Molecular Identification of Escherichia coli Isolated from Street Foods: Global Evidence and Public Health Implications
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Selection of Studies
2.5. Data Extraction Matrix
2.6. Quality Assessment
3. Results
3.1. Literature Search
3.2. Characteristics of the Selected Studies
3.3. Pre-Enrichment and Isolation Culture Media
3.4. Molecular Identification of E. coli
3.5. Prevalence of E. Coli in Street Food
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fusaro, C.; Miranda-Madera, V.; Serrano-Silva, N.; Bernal, J.E.; Ríos-Montes, K.; González-Jiménez, F.E.; Ojeda-Juárez, D.; Sarria-Guzmán, Y. Antibiotic-Resistant Bacteria Isolated from Street Foods: A Systematic Review. Antibiotics 2024, 13, 481. [Google Scholar] [CrossRef]
- Salamandane, A.; Malfeito-Ferreira, M.; Brito, L. The Socioeconomic Factors of Street Food Vending in Developing Countries and Its Implications for Public Health: A Systematic Review. Foods 2023, 12, 3774. [Google Scholar] [CrossRef] [PubMed]
- Wiatrowski, M.; Czarniecka-Skubina, E.; Trafiałek, J.; Rosiak, E. An evaluation of the hygiene practices of Polish street food vendors in selected food trucks and stands. Foods 2021, 10, 2640. [Google Scholar] [CrossRef]
- Ma, L.; Chen, H.; Yan, H.; Wu, L.; Zhang, W. Food safety knowledge, attitudes, and behavior of street food vendors and consumers in Handan, a third tier city in China. BMC Public Health 2019, 19, 1128. [Google Scholar] [CrossRef]
- Tacardon, E.R.; Ong, A.K.S.; Gumasing, M.J.J. The perception of food quality and food value among the purchasing intentions of street foods in the capital of the Philippines. Sustainability 2023, 15, 12549. [Google Scholar] [CrossRef]
- Moloi, M.; Lenetha, G.G.; Malebo, N.J. Microbial levels on street foods and food preparation surfaces in Mangaung Metropolitan Municipality. Health SA Gesondheid 2021, 26, 1407. [Google Scholar] [CrossRef]
- Adane, M.; Teka, B.; Gismu, Y.; Halefom, G.; Ademe, M. Food hygiene and safety measures among food handlers in street food shops and food establishments of Dessie Town, Ethiopia: A community-based cross-sectional study. PLoS ONE 2018, 13, e0196919. [Google Scholar] [CrossRef]
- Al Banna, M.H.; Kundu, S.; Brazendale, K.; Ahinkorah, B.O.; Disu, T.R.; Seidu, A.A.; Okyere, J.; Khan, M.S.I. Knowledge and awareness about food safety, foodborne diseases, and microbial hazards: A cross-sectional study among Bangladeshi consumers of street-vended foods. Food Control 2022, 134, 108718. [Google Scholar] [CrossRef]
- Campos, J.; Gil, J.; Mourão, J.; Peixe, L.; Antunes, P. Ready-to-eat street-vended food as a potential vehicle of bacterial pathogens and antimicrobial resistance: An exploratory study in Porto region, Portugal. Int. J. Food Microbiol. 2015, 206, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Sousa, S.; Morais, I.L.D.; Albuquerque, G.; Gelormini, M.; Casal, S.; Pinho, O.; Motta, C.; Damasceno, A.; Moreira, P.; Breda, J.; et al. A cross-sectional study of the street foods purchased by customers in urban areas of Central Asia. Nutrients 2021, 13, 3651. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Gong, S.; Guo, Z.; Bai, L. Street food vendors’ hygienic and handling practices in China: Checklist development and observational assessment. Food Control 2024, 166, 110765. [Google Scholar] [CrossRef]
- Compaore, M.K.A.; Kpoda, S.D.; Bazie, R.B.S.; Ouedraogo, M.; Valian, M.; Gampene, M.L.; Yakoro, A.; Nikiema, F.; Belemlougri, A.; Meda, N.S.B.R.; et al. Microbiological quality assessment of five common foods sold at different points of sale in Burkina-Faso. PLoS ONE 2022, 17, e0258435. [Google Scholar] [CrossRef]
- Baloch, A.B.; Yang, H.; Feng, Y.; Xi, M.; Wu, Q.; Yang, Q.; Tang, J.; He, X.; Xiao, Y.; Xia, X. Presence and antimicrobial resistance of Escherichia coli in ready-to-eat foods in Shaanxi, China. J. Food Prot. 2017, 80, 420–424. [Google Scholar] [CrossRef]
- Moges, M.; Rodland, E.K.; Argaw, A. Ethiopian street foods: Working conditions and governance perspectives. A qualitative study. Environ. Health Insights 2024, 18, 11786302241241414. [Google Scholar] [CrossRef]
- Tadesse, G.; Mitiku, H.; Teklemariam, Z.; Marami, D. Salmonella and Shigella among asymptomatic street food vendors in the Dire Dawa city, Eastern Ethiopia: Prevalence, antimicrobial susceptibility pattern, and associated factors. Environ. Health Insights 2019, 13, 1178630219853581. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, Q.; Zhang, J.; Lai, Z.; Zhu, X. Prevalence, genetic diversity, and antibiotic resistance of entero-toxigenic Escherichia coli in retail ready-to-eat foods in China. Food Control 2016, 68, 236–243. [Google Scholar] [CrossRef]
- Aladhadh, M.A. Review of modern methods for the detection of foodborne pathogens. Microorganisms 2023, 11, 1111. [Google Scholar] [CrossRef]
- Ali, S.; Alsayeqh, A.F. Review of major meat-borne zoonotic bacterial pathogens. Front. Public Health 2022, 10, 1045599. [Google Scholar] [CrossRef]
- Jang, J.; Hur, H.G.; Sadowsky, M.J.; Byappanahalli, M.N.; Yan, T.; Ishii, S. Environmental Escherichia coli: Ecology and public health implications—A review. J. Appl. Microbiol. 2017, 123, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Denamur, E.; Clermont, O.; Bonacorsi, S.; Gordon, D. The population genetics of pathogenic Escherichia coli. Nat. Rev. Microbiol. 2021, 19, 37–54. [Google Scholar] [CrossRef] [PubMed]
- Moreira de Gouveia, M.I.; Bernalier-Donadille, A.; Jubelin, G. Enterobacteriaceae in the human gut: Dynamics and ecological roles in health and disease. Biology 2024, 13, 142. [Google Scholar] [CrossRef]
- Adzitey, F.; Huda, N.; Shariff, A.H.M. Phenotypic antimicrobial susceptibility of Escherichia coli from raw meats, ready-to-eat meats, and their related samples in one health context. Microorganisms 2021, 9, 326. [Google Scholar] [CrossRef]
- Méndez-Moreno, E.; Caporal-Hernandez, L.; Mendez-Pfeiffer, P.A.; Enciso-Martinez, Y.; De la Rosa López, R.; Valencia, D.; Arenas-Hernández, M.M.; Ballesteros-Monrreal, M.G.; Barrios-Villa, E. Characterization of diarrheagenic Escherichia coli strains isolated from healthy donors, including a triple hybrid strain. Antibiotics 2022, 11, 833. [Google Scholar] [CrossRef] [PubMed]
- Bagaya, J.; Ssekatawa, K.; Nakabiri, G.; Nsubuga, J.; Kitibwa, A.; Kato, C.D.; Sembajwe, L.F. Molecular characterization of Carbapenem-resistant Escherichia coli isolates from sewage at Mulago National Referral Hospital, Kampala: A cross-sectional study. Ann. Microbiol. 2023, 73, 28. [Google Scholar] [CrossRef]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Kinds of E. coli—E. coli Infection—CDC (14 May 2024). Available online: https://www.cdc.gov/ecoli/about/kinds-of-ecoli.html (accessed on 28 October 2025).
