.; Weiss, A.A. Cloning and sequencing of a Bordetella pertussis serum resistance locus. Infect. Immun. 1994, 62, 4727–4738. [Google Scholar] [CrossRef] [PubMed]
- Materon, I.C.; Queenan, A.M.; Koehler, T.M.; Bush, K.; Palzkill, T. Biochemical Characterization of -Lactamases Bla1 and Bla2 from Bacillus anthracis. Antimicrob. Agents Chemother. 2003, 47, 2040–2042. [Google Scholar] [CrossRef]
- Kendrew, S.G.; Federici, L.; Savino, C.; Miele, A.; Marsh, E.N.; Vallone, B. Crystallization and preliminary X-ray diffraction studies of a monooxygenase from Streptomyces coelicolor A3 (2) involved in the biosynthesis of the polyketide actinorhodin. Acta Crystallogr. D Struct. Biol. 2000, 56, 481–483. [Google Scholar] [CrossRef]
- Ye, J.; Dickens, M.L.; Plater, R.; Li, Y.; Lawrence, J.; Strohl, W.R. Isolation and sequence analysis of polyketide synthase genes from the daunomycin-producing Streptomyces sp. strain C5. J. Bacteriol. 1994, 176, 6270–6280. [Google Scholar] [CrossRef]
- Grocholski, T.; Oja, T.; Humphrey, L.; Mantsala, P.; Niemi, J.; Metsa-Ketela, M. Characterization of the two-component monooxygenase system AlnT/AlnH reveals early timing of quinone formation in alnumycin biosynthesis. J. Bacteriol. 2012, 194, 2829–2836. [Google Scholar] [CrossRef]
- Hayat, S.; Ahmad, A. Salicylic Acid: A Plant Hormone; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Arora, N.K.; Singh, R.B. Growth enhancement of medicinal plant Withania somnifera using phosphate solubilizing endophytic bacteria Pseudomonas sp. as bioinoculant. Int. J. Sci. Res. Sci. Technol. 2016, 2, 1–2. [Google Scholar] [CrossRef]
- Hesham, A.E.L.; Mawad, A.M.; Mostafa, Y.M.; Shoreit, A. Biodegradation ability and catabolic genes of petroleum-degrading Sphingomonas koreensis strain ASU-06 isolated from Egyptian oily soil. BioMed Res. Int. 2014, 2014, 127674. [Google Scholar] [CrossRef]
- Sreedevi, P.R.; Suresh, K.; Jiang, G. Bacterial bioremediation of heavy metals in wastewater: A review of processes and applications. J. Water Process Eng. 2022, 48, 102884. [Google Scholar] [CrossRef]
- Wang, D.; Ning, Q.; Deng, Z.; Zhang, M.; You, J. Role of environmental stresses in elevating resistance mutations in bacteria: Phenomena and mechanisms. Environ. Pollut. 2022, 307, 119603. [Google Scholar] [CrossRef] [PubMed]
- Priya, A.K.; Gnanasekaran, L.; Dutta, K.; Rajendran, S.; Balakrishnan, D.; Soto-Moscoso, M. Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms. Chemosphere 2022, 307, 135957. [Google Scholar] [CrossRef] [PubMed]
- Rana, K.L.; Kour, D.; Kaur, T.; Devi, R.; Yadav, A.N.; Yadav, N.; Dhaliwal, H.S.; Saxena, A.K. Endophytic microbes: Biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. ALJMAO 2020, 113, 1075–1107. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Chen, W.; Liu, S.; Wu, J.; Zhu, Y.; Qin, L.; Zhu, B. Beneficial relationships between endophytic bacteria and medicinal plants. Front. Plant Sci. 2021, 12, 646146. [Google Scholar] [CrossRef]
- Mitra, A.; Chatterjee, S.; Kataki, S.; Rastogi, R.P.; Gupta, D.K. Bacterial tolerance strategies against lead toxicity and their relevance in bioremediation application. Environ. Sci. Pollut. Res. Int. 2021, 28, 14271–14284. [Google Scholar] [CrossRef] [PubMed]
