Using the bca Gene Coupled with a Tetracycline and Macrolide Susceptibility Profile to Identify the Highly Virulent ST283 Streptococcus agalactiae Strains in Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates and Identification
2.2. Susceptibility Testing
2.3. Genomic DNA Extraction
2.4. Specific Virulence Gene Detection
2.5. Multilocus Sequence Typing (MLST)
2.6. Statistical Analysis
3. Results
3.1. Distribution of GBS Isolates and Sequence Types
3.2. Association of bca Gene and the Type of Infections
3.3. Specific Susceptibility Pattern of ST283 Versus Other STs
3.4. Using the bca Gene, Tetracycline and Macrolide Susceptibility for ST283 and Non-ST283 Detection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GBS | Group B Streptococcus, Streptococcus agalactiae |
MALDI-TOF | Matrix-assisted laser |
MS | Mass spectrometry |
HCCA | α-cyano-4-hydroxycinnamic acid matrix |
PCR | Polymerase chain reaction |
MLST | Multi-locus sequence type |
CC | Clonal complex |
ST | Sequence type |
bca | Alpha protein C gene |
TE | Tetracycline |
E | Erythromycin (macrolide) |
AZ | Azithromycin (macrolide) |
CLSI | Clinical Laboratory Standards Institute |
References
- Allen, U.; Nimrod, C.; MacDonald, N.; Toye, B.; Stephens, D.; Marchessault, V. Relationship between antenatal group B streptococcal vaginal colonization and premature labour. Paediatr. Child Health 1999, 4, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Raabe, V.N.; Shane, A.L. Group B streptococcus (Streptococcus agalactiae). Microbiol. Spectr. 2019, 7, 17. [Google Scholar] [CrossRef] [PubMed]
- Filkins, L.H.J.; Robinson-Dunn, B.; Tibbetts, R.; Boyanton, B.; Revell, P. Guidelines for the detection and identification of group B Streptococcus. J. Clin. Microbiol. 2021, 59, e01230-20. [Google Scholar]
- van der Mee-Marquet, N.; Fourny, L.; Arnault, L.; Domelier, A.S.; Salloum, M.; Lartigue, M.F.; Quentin, R. Molecular characterization of human-colonizing Streptococcus agalactiae strains isolated from throat, skin, anal margin, and genital body sites. J. Clin. Microbiol. 2008, 46, 2906–2911. [Google Scholar] [CrossRef]
- Bobadilla, F.J.; Novosak, M.G.; Cortese, I.J.; Delgado, O.D.; Laczeski, M.E. Prevalence, serotypes and virulence genes of Streptococcus agalactiae isolated from pregnant women with 35–37 weeks of gestation. BMC Infect. Dis. 2021, 21, 73. [Google Scholar] [CrossRef]
- Botelho, A.C.N.; Oliveira, J.G.; Damasco, A.P.; Santos, K.T.; Ferreira, A.F.M.; Rocha, G.T.; Marinho, P.S.; Bornia, R.B.G.; Pinto, T.C.A.; Américo, M.A.; et al. Streptococcus agalactiae carriage among pregnant women living in Rio de Janeiro, Brazil, over a period of eight years. PLoS ONE 2018, 13, e0196925. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Jones, N.; Bohnsack, J.F.; Takahashi, S.; Oliver, K.A.; Chan, M.-S.; Kunst, F.; Glaser, P.; Rusniok, C.; Crook, D.W.M.; Harding, R.M.; et al. Multilocus sequence typing system for group B Streptococcus. J. Clin. Microbiol. 2003, 41, 2530–2536. [Google Scholar] [CrossRef]