- Vanstokstraeten, R.; Crombé, F.; Piérard, D.; Castillo Moral, A.; Wybo, I.; De Geyter, D.; Janssen, T.; Caljon, B.; Demuyser, T. Molecular characterization of extraintestinal and diarrheagenic Escherichia coli blood isolates. Virulence 2022, 13, 2032–2041. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Ji, X.; Jiang, B.; Yuan, Y.; Liang, B.; Sun, S.; Zhu, L.; Liu, J.; Guo, X.; Yin, Y.; et al. Prevalence of antibiotic resistance and virulence genes in Escherichia coli carried by migratory birds on the Inner Mongolia Plateau of Northern China from 2018 to 2023. Microorganisms 2024, 12, 1076. [Google Scholar] [CrossRef] [PubMed]
- Campos, F.C.; Castilho, I.G.; Rossi, B.F.; Bonsaglia, É.C.; Dantas, S.T.; Dias, R.C.; Fernandes Júnior, A.; Hernandes, R.T.; Camargo, C.H.; Ribeiro, M.G.; et al. Genetic and antimicrobial resistance profiles of mammary pathogenic E. coli (MPEC) isolates from bovine clinical mastitis. Pathogens 2022, 11, 1435. [Google Scholar] [CrossRef]
- Kathayat, D.; Lokesh, D.; Ranjit, S.; Rajashekara, G. Avian Pathogenic Escherichia coli (APEC): An Overview of Virulence and Pathogenesis Factors, Zoonotic Potential, and Control Strategies. Pathogens 2021, 10, 467. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, M.; Fu, X.; Cai, J.; Chen, S.; Lin, Y.; Jiang, N.; Chen, S.; Lin, Z. Escherichia coli causing neonatal meningitis during 2001–2020: A study in eastern China. Int. J. Gen. Med. 2021, 14, 3007–3016. [Google Scholar] [CrossRef]
- Pitout, J.D. Extraintestinal pathogenic Escherichia coli: A combination of virulence with antibiotic resistance. Front. Microbiol. 2012, 3, 9. [Google Scholar] [CrossRef]
- Whelan, S.; Lucey, B.; Finn, K. Uropathogenic Escherichia coli (UPEC)-associated urinary tract infections: The molecular basis for challenges to effective treatment. Microorganisms 2023, 11, 2169. [Google Scholar] [CrossRef]
- Feng, P.; Weagant, S.D.; Jinneman, K. Bacteriological Analytical Manual: Diarrheagenic Escherichia coli. U.S. Food and Drug Administration. 2011. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-diarrheagenic-escherichia-coli (accessed on 9 July 2025).
- Abram, K.; Udaondo, Z.; Bleker, C.; Wanchai, V.; Wassenaar, T.M.; Robeson, M.S.; Ussery, D.W. Mash-based analyses of Escherichia coli genomes reveal 14 distinct phylogroups. Commun. Biol. 2021, 4, 117. [Google Scholar] [CrossRef] [PubMed]
- Clermont, O.; Bonacorsi, S.; Bingen, E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 2000, 66, 4555–4558. [Google Scholar] [CrossRef]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2013, 5, 58–65. [Google Scholar] [CrossRef]
- Clermont, O.; Dixit, O.V.; Vangchhia, B.; Condamine, B.; Dion, S.; Bridier-Nahmias, A.; Denamur, E.; Gordon, D. Characterization and rapid identification of phylogroup G in Escherichia coli, a lineage with high virulence and antibiotic resistance potential. Environ. Microbiol. 2019, 21, 3107–3117. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Jin, D.; Wu, S.; Yang, J.; Lan, R.; Bai, X.; Liu, S.; Meng, Q.; Yuan, X.; Zhou, J.; et al. Insights into the evolution of pathogenicity of Escherichia coli from genomic analysis of intestinal E. coli of Marmota himalayana in Qing-hai–Tibet plateau of China. Emerg. Microbes Infect. 2016, 5, 1–9. [Google Scholar] [CrossRef]
- Rani, A.; Ravindran, V.B.; Surapaneni, A.; Mantri, N.; Ball, A.S. Review: Trends in point-of-care diagnosis for Escherichia coli O157:H7 in food and water. Int. J. Food Microbiol. 2021, 349, 109233. [Google Scholar] [CrossRef]
- Costa-Ribeiro, A.; Azinheiro, S.; Roumani, F.; Prado, M.; Lamas, A.; Garrido-Maestu, A. Multiplex Real-Time PCR for the Detection of Shiga Toxin-Producing Escherichia coli in Foods. In PCR: Methods and Protocols; Springer: New York, NY, USA, 2023; pp. 63–73. [Google Scholar] [CrossRef]