- Maumela, P.; Magida, S.; Serepa-Dlamini, M.H. Bioremediation of Pb contaminated water using a novel Bacillus sp. strain MHSD_36 isolated from Solanum nigrum. PLoS ONE 2024, 19, e0302460. [Google Scholar] [CrossRef]
- Rensing, C.; Grass, G. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol. Rev. 2003, 27, 197–213. [Google Scholar] [CrossRef]
- Haritash, A.K.; Kaushik, C.P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 2009, 169, 1–15. [Google Scholar] [CrossRef]
- Behlau, F.; Gochez, A.M.; Lugo, A.J.; Elibox, W.; Minsavage, G.V.; Potnis, N.; White, F.F.; Ebrahim, M.; Jones, J.B.; Ramsubhag, A. Characterization of a unique copper resistance gene cluster in Xanthomonas campestris pv. campestris isolated in Trinidad, West Indies. Eur. J. Plant Pathol. 2016, 147, 671–681. [Google Scholar] [CrossRef]
- Park, C.; Shin, B.; Park, W. Protective role of bacterial alkanesulfonate monooxygenase under oxidative stress. Appl. Microbiol.Biotechnol. 2020, 86, e00692-20. [Google Scholar] [CrossRef] [PubMed]
- Antje, K.; Vermeij, P.; Wietek, C.; James, P.; Leisinger, T.; Kertesz, M.A. The ssu Locus Plays a Key Role in Organosulfur Metabolism in Pseudomonas putida S-313. J. Bacteriol. 2000, 182, 2869–2878. [Google Scholar]
- Kwasiborski, A.; Mondy, S.; Chong, T.M.; Chan, K.G.; Beury-Cirou, A.; Faure, D. Core genome and plasmidome of the quorumquenching bacterium Rhodococcus erythropolis. Genetica 2015, 143, 253–261. [Google Scholar] [CrossRef]
- Afordoanyi, D.M.; Akosah, Y.A.; Shnakhova, L.; Saparmyradov, K.; Gilles, R.; Validov, S. Biotechnological Key Genes of the Rhodococcus erythropolis MGMM8 Genome: Genes for Bioremediation, Antibiotics, Plant Protection, and Growth Stimulation. Microorganisms 2023, 12, 88. [Google Scholar] [CrossRef]
- Yue, Z.; Chen, Y.; Wang, Y.; Zheng, L.; Zhang, Q.; Liu, Y.; Hu, C.; Chen, C.; Ma, K.; Sun, Z. Halotolerant Bacillus altitudinis WR10 improves salt tolerance in wheat via a multi-level mechanism. Front. Plant Sci. 2022, 13, 941388. [Google Scholar] [CrossRef]
- Bijlani, S.; Singh, N.K.; Eedara, V.V.R.; Podile, A.R.; Mason, C.E.; Wang, C.C.C.; Venkateswaran, K. Methylobacterium ajmalii sp. nov., Isolated From the International Space Station. Front. Microbiol. 2021, 12, 639396. [Google Scholar] [CrossRef]
- Tian, X.; Teo, A.; Yang, Y.; Dong, L.; Wong, A.; Chen, L.; Ahmed, H.; Choo, S.W.; Jakubovics, N.S.; Tan, A. Genome characterisation and comparative analysis of Schaalia dentiphila sp. nov. and its subspecies, S. dentiphila subsp. denticola subsp. nov., from the human oral cavity. BMC Microbiol. 2024, 24, 1. [Google Scholar]
- Choo, S.W.; Rishik, S.; Wee, W.Y. Comparative genome analyses of Mycobacteroides immunogenum reveals two potential novel subspecies. Microb. Genom. 2020, 6, 12. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-R, L.M.; Konstantinidis, K.T. Bypassing Cultivation To Identify Bacterial Species: Culture-independent genomic approaches identify credibly distinct clusters, avoid cultivation bias, and provide true insights into microbial species. Microbe 2014, 9, 111–118. [Google Scholar] [CrossRef]