- Neemuchwala, A.; Teatero, S.; Liang, L.; Martin, I.; Demzcuk, W.; McGeer, A.; Fittipaldi, N. Genetic diversity and antimicrobial drug resistance of serotype VI Group B Streptococcus, Canada. Emerg. Infect. Dis. 2018, 24, 1941. [Google Scholar] [CrossRef]
- Gajic, I.; Plainvert, C.; Kekic, D.; Dmytruk, N.; Mijac, V.; Tazi, A.; Glaser, P.; Ranin, L.; Poyart, C.; Opavski, N. Molecular epidemiology of invasive and non-invasive group B Streptococcus circulating in Serbia. Int. J. Med. Microbiol. 2019, 309, 19–25. [Google Scholar] [CrossRef]
- Takahashi, T.; Maeda, T.; Lee, S.; Lee, D.-H.; Kim, S. Clonal distribution of clindamycin-resistant erythromycin-susceptible (CRES) Streptococcus agalactiae in Korea based on whole genome sequences. Ann. Lab. Med. 2020, 40, 370–381. [Google Scholar] [CrossRef] [PubMed]
- Barkham, T.; Zadoks, R.N.; Azmai, M.N.A.; Baker, S.; Bich, V.T.N.; Chalker, V.; Chau, M.L.; Dance, D.; Deepak, R.N.; van Doorn, H.R.; et al. One hypervirulent clone, sequence type 283, accounts for a large proportion of invasive Streptococcus agalactiae isolated from humans and diseased tilapia in Southeast Asia. PLoS Negl. Trop. Dis. 2019, 13, e0007421. [Google Scholar] [CrossRef] [PubMed]
- FAO. Risk Profile Group B Streptococcus (GBS) Streptococcus agalactiae Sequence Type (ST) 283 in Freshwater Fish; FAO: Bangkok, Thailand, 2021; ISBN 978-92-5-1-134543-6. [Google Scholar] [CrossRef]
- Mitchell, T.J. The pathogenesis of streptococcal infections: From tooth decay to meningitis. Nat. Rev. Microbiol. 2003, 1, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Pritzlaff, C.A.; Chang, J.C.; Kuo, S.P.; Tamura, G.S.; Rubens, C.E.; Nizet, V. Genetic basis for the β-haemolytic/cytolytic activity of group B Streptococcus. Mol. Microbiol. 2001, 39, 236–248. [Google Scholar] [CrossRef]
- Rosa-Fraile, M.; Dramsi, S.; Spellerberg, B. Group B streptococcal haemolysin and pigment, a tale of twins. FEMS Microbiol. Rev. 2014, 38, 932–946. [Google Scholar] [CrossRef]
- Gabrielsen, C.; Mæland, J.A.; Lyng, R.V.; Radtke, A.; Afset, J.E. Molecular characteristics of Streptococcus agalactiae strains deficient in alpha-like protein encoding genes. J. Med. Microbiol. 2017, 66, 26–33. [Google Scholar] [CrossRef]
- Maeland, J.A.; Afset, J.E.; Lyng, R.V.; Radtke, A. Survey of immunological features of the alpha-like proteins of Streptococcus agalactiae. Clin. Vaccine Immunol. 2015, 22, 153–159. [Google Scholar] [CrossRef]
- Lindahl, G.; Stålhammar-Carlemalm, M.; Areschoug, T. Surface proteins of Streptococcus agalactiae and related proteins in other bacterial pathogens. Clin. Microbiol. Rev. 2005, 18, 102–127. [Google Scholar] [CrossRef]
- Baron, M.J.; Bolduc, G.R.; Goldberg, M.B.; Aupérin, T.C.; Madoff, L.C. Alpha C protein of group B Streptococcus binds host cell surface glycosaminoglycan and enters cells by an actin-dependent mechanism. J. Biol. Chem. 2004, 279, 24714–24723. [Google Scholar] [CrossRef]