- He, L.; Simpson, D.J.; Gänzle, M.G. Detection of enterohaemorrhagic Escherichia coli in food by droplet digital PCR to detect simultaneous virulence factors in a single genome. Food Microbiol. 2020, 90, 103466. [Google Scholar] [CrossRef]
- Jesser, K.J.; Levy, K. Updates on defining and detecting diarrheagenic Escherichia coli pathotypes. Curr. Opin. Infect. Dis. 2020, 33, 372–380. [Google Scholar] [CrossRef]
- Aurich, S.; Wolf, S.A.; Prenger-Berninghoff, E.; Thrukonda, L.; Semmler, T.; Ewers, C. Genotypic Characterization of Uropathogenic Escherichia coli from Companion Animals: Predominance of ST372 in Dogs and Human-Related ST73 in Cats. Antibiotics 2024, 13, 38. [Google Scholar] [CrossRef] [PubMed]
- Bölin, I.; Wiklund, G.; Qadri, F.; Torres, O.; Bourgeois, A.L.; Savarino, S.; Svennerholm, A.M. Enterotoxigenic Escherichia coli with STh and STp genotypes is associated with diarrhea both in children in areas of endemicity and in travelers. J. Clin. Microbiol. 2006, 44, 3872–3877. [Google Scholar] [CrossRef] [PubMed]
- Dias, R.C.; Dos Santos, B.C.; Dos Santos, L.F.; Vieira, M.A.; Yamatogi, R.S.; Mondelli, A.L.; Sadatsune, T.; Sforcin, J.M.; Gomes, T.A.; Hernandes, R.T. Diarrheagenic Escherichia coli pathotypes investigation revealed atypical enteropathogenic E. coli as putative emerging diarrheal agents in children living in Botucatu, São Paulo State, Brazil. Apmis 2016, 124, 299–308. [Google Scholar] [CrossRef]
- Doumith, M.; Day, M.J.; Hope, R.; Wain, J.; Woodford, N. Improved multiplex PCR strategy for rapid assignment of the four major Escherichia coli phylogenetic groups. J. Clin. Microbiol. 2012, 50, 3108–3110. [Google Scholar] [CrossRef]
- Godambe, L.P.; Bandekar, J.; Shashidhar, R. Species specific PCR based detection of Escherichia coli from Indian foods. 3 Biotech. 2017, 7, 130. [Google Scholar] [CrossRef]
- He, X.; Quiñones, B.; McMahon, S.; Mandrell, R.E. A single-step purification and molecular characterization of functional Shiga toxin 2 variants from pathogenic Escherichia coli. Toxins 2012, 4, 487–504. [Google Scholar] [CrossRef]
- Paton, A.W.; Paton, J.C. Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. J. Clin. Microbiol. 1998, 36, 598–602. [Google Scholar] [CrossRef]
- Wang, G.; Clark, C.G.; Rodgers, F.G. Detection in Escherichia coli of the genes encoding the major virulence factors, the genes defining the O157:H7 serotype, and components of the type 2 Shiga toxin family by multiplex PCR. J. Clin. Microbiol. 2002, 40, 3613–3619. [Google Scholar] [CrossRef]
- Wirth, T.; Falush, D.; Lan, R.; Colles, F.; Mensa, P.; Wieler, L.H.; Karch, H.; Reeves, P.R.; Maiden, M.C.; Ochman, H.; et al. Sex and virulence in Escherichia coli: An evolutionary perspective. Mol. Microbiol. 2006, 60, 1136–1151. [Google Scholar] [CrossRef]
- Farnleitner, A.H.; Kreuzinger, N.; Kavka, G.G.; Grillenberger, S.; Rath, J.; Mach, R.L. Simultaneous Detection and Differentiation of Escherichia coli Populations from Environmental Freshwaters by Means of Sequence Variations in a Fragment of the β-d-Glucuronidase Gene. Appl. Environ. Microbiol. 2000, 66, 1340–1346. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Ducoing, B.K.; Carrillo-Sanchez, A.K.; Rivera-Gutierrez, S.; Rios-Muñiz, D.; Estrada-Garcia, T.; Cerna-Cortes, J.F. In Mexico City, fresh-squeezed street-vended orange juice is contaminated with fecal coliforms, Escherichia coli, and Shiga toxin-producing E. coli: A potential risk for acquiring foodborne diseases. Food Sci. Technol. 2022, 42, e52022. [Google Scholar] [CrossRef]
- Li, E.; Saleem, F.; Edge, T.A.; Schellhorn, H.E. Biological indicators for fecal pollution detection and source tracking: A review. Processes 2021, 9, 2058. [Google Scholar] [CrossRef]
- World Health Organization. E. coli. World Health Organization. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/e-coli (accessed on 24 August 2025).