- Khoder, M.; Osman, M.; Kassem, I.I.; Rafei, R.; Shahin, A.; Fournier, P.E.; Rolain, J.M.; Hamze, M. Whole Genome Analyses Accurately Identify Neisseria spp. and Limit Taxonomic Ambiguity. Int. J. Mol. Sci. 2022, 23, 13456. [Google Scholar] [CrossRef] [PubMed]
- Swiecicka, I. Natural occurrence of Bacillus thuringiensis and Bacillus cereus in eukaryotic organisms: A case for symbiosis. Biocontrol Sci. Technol. 2008, 18, 221–239. [Google Scholar] [CrossRef]
- Bai, Y.; D’Aoust, F.; Smith, D.L.; Driscoll, B.T. Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can. J. Microbiol. 2002, 48, 230–238. [Google Scholar] [CrossRef]
- Monnerat, R.G.; Soares, C.M.; Capdeville, G.; Jones, G.; Martins, É.S.; Praça, L.; Cordeiro, B.A.; Braz, S.V.; Dos Santos, R.C.; Berry, C. Translocation and insecticidal activity of Bacillus thuringiensis living inside of plants. Microb. Biotechnol. 2009, 2, 512–520. [Google Scholar] [CrossRef]
- McInroy, J.A.; Kloepper, J.W. Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 1995, 173, 337–342. [Google Scholar] [CrossRef]
- Mishra, P.K.; Mishra, S.; Selvakumar Bisht, J.K.; Kundu, S.; Gupta, H.S. Coinoculation of Bacillus thuringiensis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World J. Microbiol. Biotechnol. 2009, 25, 753–761. [Google Scholar] [CrossRef]
- Jeong, H.; Jo, S.H.; Hong, C.E.; Park, J.M. Genome Sequence of the Endophytic Bacterium Bacillus thuringiensis Strain KB1, a Potential Biocontrol Agent against Phytopathogens. Genome Announc. 2016, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Quist, J.C.; Rogers, H.J.; Mahenthiralingam, E.; Berry, C. Bacillus thuringiensis colonizes plant roots in a phylogeny-dependent manner. FEMS Microbiol. Ecol. 2013, 86, 474–489. [Google Scholar] [CrossRef] [PubMed]
Genome Attribute | Value of AS_3 | Value of AS_5 |
---|---|---|
Genome size (bp) | 5,503,542 | 5,510,121 |
G+C content | 35.2 | 35.2 |
Number of contigs | 59 | 38 |
Total number of genes | 5679 | 5688 |
Protein-coding genes | 5495 | 5508 |
Number of RNAs * | 62 | 60 |
Number of tRNAs | 51 | 51 |
Number of rRNAs | 2, 1, 3 (5S, 16S, 23S) | 2, 1, 1 (5S, 16S, 23S) |
Number of ncRNAs | 5 | 5 |
Number of pseudogenes ** | 122 | 120 |
CRISPR repeats regions | 4 | 4 |
Cas cluster | 3 | 0 |
From (bp) | To (bp) | Type | Production | Similarity (%) | Reference |
---|---|---|---|---|---|
122,014 | 143,867 | Terpene | Molybdenum cofactor | 17 | Staphylococcus carnosus [60]. |
145,009 | 176,716 | NI-siderophore | Petrobactin | 100 | Bacillus anthracis str. Ames [61]. |
36,839 | 47,105 | RiPP-like | - | - | |
62,547 | 109,563 | NRPS | - | - | |
74,891 | 118,472 | NRPS-like | - | - | |
1 | 43,017 | NRP metallophore, NRPS | Bacillibactin | 85 | Bacillus subtilis subsp. subtilis str. 168 [62]. |
24,528 | 48,034 | LAP | - | - | |
51,086 | 116,994 | NRPS | - | - | |
2295 | 12,591 | RiPP-like | - | - | |
65,464 | 90,702 | Betalactone | Fengycin | 40 |
From (bp) | To (bp) | Type | Production | Similarity (%) | Reference |
---|---|---|---|---|---|