- Baron, M.J.; Filman, D.J.; Prophete, G.A.; Hogle, J.M.; Madoff, L.C. Identification of a glycosaminoglycan binding region of the alpha C protein that mediates entry of group B streptococci into host cells. J. Biol. Chem. 2007, 282, 10526–10536. [Google Scholar] [CrossRef]
- Spellerberg, B.; Rozdzinski, E.; Martin, S.; Weber-Heynemann, J.; Schnitzler, N.; Lütticken, R.; Podbielski, A. Lmb, a protein with similarities to the LraI adhesin family, mediates attachment of Streptococcus agalactiae to human laminin. Infect. Immun. 1999, 67, 871–878. [Google Scholar] [CrossRef]
- Franken, C.; Haase, G.; Brandt, C.; Weber-Heynemann, J.; Martin, S.; Lämmler, C.; Podbielski, A.; Lütticken, R.; Spellerberg, B. Horizontal gene transfer and host specificity of beta-haemolytic streptococci: The role of a putative composite transposon containing scpB and lmb. Mol. Microbiol. 2001, 41, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, H.F. Cell surface protein receptors in oral streptococci. FEMS Microbiol. Lett. 1994, 121, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Santi, I.; Scarselli, M.; Mariani, M.; Pezzicoli, A.; Masignani, V.; Taddei, A.; Grandi, G.; Telford, J.L.; Soriani, M. BibA: A novel immunogenic bacterial adhesin contributing to group B Streptococcus survival in human blood. Mol. Microbiol. 2007, 63, 754–767. [Google Scholar] [CrossRef] [PubMed]
- Santi, I.; Maione, D.; Galeotti, C.L.; Grandi, G.; Telford, J.L.; Soriani, M. BibA induces opsonizing antibodies conferring in vivo protection against group B Streptococcus. J. Infect. Dis. 2009, 200, 564–570. [Google Scholar] [CrossRef]
- Doran, K.S.; Engelson, E.J.; Khosravi, A.; Maisey, H.C.; Fedtke, I.; Equils, O.; Michelsen, K.S.; Arditi, M.; Peschel, A.; Nizet, V. Blood-brain barrier invasion by group B Streptococcus depends upon proper cell-surface anchoring of lipoteichoic acid. J. Clin. Investig. 2005, 115, 2499–2507. [Google Scholar] [CrossRef]
- O’Connell, D. Breaching the bloodbrain barrier. Nat. Rev. Microbiol. 2005, 3, 744. [Google Scholar] [CrossRef]
- Boonsilp, S.; Nealiga, M.J.; Wangchuk, K.; Homkaew, A.; Wongsuk, T.; Thuncharoon, H.; Suksomchit, P.; Wasipraphai, D.; Chaturongakul, S.; Dubbs, P. Differential interaction between Invasive Thai group B Streptococcus sequence type 283 and Caco-2 cells. Microorganisms 2022, 10, 1917. [Google Scholar] [CrossRef]
- Tulyaprawat, O.; Pharkjaksu, S.; Shrestha, R.K.; Ngamskulrungroj, P. Emergence of multi-drug resistance and its association with uncommon serotypes of Streptococcus agalactiae isolated from non-neonatal patients in Thailand. Front. Microbiol. 2021, 12, 719353. [Google Scholar] [CrossRef]
- Ip, M.; Cheuk, E.S.; Tsui, M.H.; Kong, F.; Leung, T.; Gilbert, G.L. Identification of a Streptococcus agalactiae serotype III subtype 4 clone in association with adult invasive disease in Hong Kong. J. Clin. Microbiol. 2006, 44, 4252–4254. [Google Scholar] [CrossRef]