- Alhadlaq, M.A.; Mujallad, M.I.; Alajel, S.M. Detection of Escherichia coli O157:H7 in imported meat products from Saudi Arabian ports in 2017. Sci. Rep. 2023, 13, 4222. [Google Scholar] [CrossRef]
- Koumassa, O.A.B.; Ouétchéhou, R.; Hounsou, M.; Zannou, O.; Dabadé, D.S. Factors influencing street-vended foods quality and safety in developing countries: A review. Discov. Food 2025, 5, 18. [Google Scholar] [CrossRef]
- Heredia, N.; García, S. Animals as sources of food-borne pathogens: A review. Anim. Nutr. 2018, 4, 250–255. [Google Scholar] [CrossRef]
- Anihouvi, D.G.H.; Kpoclou, Y.E.; Abdel Massih, M.; Iko Afé, O.H.; Assogba, M.F.; Covo, M.; Scippo, M.L.; Hounhouigan, D.J.; Anihouvi, V.; Mahillon, J. Microbiological characteristics of smoked and smoked-dried fish processed in Benin. Food Sci. Nutr. 2019, 7, 1821–1827. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef]
- Munn, Z.; Moola, S.; Lisy, K.; Riitano, D.; Tufanaru, C. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. JBI Evid. Implement. 2015, 13, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Asiegbu, C.V.; Lebelo, S.L.; Tabit, F.T. Microbial quality of ready-to-eat street vended food groups sold in the Johannesburg Metropolis, South Africa. J. Food Qual. Hazards Control 2020, 7, 18–26. [Google Scholar] [CrossRef]
- Barreira, M.J.; Marcos, S.; Flores, C.V.; Lopes, T.T.; Moura, I.B.; Correia, C.B.; Saraiva, M.; Batista, R. Microbiological quality of ready-to-eat street foods in Lisbon, Portugal. Discov. Food 2024, 4, 45. [Google Scholar] [CrossRef]
- Bhowmik, A.; Goswami, S.; Sirajee, A.S.; Ahsan, S. Phylotyping, pathotyping and phenotypic characteristics of Escherichia coli isolated from various street foods in Bangladesh. J. Microbiol. Biotechnol. Food Sci. 2022, 12, e4619. [Google Scholar] [CrossRef]
- Budiarso, T.Y.; Prihatmo, G.; Restiani, R.; Pakpahan, S.; Puteri, Y. Isolation and detection of enteroinvasive Escherichia coli from skewered meatballs by using ipaH gene. Int. Food Res. J. 2021, 28, 337–341. [Google Scholar] [CrossRef]
- da Silva Oliveira, S.; dos Santos, I.G.C.; Dias, B.P.; Nascimento, C.A.; Rodrigues, E.M.; Ribeiro Junior, J.C.; Alfieri, A.A.; Alexandrino, B. Hygienic-health quality and microbiological hazard of clandestine Minas Frescal cheese commercialized in north Tocantins, Brazil. Semin. Ciênc. Agrár. 2021, 42, 679–694. [Google Scholar] [CrossRef]
- Das, T.; Islam, M.Z.; Rana, E.A.; Dutta, A.; Ahmed, S.; Barua, H.; Biswas, P.K. Abundance of mobilized colistin resistance gene (mcr-1) in commensal Escherichia coli from diverse sources. Microb. Drug Resist. 2021, 27, 1585–1593. [Google Scholar] [CrossRef]
- Elexson, N.; Yuhanis, F.N.; Malcolm, T.T.H.; New, C.Y.; Chang, W.S.; Ubong, A.; Kuan, C.H.; Loo, Y.Y.; Thung, T.Y.; Son, R. Occurrence of Escherichia coli harbouring stx genes in popiah, a Malaysian street food. Food Res. 2017, 1, 29–32. [Google Scholar] [CrossRef]
- Fayemi, O.E.; Akanni, G.B.; Elegbeleye, J.A.; Aboaba, O.O.; Njage, P.M. Prevalence, characterization and antibiotic resistance of Shiga toxigenic Escherichia coli serogroups isolated from fresh beef and locally processed ready-to-eat meat products in Lagos, Nigeria. Int. J. Food Microbiol. 2021, 347, 109191. [Google Scholar] [CrossRef] [PubMed]
- Jenifer, A.; Sathiyamurthy, K. Molecular Screening of β-glucuronidase and Class 1 Integron of Escherichia coli from Ready-to-Eat Foods in Tiruchirappalli, Tamil Nadu. J. Pure Appl. Microbiol. 2020, 14, 2181–2187. [Google Scholar] [CrossRef]
- Johura, F.T.; Tasnim, J.; Barman, I.; Biswas, S.R.; Jubyda, F.T.; Sultana, M.; George, C.M.; Camilli, A.; Seed, K.D.; Ahmed, N.; et al. Colistin-resistant Escherichia coli carrying mcr-1 in food, water, hand rinse, and healthy human gut in Bangladesh. Gut Pathog. 2020, 12, 5. [Google Scholar] [CrossRef]
- Khalil, R.K.; Gomaa, M.A. Prevalence and characterization of Shiga toxin-producing Escherichia coli (STEC) in fruits and vegetables sold at local street markets in Alexandria, Egypt. LWT 2016, 74, 199–210. [Google Scholar] [CrossRef]
- Latchumaya, S.R.; Hameed, M.N.S.S.; Arkappan, P.; Sreedharam, R.J.; Sandrasaigaran, P. Assessment of bacteriological quality and Escherichia coli O157:H7 in ready-to-eat street foods. Food Res. 2021, 5, 98–105. [Google Scholar] [CrossRef]
- Mora-Coto, D.; Moreno-Vélez, P.; Luna-Muñoz, J.; Moreno-Campuzano, S.; Ontiveros-Torres, M.A. Intestinal and Extraintestinal Pathotypes of Escherichia coli Are Prevalent in Food Prepared and Marketed on the Streets from the Central Zone of Mexico and Exhibit a Differential Phenotype of Resistance Against Antibiotics. Antibiotics 2025, 14, 406. [Google Scholar] [CrossRef] [PubMed]
- Novira, D.P.; Rahayu, W.P.; Nuraida, L.; Nurjanah, S.; Komalasari, E. Prevalence and quantity of pathogenic Escherichia coli in ice-based beverages in Bogor, Indonesia. Malays. J. Microbiol. 2020, 16, 159–166. [Google Scholar] [CrossRef]
- Plessis, E.M.; Govender, S.; Pillay, B.; Korsten, L. Exploratory study into the microbiological quality of spinach and cabbage purchased from street vendors and retailers in Johannesburg, South Africa. J. Food Prot. 2017, 80, 1726–1733. [Google Scholar] [CrossRef]