461,957 | 485,463 | LAP | - | - | |
164,310 | 196,017 | NI-siderophore | Petrobactin | 100 | Bacillus anthracis str. Ames [61]. |
473,136 | 524,884 | NRP metallophore, NRPS | Bacillibactin | 71 | Bacillus subtilis subsp. subtilis str. 168 [62]. |
137,812 | 159,665 | Terpene | Molybdenum cofactor | 17 | Staphylococcus carnosus [60]. |
101,600 | 111,866 | RiPP-like | - | - | |
127,308 | 174,324 | NRPS | - | - | |
74,891 | 118,472 | NRPS-like | - | - | |
10,674 | 76,582 | NRPS | - | - | |
2295 | 12,591 | RiPP-like | - | - | |
65,464 | 90,702 | Betalactone | Fengycin | 40 | Bacillus velezensis FZB42 [56] |
Genes | Gene Product | Role |
---|---|---|
CopC/CopD | Copper resistance/copper homeostasis membrane protein CopA | Increased sensitivity to copper and increased copper uptake |
corA | magnesium/cobalt transporter CorA | Transport of magnesium and cobalt |
cutC | Copper homeostasis protein CutC | Contribute to the cellular processes of copper uptake, storage, delivery, and efflux |
copZ | Copper chaperone CopZ | Copper ion binding |
Mco | Multicopper oxidase family protein | Possess high oxidase activity toward diverse substrates and are essential for iron transport in eukaryotes and prokaryotes |
ptsP | Phosphoenolpyruvate-protein phosphotransferase | Contribute to regulating nitrogen metabolismPhosphoenolpyruvate-protein phosphotransferase activity |
Hcp | Hydroxylamine reductase | Exhibits oxidoreductase activity, utilizing nitrogenous compounds as electron donors and iron–sulfur cluster binding |
hisH | Imidazole glycerol phosphate synthase subunit hisH | The hisH subunit contributes to the catalysis of the glutamine hydrolysis to glutamate and ammonia during the biosynthesis of AICAR and IGP, with the subsequent transfer of the released ammonia molecule to the active site of hisH. |
pdaA | Polysaccharide deacetylase family protein | Catalyze the removal of either N-linked acetyl group from N-acetylglucosamine residues through hydrolysis |
trxB | Thioredoxin-disulfide reductase | Hioredoxin-disulfide reductase activity |
trxA | Thioredoxin | Disulfide oxidoreductase activity |
msrA | Peptide-methionine (S)-S-oxide reductase MsrA | Reducing the S-stereoisomer of methionine sulfoxide (MetSO) to methionine |
Bcp | Thioredoxin-dependent thiol peroxidase | Antioxidant activity and oxidoreductase activity |
arsC | arsenate reductase (thioredoxin) | Arsenate reductase |
arsB | ACR3 family arsenite efflux transporter | Arsenite secondary active transmembrane transporter activity |
modA | Molybdate ABC transporter substrate-binding | Molybdate ion binding, and transport; ABC-type molybdate transporter activity |
tusA | Sulfurtransferase TusA | Contribute to sulfurtransferase-mediated tRNA modification and biosynthesis of molybdenum cofactor |
dhbA | 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase | Catalyzes the NAD(+)-dependent oxidation of the dihydroaromatic substrate 2,3-dihydro-2,3-dihydroxybenzoate (2,3-diDHB) to the aromatic catecholic |
dhbC | Isochorismate synthase DhbC | Biosynthesis of the siderophore bacillibactin |