- Luan, S.-L.; Granlund, M.; Sellin, M.; Lagergård, T.; Spratt, B.G.; Norgren, M. Multilocus sequence typing of Swedish invasive group B Streptococcus isolates indicates a neonatally associated genetic lineage and capsule switching. J. Clin. Microbiol. 2005, 43, 3727–3733. [Google Scholar] [CrossRef] [PubMed]
- Meehan, M.; Eogan, M.; McCallion, N.; Cunney, R.; Bray, J.E.; Jolley, K.A.; Unitt, A.; Maiden, M.C.; Harrison, O.B.; Drew, R.J. Genomic epidemiology of group B streptococci spanning 10 years in an Irish maternity hospital, 2008–2017. J. Infect. 2021, 83, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Candela, A.; Arroyo, M.J.; Sánchez-Molleda, Á.; Méndez, G.; Quiroga, L.; Ruiz, A.; Cercenado, E.; Marín, M.; Muñoz, P.; Mancera, L.; et al. Rapid and reproducible MALDI-TOF-based method for the detection of vancomycin-resistant Enterococcus faecium using classifying algorithms. J. Diagn. 2022, 12, 328. [Google Scholar] [CrossRef] [PubMed]
- Suwantarat, N.; Grundy, M.; Rubin, M.; Harris, R.; Miller, J.-A.; Romagnoli, M.; Hanlon, A.; Tekle, T.; Ellis, B.C.; Witter, F.R.; et al. Recognition of Streptococcus pseudoporcinus colonization in women as a consequence of using matrix-assisted laser desorption ionization–time of flight mass spectrometry for group B Streptococcus identification. J. Clin. Microbiol. 2015, 53, 3926–3930. [Google Scholar] [CrossRef]
- Metcalf, B.; Chochua, S.; Gertz, R., Jr.; Hawkins, P.; Ricaldi, J.; Li, Z.; Walker, H.; Tran, T.; Rivers, J.; Mathis, S.; et al. Short-read whole genome sequencing for determination of antimicrobial resistance mechanisms and capsular serotypes of current invasive Streptococcus agalactiae recovered in the USA. Clin. Microbiol. Infect. 2017, 23, 574. [Google Scholar] [CrossRef]
Clonal Complex (CC) | Sequence Type (ST) | The Total Number of Each ST (%) |
---|---|---|
CC1 | 1 | 75 (27.1%) |
14 | 1 (0.4%) | |
1626 | 2 (0.7%) | |
CC12 | 12 | 10 (3.6%) |
41 | 3 (1.1%) | |
361 | 1 (0.4%) | |
509 | 1 (0.4%) | |
652 | 3 (1.1%) | |
CC17 | 17 | 18 (6.5%) |
CC19 | 19 | 22 (7.9%) |
28 | 3 (1.1%) | |
335 | 2 (0.7%) | |
861 | 4 (1.4%) | |
1167 | 1 (0.4%) | |
CC23 | 23 | 16 (5.8%) |
249 | 2 (0.7%) | |
CC283 | 283 | 81 (29.2%) |
739 | 1 (0.4%) | |
751 | 1 (0.4%) | |
CC327 | 485 | 8 (2.9%) |
CC459 | 196 | 2 (0.7%) |
Non-CC | 103 | 6 (2.2%) |
314 | 6 (2.2%) | |
651 | 3 (1.1%) | |
889 | 5 (1.8%) | |
Total | 277 (100%) |
Sequence Type (ST) | Number of Isolates | Invasive Infection (%) | Non-Invasive Infection (%) | p Value |
---|---|---|---|---|
283 | 81 | 81 (100%) | 0 (0%) | p < 0.0001 * |
1 | 75 | 31 (41.33%) | 44 (58.67%) | p < 0.05 */** |
19 | 22 | 1 (4.55%) | 21 (95.45%) | p < 0.0001 ** |
Sequence Type | Total Isolates | Invasive | Non-Invasive | ||
---|---|---|---|---|---|
bca + (%) | bca − (%) | bca + (%) | bca − (%) | ||
ST283 | 81 | 81 (100) | - | - | - |
ST1 | 75 | 24 (32) | 7 (9.3) | 30 (40) | 14 (18.6) |
ST19 | 22 | - | 1 (4.5) | - | 21 (95.5) |
ST17 | 18 | - | 9 (50) | - | 9 (50) |