- Richter, L.; Plessis, E.D.; Duvenage, S.; Korsten, L. High prevalence of multidrug resistant Escherichia coli isolated from fresh vegetables sold by selected formal and informal traders in the most densely populated Province of South Africa. J. Food Sci. 2021, 86, 161–168. [Google Scholar] [CrossRef]
- Salazar-Llorente, E.; Morales, M.; Sornoza, I.; Mariduena-Zavala, M.G.; Gu, G.; Nou, X.; Ortiz, J.; Maldonado-Alvarado, P.; Cevallos-Cevallos, J.M. Microbiological quality of high-demand food from three major cities in Ecuador. J. Food Prot. 2021, 84, 128–138. [Google Scholar] [CrossRef]
- Sánchez, F.; Fuenzalida, V.; Ramos, R.; Escobar, B.; Neira, V.; Borie, C.; Lapierre, L.; López, P.; Venegas, L.; Dettleff, P.; et al. Genomic features and antimicrobial resistance patterns of Shiga toxin-producing Escherichia coli strains isolated from food in Chile. Zoonoses Public Health 2021, 68, 226–238. [Google Scholar] [CrossRef]
- Sivakumar, M.; Abass, G.; Vivekanandhan, R.; Anukampa; Singh, D.K.; Bhilegaonkar, K.; Kumar, S.; Grace, M.R.; Dubal, Z. Extended-spectrum beta-lactamase (ESBL) producing and multidrug-resistant Escherichia coli in street foods: A public health concern. J. Food Sci. Technol. 2021, 58, 1247–1261. [Google Scholar] [CrossRef]
- Tabassum, A.; Saha, M.L.; Islam, M.N. Prevalence of multi-drug resistant bacteria in selected street food and water samples. Bangladesh J. Bot. 2015, 44, 621–627. [Google Scholar] [CrossRef]
- Taha, Z.M.; Mustafa, S.I.; Ahmed, C.J.; Mikaeel, F.B.; Ali, M.M.; Khudr, A.I.; Ali, S.Z.; Haji, M.L. Multidrug-resistant and clonal dispersion of enterotoxigenic Escherichia coli from ready-to-eat meat products in Duhok province, Iraq. Iraqi J. Sci. 2023, 37, 275–282. [Google Scholar] [CrossRef]
- Yaici, L.; Haenni, M.; Métayer, V.; Saras, E.; Zekar, F.M.; Ayad, M.; Touati, A.; Madec, J.Y. Spread of ESBL/AmpC-producing Escherichia coli and Klebsiella pneumoniae in the community through ready-to-eat sandwiches in Algeria. Int. J. Food Microbiol. 2017, 245, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Zurita, J.; Yánez, F.; Sevillano, G.; Ortega-Paredes, D.; Paz y Miño, A. Ready-to-eat street food: A potential source for dissemination of multidrug-resistant Escherichia coli epidemic clones in Quito, Ecuador. Lett. Appl. Microbiol. 2020, 70, 203–209. [Google Scholar] [CrossRef]
- Loukieh, M.; Mouannes, E.; Abou Jaoudeh, C.; Hanna Wakim, L.; Fancello, F.; Bou Zeidan, M. Street foods in Beirut city: An assessment of the food safety practices and of the microbiological quality. J. Food Saf. 2018, 38, e12455. [Google Scholar] [CrossRef]
- Nahar, K.; Rahman, M.M.; Raja, A.; Thurston, G.D.; Gordon, T. Exposure assessment of emissions from mobile food carts on New York City streets. Environ. Pollut. 2020, 267, 115435. [Google Scholar] [CrossRef] [PubMed]
- Hossen, M.T.; Ferdaus, M.J.; Hasan, M.M.; Lina, N.N.; Das, A.K.; Barman, S.K.; Paul, D.K.; Roy, R.K. Food safety knowledge, attitudes and practices of street food vendors in Jashore region, Bangladesh. Food Sci. Technol. 2020, 41, 226–239. [Google Scholar] [CrossRef]
- Contreras, C.P.A.; Cardoso, R.D.C.V.; da Silva, L.N.N.; Cuello, R.E.G. Street food, food safety, and regulation: What is the panorama in Colombia? A review. J. Food Prot. 2020, 83, 1345–1358. [Google Scholar] [CrossRef]
- Yakubu, M.; Gaa, P.K.; Kalog, G.L.S.; Mogre, V. The competence of street food vendors to provide nutritious and safe food to consumers: A cross-sectional survey among street food vendors in Northern Ghana. J. Nutr. Sci. 2023, 12, e83. [Google Scholar] [CrossRef] [PubMed]
- Paudyal, N.; Anihouvi, V.; Hounhouigan, J.; Matsheka, M.I.; Sekwati-Monang, B.; Amoa-Awua, W.; Atter, A.; Ackah, N.B.; Mbugua, S.; Asagbra, A.; et al. Prevalence of foodborne pathogens in food from selected African countries—A meta-analysis. Int. J. Food Microbiol. 2017, 249, 35–43. [Google Scholar] [CrossRef]
- Madilo, F.K.; Islam, M.N.; Letsyo, E.; Roy, N.; Klutse, C.M.; Quansah, E.; Darku, P.A.; Amin, M.B. Foodborne pathogens awareness and food safety knowledge of street-vended food consumers: A case of university students in Ghana. Heliyon 2023, 9, e17795. [Google Scholar] [CrossRef]
- Magqupu, S.; Katiyatiya, C.L.; Chikwanha, O.C.; Strydom, P.E.; Mapiye, C. Street Pork Vendors’ hygiene and safety practices and their determinants in the Cape Metropole District, South Africa. J. Food Prot. 2024, 87, 100197. [Google Scholar] [CrossRef]
- Pires, A.F.; Stover, J.; Kukielka, E.; Haghani, V.; Aminabadi, P.; de Melo Ramos, T.; Jay-Russell, M.T. Salmonella and Escherichia coli prevalence in meat and produce sold at farmers’ markets in Northern California. J. Food Prot. 2020, 83, 1934–1940. [Google Scholar] [CrossRef]
- Czarniecka-Skubina, E.; Trafiałek, J.; Wiatrowski, M.; Głuchowski, A. An evaluation of the hygiene practices of European street food vendors and a preliminary estimation of food safety for consumers, conducted in Paris. J. Food Prot. 2018, 81, 1614–1621. [Google Scholar] [CrossRef]