IucA/IucC | IucA/IucC family siderophore biosynthesis protein | Biosynthesis of siderophores, including desferrioxamine, achromobactin, and petrobactin |
sodC | Superoxide dismutase [Cu-Zn] | Breaks down superoxide radicals |
sodA | Superoxide dismutase [Mn] | Inactivate harmful superoxide radicals |
phoP | Transcriptional regulatory protein PhoP | Involved in adaptation to low Mg(2+) restricted environments and in the transcriptional regulation of acid resistance genes |
Ppk | Polyphosphate kinase | Reversible synthesis of polyphosphate |
kynA kynB kynU | Tryptophan 2,3-dioxygenase/arylformamidase | Tryptophan catabolic process to kynurenine |
ssuD | FMNH2-dependent alkanesulfonate monooxygenase | Acquisition of sulfur from alkanesulfonates |
recG | ATP-dependent DNA helicase RecG | ATP binding |
dszD | Favin reductase family protein | Sulfur-specific reductase Activities |
Characteristic | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Temperature Range Optimum temperature | 15–45 30 | 15–45 30 | 16–45 30 | 15–45 30 | 15–45 30 | 10–48 30 |
pH range Optimum pH | 5–10 6–8 | 5–10 5–8 | 5–11 6–7 | 5–10 7–8 | 5–10 7 | 5.5–9 7 |
NaCl (%w/v) tolerance range Optimum NaCl (%w/v) | 0–9 0–3 | 0–9 0.5–3 | 1–6 1–2 | 0–9 1–2 | 0–9 0.5–1.0 | 0–7 0.5–1.0 |
Oxidase | + | + | + | + | + | - |
API 20E test: ON PG Arginine dihydrolase Citrate utilization Voges-Proskauer gelatinase hydrolysis Fermentation of mannitol Fermentation of glucose Fermentation of sorbitol Fermentation of inositol | - + - - + - - - - | - + - - + - - - - | - - - - - + + + + | - + + + + + + + + | - + + + + + + + + | - + + + + + + + - |
API 50 tests: Glycerol D-Ribose D-Glucose D-Mannose N-Acetylglucosamine Amygdalin Arbutin Salicin Gluconate | + + + - + - + - - | + + + - + - + - - | + + + + + + + + + | + + + - + - - - - | - - + - + + + + _ | + + + + + + + + + |
Hydrolysis of Starch Casein | + + | + + | + + | + + | + + | + + |
DNA genomic G+C content (mol%) | 35.20 | 35.20 | 35.23 | 35.20 | 35.00 | 35.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tshishonga, K.; Serepa-Dlamini, M.H. Genome Sequence and Characterization of Bacillus cereus Endophytes Isolated from the Alectra sessiliflora and Their Biotechnological Potential. Microbiol. Res. 2025, 16, 198. https://doi.org/10.3390/microbiolres16090198
Tshishonga K, Serepa-Dlamini MH. Genome Sequence and Characterization of Bacillus cereus Endophytes Isolated from the Alectra sessiliflora and Their Biotechnological Potential. Microbiology Research. 2025; 16(9):198. https://doi.org/10.3390/microbiolres16090198
Chicago/Turabian StyleTshishonga, Khuthadzo, and Mahloro Hope Serepa-Dlamini. 2025. "Genome Sequence and Characterization of Bacillus cereus Endophytes Isolated from the Alectra sessiliflora and Their Biotechnological Potential" Microbiology Research 16, no. 9: 198. https://doi.org/10.3390/microbiolres16090198
APA StyleTshishonga, K., & Serepa-Dlamini, M. H. (2025). Genome Sequence and Characterization of Bacillus cereus Endophytes Isolated from the Alectra sessiliflora and Their Biotechnological Potential. Microbiology Research, 16(9), 198. https://doi.org/10.3390/microbiolres16090198