ST23 | 16 | - | 4 (25) | - | 12 (75) |
ST12 | 10 | 2 (20) | - | 8 (80) | - |
ST485 | 8 | - | 2 (25) | - | 6 (75) |
ST103 | 6 | - | 1 (16.7) | - | 5 (83.3) |
ST314 | 6 | 3 (50) | 1 (16.7) | - | 2 (33.3) |
ST889 | 5 | - | 2 (40) | - | 3 (60) |
ST861 | 4 | - | 2 (50) | - | 2 (50) |
ST28 | 3 | - | 1 (33.3) | - | 2 (66.7) |
ST41 | 3 | - | 1 (33.3) | - | 2 (66.7) |
ST651 | 3 | - | - | - | 3 (100) |
ST652 | 3 | - | - | 3 (100) | - |
ST196 | 2 | - | - | - | 2 (100) |
ST249 | 2 | - | - | 1 (50) | 1 (50) |
ST335 | 2 | - | - | - | 2 (100) |
ST1626 | 2 | - | - | 1 (50) | 1 (50) |
ST14 | 1 | - | - | - | 1 (100) |
ST361 | 1 | 1 (100) | - | - | - |
ST509 | 1 | 1 (100) | - | - | - |
ST739 | 1 | - | - | 1 (100) | - |
ST751 | 1 | - | - | 1 (100) | - |
ST1167 | 1 | - | - | - | 1 (100) |
Total | 277 | 112 (40.4) | 31 (11.2) | 45 (16.2) | 89 (32.1) |
Antibiotic | Susceptible Percentage | ||
---|---|---|---|
ST1 (N = 75) | ST283 (N = 81) | Other ST (N = 121) | |
Penicillin | 100 | 100 | 100 |
Ampicillin | 100 | 100 | 100 |
Erythromycin | 85 | 100 | 69 |
Azithromycin | 85 | 100 | 69 |
Tetracycline | 21 * | 100 */** | 5 ** |
Daptomycin | 100 | 100 | 100 |
Chloramphenicol | 100 | 96 | 87 |
Levofloxacin | 100 | 100 | 89 |
Linezolid | 100 | 100 | 100 |
Vancomycin | 100 | 100 | 100 |
Testing Results | Sensitivity/Specificity | ||||
---|---|---|---|---|---|
bca | Tetracycline | Macrolide | Sensitivity | Specificity | |
ST283 | + | S | NT | 100% | 78.9% |
+ | S | S | 100% | 80.2% | |
Non-ST283 | − | V | V | 100% | 100% |
+ | S | R | 100% | 100% | |
+ | I | S | 100% | 100% | |
+ | R | V | 100% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onruang, K.; Rattawongjirakul, P.; Pongchaikul, P.; Santanirand, P. Using the bca Gene Coupled with a Tetracycline and Macrolide Susceptibility Profile to Identify the Highly Virulent ST283 Streptococcus agalactiae Strains in Thailand. Microbiol. Res. 2025, 16, 65. https://doi.org/10.3390/microbiolres16030065
Onruang K, Rattawongjirakul P, Pongchaikul P, Santanirand P. Using the bca Gene Coupled with a Tetracycline and Macrolide Susceptibility Profile to Identify the Highly Virulent ST283 Streptococcus agalactiae Strains in Thailand. Microbiology Research. 2025; 16(3):65. https://doi.org/10.3390/microbiolres16030065
Chicago/Turabian StyleOnruang, Kwanchai, Panan Rattawongjirakul, Pisut Pongchaikul, and Pitak Santanirand. 2025. "Using the bca Gene Coupled with a Tetracycline and Macrolide Susceptibility Profile to Identify the Highly Virulent ST283 Streptococcus agalactiae Strains in Thailand" Microbiology Research 16, no. 3: 65. https://doi.org/10.3390/microbiolres16030065
APA StyleOnruang, K., Rattawongjirakul, P., Pongchaikul, P., & Santanirand, P. (2025). Using the bca Gene Coupled with a Tetracycline and Macrolide Susceptibility Profile to Identify the Highly Virulent ST283 Streptococcus agalactiae Strains in Thailand. Microbiology Research, 16(3), 65. https://doi.org/10.3390/microbiolres16030065