- Giri, S.; Kudva, V.; Shetty, K.; Shetty, V. Prevalence and characterization of extended-spectrum β-lactamase-producing antibiotic-resistant Escherichia coli and Klebsiella pneumoniae in ready-to-eat street foods. Antibiotics 2021, 10, 850. [Google Scholar] [CrossRef]
- Liao, N.; Borges, C.A.; Rubin, J.; Hu, Y.; Ramirez, H.A.; Chen, J.; Zhou, B.; Zhang, Y.; Zhang, R.; Jiang, J.; et al. Prevalence of β-lactam drug-resistance genes in Escherichia coli contaminating ready-to-eat lettuce. Foodborne Pathog. Dis. 2020, 17, 739–742. [Google Scholar] [CrossRef]
- Geresu, M.A.; Regassa, S. Escherichia coli O157:H7 from food of animal origin in Arsi: Occurrence at catering establishments and antimicrobial susceptibility profile. Sci. World J. 2021, 2021, 6631860. [Google Scholar] [CrossRef]
- McMahon, T.; Abdelmesih, M.; Gill, A. Evaluation of DNA extraction methods for the detection of Shiga toxin producing Escherichia coli in food by polymerase chain reaction. Int. J. Food Microbiol. 2023, 404, 110317. [Google Scholar] [CrossRef]
- Basurra, R.S.; Tunung, R.; Kavita, C.; Ribka, A.; Chandrika, M.; Ubong, A. Consumption practices and perception of ready-to-eat food among university students and employees in Kuala Lumpur, Malaysia. Food Res. 2021, 5, 246–251. [Google Scholar] [CrossRef]
- Mohd Nawawee, N.S.; Abu Bakar, N.F.; Zulfakar, S.S. Microbiological safety of street-vended beverages in Chow Kit, Kuala Lumpur. Int. J. Environ. Res. Public Health 2019, 16, 4463. [Google Scholar] [CrossRef] [PubMed]
- Soon, J.M. Rapid Food Hygiene Inspection Tool (RFHiT) to assess hygiene conformance index (CI) of street food vendors. LWT 2019, 113, 108304. [Google Scholar] [CrossRef]
- Barros, E.R.; Pons, W.; Young, I.; McEwen, S.A.; Papadopoulos, A. The Effect of Food Handler Certification on Food Premises in Ontario, Canada. Foodborne Pathog. Dis. 2020, 17, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Derso, T.; Tariku, A.; Ambaw, F.; Alemenhew, M.; Biks, G.A.; Nega, A. Socio-demographic factors and availability of piped fountains affect food hygiene practice of food handlers in Bahir Dar Town, northwest Ethiopia: A cross-sectional study. BMC Res. Notes 2017, 10, 628. [Google Scholar] [CrossRef]
- Desye, B.; Tesfaye, A.H.; Daba, C.; Berihun, G. Food safety knowledge, attitude, and practice of street food vendors and associated factors in low-and middle-income countries: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0287996. [Google Scholar] [CrossRef] [PubMed]
- Porusia, M.; Sapavi, N.A.M.; Shaifuddin, S.N.M. Knowledge and attitudes of food safety and its associated factors among street food consumers in Kuala Kangsar, Perak, Malaysia. J. Health Transl. Med. 2023, 26, 333–341. [Google Scholar] [CrossRef]
- Werkneh, A.A.; Tewelde, M.A.; Gebrehiwet, T.A.; Islam, M.A.; Belew, M.T. Food safety knowledge, attitude and practices of street food vendors and associated factors in Mekelle city, Northern Ethiopia. Heliyon 2023, 9, e15126. [Google Scholar] [CrossRef] [PubMed]
- Isoni Auad, L.; Cortez Ginani, V.; Dos Santos Leandro, E.; Farage, P.; Costa Santos Nunes, A.; Puppin Zandonadi, R. Development of a Brazilian Food Truck Risk Assessment Instrument. Int. J. Environ. Res. Public Health 2018, 15, 2624. [Google Scholar] [CrossRef]
- Gargiulo, A.H.; Duarte, S.G.; Campos, G.Z.; Landgraf, M.; Franco, B.D.G.M.; Pinto, U.M. Food Safety Issues Related to Eating in and Eating Out. Microorganisms 2022, 10, 2118. [Google Scholar] [CrossRef]
- Kleinheinz, G.T.; McDermott, C.M.; Hughes, S.; Brown, A. Effects of Rainfall on E. coli Concentrations at Door County, Wisconsin Beaches. Int. J. Microbiol. 2009, 2009, 876050. [Google Scholar] [CrossRef]



| Country | Rural/Urban | Sample Collection Period (Months) | Quartile | JBI Score (%) | Risk of Bias | Reference |
|---|---|---|---|---|---|---|
| South Africa | Urban | February 2016–August 2017 (19) | Q3 | 7/9 (77.7) | Moderate | Asiegbu, Lebelo, & Tabit, 2020 [63] |
| Portugal | Urban | March 2019–December 2022 (46) | Q2 | 7/9 (77.7) | Low | Barreira et al., 2024 [64] |
| Bangladesh | Urban | March–May 2017 (3) | Q4 | 6/9 (66.6) | Moderate | Bhowmik et al., 2022 [65] |
| Indonesia | Urban | N.D. | Q3 | 7/9 (77.7) | Moderate | Budiarso et al., 2021 [66] |
| Brazil | Urban | April–June, 2019 (3) | Q4 | 6/9 (66.6) | Moderate | da Silva Oliveira et al., 2021 [67] |
| Bangladesh | Urban | January–October, 2018 (10) | Q2 | 7/9 (77.7) | Low | Das et al., 2021 [68] |
| Malaysian | Urban | N.D. | Q3 | 7/9 (77.7) | Moderate | Elexson et al., 2017 [69] |
| Nigeria | Urban | June–August, 2019 (3) | Q1 | 9/9 (100) | Low | Fayemi et al., 2021 [70] |
| India | Urban | N.D. | Q4 | 6/9 (66.6) | Moderate | Jenifer & Sathiyamurthy, 2020 [71] |
| Bangladesh | Urban | June, 2018 (1) | Q1 | 9/9 (100) | Low | Johura et al., 2020 [72] |
| Egypt | Urban | December 2013–December 2014 (13) | Q1 | 9/9 (100) | Low | Khalil & Gomaa, 2016 [73] |
