Sensitive Detection of β-Carotene in Chromogenic and Non-Chromogenic Mycobacteria by HPLC-DAD and UHPLC-MS
Abstract
1. Introduction
2. Materials and Methods
2.1. Mycobacterial Material
2.2. Sample Preparation
2.3. HPLC-DAD Analysis
2.4. UHPLC-MS Analysis
3. Results
3.1. Analytical Characteristics of the Beta-Carotene Detection Method by HPLC-DAD
3.2. Quantification of B-Carotene by HPLC-DAD
3.3. Detection of β-Carotene Confirmed by UHPLC-MS
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CFU | Colony-Forming Units |
| DAD | Diode-Array Detector |
| HPLC | High-Performance Liquid Chromatography |
| HPLC-DAD | High-Performance Liquid Chromatography with Diode-Array Detection |
| LC-MS | Liquid Chromatography–Mass Spectrometry |
| LOD | Limit of Detection |
| LOQ | Limit of Quantification |
| MB | Mycobacterium bovis |
| MABS | Mycobacterium abscessus |
| MAV | Mycobacterium avium |
| MGOR | Mycobacterium gordonae |
| MK | Mycobacterium kansasii |
| MM | Mycobacterium marinum |
| MTB | Mycobacterium tuberculosis |
| NTM | Nontuberculous Mycobacteria |
| TLC | Thin-Layer Chromatography |
| UHPLC-MS | Ultra-High-Performance Liquid Chromatography–Mass Spectrometry |
| Re% | Recovery percentage |
| R2 | Coefficient of determination |
| ROS | Reactive Oxygen Species |
Appendix A
Appendix A.1. Mycobacterial Species and Isolates Codes
| Species | Isolates |
|---|---|
| Mycobacterium tuberculosis (MTB) | MTB469 |
| MTB509 | |
| MTB204 | |
| Mycobacterium bovis (MB) | MB33 |
| MB34 | |
| MB35 | |
| Mycobacterium marinum (MM) | MM221 |
| MM577 | |
| MM1004 | |
| Mycobacterium kansasii (MK) | MK808 |
| MK1023 | |
| MK1030 | |
| Mycobacterium avium (MAV) | MAV431 |
| MAV437 | |
| MAV570 | |
| Mycobacterium gordonae (MGOR) | MGOR1166 |
| MGOR1168 | |
| MGOR1169 | |
| Mycobacterium abscessus (MABS) | MABS1158 |
| MABS1124 | |
| MABS1064 |
Appendix A.2. Conditions and Parameters of the UHPLC-MS
| Parameters | Characteristics |
|---|---|
| Mobile phase | Acetonitrile: Methanol 55:45 |
| Flux | 0.5 mL/min |
| Injection Volume | 5 uL |
| Column | ZORBAX Eclipse XDB-C18 2.1 × 50 mm 1.8 Micron |
| Column Temperature | 40 °C |
| Retention time | 8 min |
| Run Time | 10 min |
| Mass detector parameters: | |
| Interface | |
| ESI | |
| DL temperature | 275 °C |
| Nebulizing gas flow | 1.5 L/min |
| Heat block | 425 °C |
| Drying gas flow | 10 L/min |
| Event 1 SIM (m/z) | 536.35 |
| Event 2 Scan (m/z) | 200–600 |
Appendix A.3. System Suitability
| Parameter | Acceptance Requirements |
|---|---|
| Mass accuracy for the standard | 535.85–536.85 m/z |
| Signal/noise ratio (S/N) | ≥2.0 |
| Percentage of error in final retention time | ≤10% |
Appendix A.4. Selectivity
Appendix A.5. Detection Limit
Appendix B
Appendix B.1. Standar Curve with Commercial β-Carotene by HPLC-DAD
| Concentration (μg/mL) | Average Areas | Experimental Mean Concentration |
|---|---|---|
| 0.0098 | 3.547 | 0.0096 |
| 0.0195 | 6.850 | 0.0199 |
| 0.039 | 12.447 | 0.0371 |
| 0.078 | 25.840 | 0.0789 |
| 0.156 | 51.883 | 0.1606 |
| 0.312 | 108.937 | 0.3368 |
| 0.624 | 203.580 | 0.6300 |
| 1.248 | 402.617 | 1.2504 |
| 2.496 | 811.213 | 2.5284 |
| 4.992 | 1570.057 | 4.8936 |
| 9.984 | 3226.123 | 10.0449 |

Appendix B.2. Precision and Accuracy Parameters for HPLC-DAD
| Theoretical Concentration (µg/mL) | Determined Concentration (µg/mL) | |
|---|---|---|
| 0.1563 | Mean= | 0.17 |
| %CV= | 9.0 | |
| %ER= | 11.9 | |
| 2.5 | Mean= | 2.35 |