| Malaysian | Urban | October 2019–February 2020 (5) | Q3 | 7/9 (77.7) | Moderate | Latchumaya et al., 2021 [74] |
| Mexico | Urban | 2021–2023 (N.D.) | Q1 | 9/9 (100) | Low | Mora-Coto et al., 2025 [75] |
| Indonesia | Urban | N.D. | Q4 | 6/9 (66.6) | Moderate | Novira et al., 2020 [76] |
| South Africa | Urban | November 2014–February 2015 (4) | Q2 | 7/9 (77.7) | Low | Plessis et al., 2017 [77] |
| South Africa | Urban | September 2017–May 2018 (9) | Q1 | 9/9 (100) | Low | Ritcher et al., 2021 [78] |
| Ecuador | Urban | N.D. | Q2 | 7/9 (77.7) | Low | Salazar-Llorente et al., 2021 [79] |
| Chile | Urban | January–October 2019 (10) | Q2 | 7/9 (77.7) | Low | Sánchez et al., 2021 [80] |
| India | Urban | September 2015–May 2017 (21) | Q2 | 7/9 (77.7) | Low | Sivakumar et al., 2021 [81] |
| Bangladesh | Urban | N.D. | Q4 | 6/9 (66.6) | Moderate | Tabassum, Saha & Islam, 2015 [82] |
| Iraq | Urban | April, 2022 (1) | Q2 | 7/9 (77.7) | Low | Taha et al., 2023 [83] |
| Argelia | Urban | February 2013–March 2014 (14) | Q1 | 9/9 (100) | Low | Yaici et al., 2017 [84] |
| Ecuador | Urban | November 2016–January 2017 (3) | Q3 | 7/9 (77.7) | Moderate | Zurita et al., 2020 [85] |
| Food Type & Number of Samples | Sample Weight (g or mL) | Culture Media for E. coli Recovery | DNA Extraction Method | Detection Method | Pathotype/Phylogroup | Target Gene | Product Size (bp) | Reference |
|---|---|---|---|---|---|---|---|---|
| Starch Beef Poultry Fish Vegetables Sandwiches 110 | 25 | HiCromeTM enrichment broth (Sigma-Aldrich, Johannesburg South Africa) | ZR Fungal/Bacterial DNA MiniPrep™ Kit (Zymo Research Irvine, US) | qPCR | EHEC (O15:H7) | 16SrDNA | 1500 | Asiegbu, Lebelo, & Tabit, 2020 [63] |
| Patties Salt cod fritters Croissants Donuts Sandwiches Fresh vegetables Fruits Juices 118 | 25 | Peptone water | BioRobot EZ1 automated extraction method (Qiagen, Hilden Germany) | qPCR | EHEC | stx 1 | 180 | Barreira et al., 2024 [64] |
| stx 2 | 255 | |||||||
| eaeA | 384 | |||||||
| Multiplex PCR | ETEC | eltB | 322 | |||||
| estA | 147 | |||||||
| PCR | EAEC | astA | 110 | |||||
| Fried street foods Salads Mashed Juices 60 | 10 | Phosphate-buffered saline Kligler’s iron Agar | Colony PCR | Multiplex PCR | APEC | uspA | 884 | Bhowmik et al., 2022 [65] |
| N.D. | uidA | 166 | ||||||
| ARDRA | N.D. | 16SrDNA | 996 | |||||
| Quadruplex PCR | A—B1—C—D—E | arpA | 400 | |||||
| chuA | 288 | |||||||
| yjaA | 211 | |||||||
| TspE4.C2 | 152 | |||||||
| Skewered meatballs 10 | 25 | Peptone water Chromocult coliform Agar | Wizard® Genomic DNA Purification Kit | PCR | EIEC | ipaH | 619 | Budiarso et al., 2021 [66] |
| Cheese 21 | N.D. | Eosin methylene blue Agar Plate count Agar | Boiling Microwave heating Enzymatic digestion Guanidine isothiocyanate Shaking—pure phenol | PCR | EHEC | eaeA | 384 | da Silva Oliveira et al., 2021 [67] |
| stx 1 | 180 | |||||||
| stx 2 | 255 | |||||||
| Handmade juices Salad Chotpoti 78 | 10 | Peptone water MacConkey Agar Eosin methylene blue Agar | N.D. | PCR | N.D. | Adk | 536 | Das et al., 2021 [68] |
| Popiah 15 | 10 | Sterile physiological saline Eosin methylene blue Agar | Manual extraction | PCR | EHEC | stx 1 | 180 | Elexson et al., 2017 [69] |
| Fresh beef Minced meat Kilishi Roasted beef 180 | 10 | Tryptic soy broth MacConkey Agar Tryptone soy Agar | Boiling | PCR | EHEC | stx 1 | 180 | Fayemi et al., 2021 [70] |
| stx 2 | 255 | |||||||
| eaeA | 384 | |||||||
| rfbO157 | 259 | |||||||
| fliCH7 | 247 | |||||||
| Vegetables Meat products 500 | 10 | Peptone water Xylose lysine deoxycholate Agar MacConkey Agar Eosin methylene blue Agar | Manual extraction | PCR | N.D. | uidA | 166 | Jenifer & Sathiyamurthy, 2020 [71] |
| Sugarcane Fruit juices 20 | N.D. | MacConkey Agar Eosin methylene blue Agar | Boiling | PCR | ETEC | Lt | 450 | Johura et al., 2020 [72] |
| St | 160 | |||||||
| Fruits Vegetables 945 | 25 | Peptone water MacConkey Agar Plate count Agar | Colony PCR | Multiplex PCR | EHEC | stx 1 | 180 | Khalil & Gomaa, 2016 [73] |
| stx 2 | 255 | |||||||
| eaeA | 384 | |||||||
| rfbE | 296 | |||||||
| fliCH7 | 247 | |||||||
| hlyA | 534 | |||||||
| Hot dogs Sausages Fish Squid gravies Smoked pork 50 | 25 | Peptone water Plate count Agar Chromocult coliform Agar | Boiling | Multiplex PCR | EHEC | stx 1 | 180 | Latchumaya et al., 2021 [74] |
| stx 2 | 255 | |||||||
| rbfO157 | 259 | |||||||
| fliCH7 | 247 | |||||||
| Vegetables Shakes Juices Meat products 189 | N.D. | MacConkey Agar Eosin methylene blue Agar | Colony PCR | Multiplex PCR | ETEC | Lt | 450 | Mora-Coto et al., 2025 [75] |
| UPEC | Vat | 289 | ||||||
| cnf1 | 498 | |||||||
| hylA | 1177 | |||||||
| DAEC | Afa | 809 | ||||||
| Ice-based beverages 85 | 10 | Brain heart infusion broth | Chelex 100 | RT-PCR | ETEC | Lt | 450 | Novira et al., 2020 [76] |
| St | 160 | |||||||
| EHEC | eaeA | 384 | ||||||
| stx 1 | 180 | |||||||
| stx 2 | 255 | |||||||
| Cabbage heads Spinaches 180 | 25 | Peptone water Petrifilm 3 m | Quick-gDNA Miniprep Kit (Zymo Research, Irvine, US) | Multiplex PCR | EHEC | stx 1 | 180 | Plessis et al., 2017 [77] |