| %CV= | 9.6 | |
| %ER= | 5.8 | |
| 10.0 | Mean= | 10.90 |
| %CV= | 3.3 | |
| %ER= | 9.0 | |

Appendix B.3. HPLC-DAD and UHPLC-MS Specters for Chromogenic, Non-Chromogenic and Photochromogenic Mycobacterial Species




References
- López, G.D.; Álvarez-Rivera, G.; Carazzone, C.; Ibáñez, E.; Leidy, C.; Cifuentes, A. Bacterial Carotenoids: Extraction, Characterization, and Applications. Crit. Rev. Anal. Chem. 2023, 53, 1239–1262. [Google Scholar] [CrossRef]
- Brennan, P.J.; Nikaido, H. The envelope of mycobacteria. Annu. Rev. Biochem. 1995, 64, 29–63. [Google Scholar] [CrossRef]
- Robledo, J.A.; Murillo, A.M.; Rouzaud, F. Physiological role and potential clinical interest of mycobacterial pigments. IUBMB Life 2011, 63, 71–78. [Google Scholar] [CrossRef]
- Lange, B.M.; Rujan, T.; Martin, W.; Croteau, R. Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across genomes. Proc. Natl. Acad. Sci. USA 2000, 97, 13172–13177. [Google Scholar] [CrossRef] [PubMed]
- Phadwal, K. Carotenoid biosynthetic pathway: Molecular phylogenies and evolutionary behavior of crt genes in eubacteria. Gene 2005, 345, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Alves da Costa Cardoso, L.; Feitosa Kanno, K.Y.; Grace Karp, S. Microbial production of carotenoids A review. Afr. J. Biotechnol. 2017, 16, 139–146. [Google Scholar] [CrossRef]
- Ram, S.; Mitra, M.; Shah, F.; Tirkey, S.R.; Mishra, S. Bacteria as an alternate biofactory for carotenoid production: A review of its applications, opportunities and challenges. J. Funct. Foods 2020, 67, 103867. [Google Scholar] [CrossRef]
- Ichiyama, S.; Shimokata, K.; Tsukamura, M. Relationship between Mycobacterial Species and Their Carotenoid Pigments. Microbiol. Immunol. 1988, 32, 473–479. [Google Scholar] [CrossRef]
- Saviola, B. Pigments and Pathogenesis. J. Mycobact. Dis. 2014, 4, 168. [Google Scholar] [CrossRef]
- Runyon, E.H. Pigment variations in photochromogenic mycobacteria with special reference to M. vaccae. Pneumonologie 1970, 142, 90–93. [Google Scholar] [CrossRef]
- David, H.L. Carotenoid Pigments of Mycobacterium kansasii. Appl. Microbiol. 1974, 28, 696–699. [Google Scholar] [CrossRef]
- Tárnok, I.; Tárnok, Z.S. Carotene and xanthophylls in mycobacteria. I. Technical procedures; thin-layer chromatographic patterns of mycobacterial pigments. Tubercle 1970, 51, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Lao, Y.M.; Zhou, J.; Zhang, H.J.; Cai, Z.H. Simultaneous determination of 13 carotenoids by a simple C18 column-based ultra-high-pressure liquid chromatography method for carotenoid profiling in the astaxanthin-accumulating Haematococcus pluvialis. J. Chromatogr. A 2017, 1488, 93–103. [Google Scholar] [CrossRef]
- López-García, D.; de Molina, M.G. Co-Producing Agro-Food Policies for Urban Environments: Toward Agroecology-Based Local Agri-food Systems. In Urban Agroecology; CRC Press: Boca Raton, FL, USA, 2020; pp. 189–208. [Google Scholar] [CrossRef]
- Su, Q.; Rowley, K.G.; Balazs, N.D.H. Carotenoids: Separation methods applicable to biological samples. J. Chromatogr. B 2002, 781, 393–418. [Google Scholar] [CrossRef]
- Miller, K.W.; Yang, C.S. An isocratic high-performance liquid chromatography method for the simultaneous analysis of plasma retinol, α-tocopherol, and various carotenoids. Anal. Biochem. 1985, 145, 21–26. [Google Scholar] [CrossRef]
- Hart, D.J.; Scott, K.J. Development and evaluation of an HPLC method for the analysis of carotenoids in foods, and the measurement of the carotenoid content of vegetables and fruits commonly consumed in the UK. Food Chem. 1995, 54, 101–111. [Google Scholar] [CrossRef]
- Tsukamura, M. Carotenoids of Photochromogens of “Unclassified Mycobacteria”. J. Biochem. 1962, 51, 169–171. [Google Scholar] [CrossRef]
- Tárnok, I.; Röhrscheidt, E.; Tarnok, Z.S. Carotenes and xanthophylls in mycobacteria. III. Influence of light on the pigment synthesis of chromogenic bacteria. Tubercle 1973, 54, 225–233. [Google Scholar] [CrossRef]
- Gao, L.Y.; Groger, R.; Cox, J.S.; Beverley, S.M.; Lawson, E.H.; Brown, E.J. Transposon Mutagenesis of Mycobacterium marinum Identifies a Locus Linking Pigmentation and Intracellular Survival. Infect. Immun. 2003, 71, 922–929. [Google Scholar] [CrossRef]
- Stormer, R.S.; Falkinham, J.O. Differences in antimicrobial susceptibility of pigmented and unpigmented colonial variants of Mycobacterium avium. J. Clin. Microbiol. 1989, 27, 2459–2465. [Google Scholar] [CrossRef] [PubMed]
- Saviola, B.; Felton, J. Acidochromogenicity is a common characteristic in nontuberculous mycobacteria. BMC Res. Notes 2011, 4, 466. [Google Scholar] [CrossRef]
- Konings, E.J.M.; Roomans, H.H.S. Evaluation and validation of an LC method for the analysis of carotenoids in vegetables and fruit. Food Chem. 1997, 59, 599–603. [Google Scholar] [CrossRef]
- Scott, K.J.; Finglas, P.M.; Scale, R.; Hart, D.J.; de Froidmont-Görtz, I. Interlaboratory studies of HPLC procedures for the analysis of carotenoids in foods. Food Chem. 1996, 57, 85–90. [Google Scholar] [CrossRef]
- Radu, G.; Litescu, S.C.; Camelia, A.; Teodor, E.D.; Badea, G. Beta-carotene and lycopene determination in new enriched bakery products by HPLC-DAD method. Rom. Biotechnol. Lett. 2012, 17, 7005–7012. [Google Scholar]
- David, H.L. Biogenesis of β-Carotene in Mycobacterium kansasii. J. Bacteriol. 1974, 119, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Janisch, N.; Levendosky, K.; Budell, W.C.; Quadri, L.E.N. Genetic Underpinnings of Carotenogenesis and Light-Induced Transcriptome Remodeling in the Opportunistic Pathogen Mycobacterium kansasii. Pathogens 2023, 12, 86. [Google Scholar] [CrossRef]
- Henke, N.A.; Austermeier, S.; Grothaus, I.L.; Götker, S.; Persicke, M.; Peters-Wendisch, P.; Wendisch, V.F. Corynebacterium glutamicum CrtR and Its Orthologs in Actinobacteria: Conserved Function and Application as Genetically Encoded Biosensor for Detection of Geranylgeranyl Pyrophosphate. Int. J. Mol. Sci. 2020, 21, 5482. [Google Scholar] [CrossRef] [PubMed]
- Giraud, E.; Hannibal, L.; Fardoux, J.; Jaubert, M.; Jourand, P.; Dreyfus, B.; Sturgis, J.N.; Verme, A. Two Distinct crt Gene Clusters for Two Different Functional Classes of Carotenoid in Bradyrhizobium. J. Biol. Chem. 2004, 279, 15076–15083. [Google Scholar] [CrossRef]
- Liu, G.Y.; Essex, A.; Buchanan, J.T.; Datta, V.; Hoffman, H.M.; Bastian, J.F.; Fierer, J.; Nizet, V. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J. Exp. Med. 2005, 202, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.-Y.; Laval, F.; Lawson, E.H.; Groger, R.K.; Woodruff, A.; Morisaki, J.H.; Cox, J.S.; Daffe, M.; Brown, E.J. Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: Implications for therapy. Mol. Microbiol. 2003, 49, 1547–1563. [Google Scholar] [CrossRef]




| Species/Isolates | Area | µg/mL | SD | CV | Mean | UHPLC-MS |
|---|---|---|---|---|---|---|
| Non-chromogens | ||||||