| stx 2 | 255 | |||||||
| eaeA | 384 | |||||||
| Quadruplex PCR | A—C—E—Clade1 | arpA | 400 | |||||
| chuA | 288 | |||||||
| yjaA | 211 | |||||||
| TspE4.C2 | 152 | |||||||
| PCR | C | trpA | 219 | |||||
| E | arpA | 301 | ||||||
| Vegetables 545 | 50 | Peptone water Coliform count plates Agar Eosin methylene blue Agar | Quick-gDNA Miniprep Kit (Zymo Research, Irvine, US) | PCR | ETEC | Lt | 450 | Richter et al., 2021 [78] |
| St | 160 | |||||||
| EPEC | bfpA | 324 | ||||||
| EHEC | eaeA | 384 | ||||||
| stx 1 | 180 | |||||||
| stx 2 | 255 | |||||||
| EAEC | Eagg | 630 | ||||||
| EIEC | ipaH | 619 | ||||||
| Bolon Encebollado Sauces Ceviche Fruit Fruit juices Cheese Raw chicken Ground beef 405 | 10 | Peptone water Plate count Agar Eosin methylene blue Agar | Boiling | PCR | N.D. | 16SrDNA (V3-V4) | 465 | Salazar-Llorente et al., 2021 [79] |
| Beef Pork Fish Shrimps Vegetables Hot dogs Fruit juices 3300 | 25 | Peptone water MacConkey Agar | N.D. | Multiplex PCR | EHEC | stx 1 | 180 | Sánchez et al., 2021 [80] |
| stx 2 | 255 | |||||||
| Raw Lassi Rasmalai Burfi Pedha Curd Rasgulla Salad Chutney Masala 430 | N.D. | Peptone water MacConkey Agar Eosin methylene blue Agar | Manuel extraction | Multiplex PCR | EHEC | stx 1 | 180 | Sivakumar et al., 2021 [81] |
| stx 2 | 255 | |||||||
| eaeA | 384 | |||||||
| EPEC | bfpA | 324 | ||||||
| ETEC | Lt | 450 | ||||||
| St | 160 | |||||||
| EAEC | Agg | 254 | ||||||
| Velpuri 74 | N.D. | Nutrient Agar MacConkey Agar | Manual extraction | PCR | N.D. | 16SrDNA (V3-V5) | 600 | Tabassum, Saha & Islam, 2015 [82] |
| Shawarma Red meat Kebab Burgers 130 | 10 | Peptone water Coliform Agar MacConkey Agar | Boiling | Multiplex PCR | N.D. | uidA | 166 | Taha et al., 2023 [83] |
| ETEC | Elt | 511 | ||||||
| Esth | 172 | |||||||
| Estp | 120 | |||||||
| Sandwiches 200 | 25 | Buffered tryptone water MacConkey Agar | Macherey-Nagel NucleoSpin Tissue kit (Macherey-Nagel, Hoerdt, France) | Quadruplex PCR | A—B1—D | chuA | 288 | Yaici et al., 2017 [84] |
| yjaA | 211 | |||||||
| TspE4.C2 | 152 | |||||||
| gadA | 373 | |||||||
| Sauces Ceviche Salad Cheese 150 | 1 | Brilliant green bile broth ESBL CHROM Agar | Boiling | Quadruplex PCR | A—B1—B2—D | arpA | 400 | Zurita et al., 2020 [85] |
| chuA | 288 | |||||||
| yjaA | 211 | |||||||
| TspE4.C2 | 152 |
| Gene | Associated Pathotype | Function | References |
|---|---|---|---|
| stx 1, stx 2 | EHEC | Shiga toxins—cause hemorrhagic colitis and HUS | [64,67,69,70,73,74,76,78,80,81] |
| eaeA | EHEC, EPEC | Intimin—adherence to intestinal cells | [64,67,70,73,76,78,81] |
| lt, st | ETEC | Enterotoxins—cause traveler’s diarrhea | [72,75,76,81] |
| ipaH | EIEC | Invasion plasmid antigen—intracellular spread | [66,78] |
| bfpA | EPEC | Bundle-forming pilus—initial adherence | |
| aggR, astA | EAEC | Aggregative adherence regulator and toxin | [64] |
| rfbO157, fliCH7 | EHEC | O and H antigen markers—serotyping of O157:H7 | [70,73,74] |
| vat, cnf1, hylA | UPEC | Associated with host cell damage, cytotoxicity, and tissue invasion | [75] |
| afa | DAEC | Fimbrial adhesins linked to the diffuse adherence pattern | [75] |
| uspA | APEC | Uropathogenic-specific protein—associated with avian strains | [65] |
| uidA | N.D. | β-glucuronidase—generic E. coli marker | [65,71,83] |
| 16SrDNA | N.D. | Ribosomal RNA—universal bacterial identifier | [63,65,79,82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fusaro, C.; Guerrero-Vargas, N.; Sarria-Guzmán, Y.; Serrano-Silva, N.; Bernal, J.E.; Ríos-Montes, K.; Luna, H.E.R.; Del Ángel Zumaya, J.A.; Peredo-Lovillo, A.; González-Jiménez, F.E. Molecular Identification of Escherichia coli Isolated from Street Foods: Global Evidence and Public Health Implications. Microbiol. Res. 2025, 16, 253. https://doi.org/10.3390/microbiolres16120253
Fusaro C, Guerrero-Vargas N, Sarria-Guzmán Y, Serrano-Silva N, Bernal JE, Ríos-Montes K, Luna HER, Del Ángel Zumaya JA, Peredo-Lovillo A, González-Jiménez FE. Molecular Identification of Escherichia coli Isolated from Street Foods: Global Evidence and Public Health Implications. Microbiology Research. 2025; 16(12):253. https://doi.org/10.3390/microbiolres16120253
Chicago/Turabian StyleFusaro, Carmine, Natalia Guerrero-Vargas, Yohanna Sarria-Guzmán, Nancy Serrano-Silva, Jaime E. Bernal, Karina Ríos-Montes, Haydee Eliza Romero Luna, Josué Antonio Del Ángel Zumaya, Audry Peredo-Lovillo, and Francisco Erik González-Jiménez. 2025. "Molecular Identification of Escherichia coli Isolated from Street Foods: Global Evidence and Public Health Implications" Microbiology Research 16, no. 12: 253. https://doi.org/10.3390/microbiolres16120253
APA StyleFusaro, C., Guerrero-Vargas, N., Sarria-Guzmán, Y., Serrano-Silva, N., Bernal, J. E., Ríos-Montes, K., Luna, H. E. R., Del Ángel Zumaya, J. A., Peredo-Lovillo, A., & González-Jiménez, F. E. (2025). Molecular Identification of Escherichia coli Isolated from Street Foods: Global Evidence and Public Health Implications. Microbiology Research, 16(12), 253. https://doi.org/10.3390/microbiolres16120253