| MTB469R1 | 227.3 | 0.71 | 0.03 | 4.35 | 0.70 | + |
| MTB469R2 | 233.24 | 0.72 | ||||
| MTB469R3 | 214.15 | 0.66 | ||||
| MTB509R1 | 17.66 | 0.09 | 0.01 | 12.50 | 0.08 | + |
| MTB509R2 | 16.3 | 0.07 | ||||
| MTB509R3 | 15.48 | 0.08 | ||||
| MTB240R1 | 338.7 | 1.05 | 0.09 | 8.15 | 1.13 | + |
| MTB240R2 | 395.83 | 1.23 | ||||
| MTB240R3 | 354.28 | 1.10 | ||||
| MB33R1 | <1.59 | <0.003 | 0.00 | − | ||
| MB33R2 | <1.59 | <0.003 | ||||
| MB33R3 | <1.59 | <0.003 | ||||
| MB34R1 | 224.7 | 0.70 | 0.17 | 23.53 | 0.71 | + |
| MB34R2 | 286.55 | 0.89 | ||||
| MB34R3 | 178.93 | 0.55 | ||||
| MB35R1 | 380.28 | 1.18 | 0.08 | 6.66 | 1.23 | + |
| MB35R2 | 383.57 | 1.19 | ||||
| MB35R3 | 427.58 | 1.33 | ||||
| Scotochromogens | ||||||
| MGOR1168R1 | 649.63 | 2.02 | 0.16 | 8.3 | 1.91 | + |
| MGOR1168R2 | 556.68 | 1.73 | ||||
| MGOR1168R3 | 640.64 | 1.99 | ||||
| MGOR1169R1 | 532.13 | 1.65 | 0.14 | 8.4 | 1.65 | + |
| MGOR1169R2 | 576.92 | 1.79 | ||||
| MGOR1169R3 | 487.34 | 1.51 | ||||
| MGOR1166R1 | 1594.69 | 4.96 | 0.95 | 22.6 | 4.21 | + |
| MGOR1166R2 | 1010.29 | 3.14 | ||||
| MGOR1166R3 | 1460.41 | 4.54 | ||||
| Photo-chromogens | ||||||
| MM221R1 | 256.3 | 0.80 | 0.07 | 9.17 | 0.72 | + |
| MM221R2 | 217.8 | 0.68 | ||||
| MM221R3 | 221.6 | 0.69 | ||||
| MM577R1 | 54.88 | 0.17 | 0.01 | 7.00 | 0.16 | + |
| MM577R2 | 53.7 | 0.17 | ||||
| MM577R3 | 48.1 | 0.15 | ||||
| MM1004R1 | 230.93 | 0.72 | 0.05 | 6.50 | 0.72 | + |
| MM1004R2 | 215.33 | 0.67 | ||||
| MM1004R3 | 245.21 | 0.76 | ||||
| MK808R1 | 343.7 | 1.07 | 0.16 | 13.28 | 1.22 | + |
| MK808R2 | 384.64 | 1.19 | ||||
| MK808R3 | 446.9 | 1.39 | ||||
| MK1023R1 | 98.7 | 0.31 | 0.04 | 10.54 | 0.35 | + |
| MK1023R2 | 120.98 | 0.37 | ||||
| MK1023R3 | 116.33 | 0.36 | ||||
| MK1030R1 | 343.25 | 1.07 | 0.09 | 8.32 | 1.08 | + |
| MK1030R2 | 319.29 | 0.99 | ||||
| MK1030R3 | 376.59 | 1.17 | ||||
| MAV431R1 | 379.43 | 1.18 | 0.12 | 9.11 | 1.28 | + |
| MAV431R2 | 403.9 | 1.25 | ||||
| MAV431R3 | 453.1 | 1.41 | ||||
| MAV437R1 | 517 | 1.61 | 0.13 | 7.45 | 1.72 | + |
| MAV437R2 | 598.7 | 1.86 | ||||
| MAV437R3 | 547.73 | 1.70 | ||||
| MAV570R1 | 314.34 | 0.98 | 0.15 | 18.11 | 0.83 | + |
| MAV570R2 | 218.1 | 0.68 | ||||
| MAV570R3 | 266.22 | 0.83 | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murillo, A.M.; Zapata Serna, J.D.; Gómez Tangarife, V.; Robledo Restrepo, J.A.; Botero, L.E. Sensitive Detection of β-Carotene in Chromogenic and Non-Chromogenic Mycobacteria by HPLC-DAD and UHPLC-MS. Microbiol. Res. 2025, 16, 239. https://doi.org/10.3390/microbiolres16110239
Murillo AM, Zapata Serna JD, Gómez Tangarife V, Robledo Restrepo JA, Botero LE. Sensitive Detection of β-Carotene in Chromogenic and Non-Chromogenic Mycobacteria by HPLC-DAD and UHPLC-MS. Microbiology Research. 2025; 16(11):239. https://doi.org/10.3390/microbiolres16110239
Chicago/Turabian StyleMurillo, Ana Milena, Juan David Zapata Serna, Verónica Gómez Tangarife, Jaime Alberto Robledo Restrepo, and Luz Elena Botero. 2025. "Sensitive Detection of β-Carotene in Chromogenic and Non-Chromogenic Mycobacteria by HPLC-DAD and UHPLC-MS" Microbiology Research 16, no. 11: 239. https://doi.org/10.3390/microbiolres16110239
APA StyleMurillo, A. M., Zapata Serna, J. D., Gómez Tangarife, V., Robledo Restrepo, J. A., & Botero, L. E. (2025). Sensitive Detection of β-Carotene in Chromogenic and Non-Chromogenic Mycobacteria by HPLC-DAD and UHPLC-MS. Microbiology Research, 16(11), 239. https://doi.org/10.3390/microbiolres16110239

