Genome-Wide Analysis and Expression Profiling of the Cellulase Genes in Aspergillus oryzae
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification of Glycoside Hydrolase Family from A. oryzae 3.042 Genome
2.2. Functional Annotation of A. oryzae Glycoside Hydrolase Family
2.3. Identify the Cellulase Genes from the Glycoside Hydrolase Family of A. oryzae
2.4. The Chromosomal Locations of A. oryzae Cellulase Genes
2.5. Analysis of Gene Structure and Conserved Domain
2.6. Multi Sequence Alignment and Phylogenetic Analysis
2.7. Effects of Different Growth Stages, Temperatures, and Salt Concentration on the Expression Patterns of A. oryzae Cellulase Genes
3. Results
3.1. Identification and Annotation of A. oryzae Glycoside Hydrolase Family
3.2. Identified Analysis of the Cellulase Genes from the A. oryzae GH Family
3.3. Distribution Analysis of A. oryzae Cellulase Genes on Chromosomal Locations
3.4. Analysis of Cellulase Gene Structure and Conserved Domain
3.5. Phylogenetic Analysis of A. oryzae Cellulases
3.6. Expression Patterns of A. oryzae Cellulase Genes at Different Growth Stages, Temperatures, and Salt Concentrations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zverlov, V.V.; Schwarz, W.H. Bacterial cellulose hydrolysis in anaerobic environmental subsystems—Clostridium thermocellum and Clostridium stercorarium, thermophilic plant-fiber degraders. Ann. N. Y. Acad. Sci. 2008, 1125, 298–307. [Google Scholar] [CrossRef]
- Ahmed, A.; Nasim, F.H.; Batool, K.; Bibi, A. Microbial β-glucosidase: Sources, production and applications. J. Appl. Environ. Microbiol. 2017, 5, 31–46. [Google Scholar] [CrossRef]
- Trivedi, N.; Gupta, V.; Kumar, M.; Kumari, P.; Reddy, C.R.K.; Jha, B. An alkali halotolerant cellulase from Bacillus flexus isolated from green seaweed Ulva lactuca. Carbohydr. Polym. 2011, 83, 891–897. [Google Scholar] [CrossRef]
- Dashtban, M.; Maki, M.; Leung, K.T.; Mao, C.; Qin, W. Cellulase activities in biomass conversion: Measurement methods and comparison. Crit. Rev. Biotechnol. 2010, 30, 302–309. [Google Scholar] [CrossRef]
- Imran, M.; Anwar, Z.; Irshad, M.; Asad, M.J.; Ashfaq, H. Cellulase production from species of fungi and bacteria from agricultural wastes and its utilization in industry: A review. Adv. Enzym. Res. 2016, 4, 44–55. [Google Scholar] [CrossRef]
- Ahmed, A.; Bibi, A. Fungal cellulase; Production and applications: Minireview. Int. J. Health Life Sci. 2018, 4, 19–36. [Google Scholar] [CrossRef]
- Behera, B.C.; Sethi, B.K.; Mishra, R.R.; Dutta, S.K.; Thatoi, H.N. Microbial cellulases—Diversity and biotechnology with reference to mangrove environment: A review. J. Genet. Eng. Biotechnol. 2017, 15, 197–210. [Google Scholar] [CrossRef]
- Naher, L.; Fatin, S.N.; Sheikh, M.A.H.; Azeez, L.A.; Siddiquee, S.; Zain, N.M.; Karim, S.M.R. Cellulase enzyme production from filamentous fungi Trichoderma reesei and Aspergillus awamori in submerged fermentation with rice straw. J. Fungi 2021, 7, 868. [Google Scholar] [CrossRef]
- Ellilä, S.; Fonseca, L.; Uchima, C.; Cota, J.; Goldman, G.H.; Saloheimo, M.; Sacon, V.; Siika-aho, M. Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol. Biofuels 2017, 10, 30. [Google Scholar] [CrossRef]
- Pachauri, P.; Aranganathan, V.; More, S.; Sullia, S.B.; Deshmukh, S. Purification and characterization of cellulase from a novel isolate of Trichoderma longibrachiatum. Biofuels 2017, 11, 85–91. [Google Scholar] [CrossRef]
- Kitamoto, K. Cell biology of the Koji mold Aspergillus oryzae. Biosci. Biotechnol. Biochem. 2015, 79, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, S. Introduction to glycoside hydrolases: Classification, identification, and occurrence. In Industrial Applications of Glycoside Hydrolases; Shrivastava, S., Ed.; Springer: Singapore, 2020; pp. 1–20. [Google Scholar]
- Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Gonzales, N.R.; Gwadz, M.; Lu, S.; Marchler, G.H.; Song, J.S.; Thanki, N.; Yamashita, R.A.; et al. The conserved domain database in 2023. Nucleic Acids Res. 2023, 51, D384–D388. [Google Scholar] [CrossRef]
- Yang, M.; Derbyshire, M.K.; Yamashita, R.A.; Marchler-Bauer, A. NCBI’s conserved domain database and tools for protein domain analysis. Curr. Protoc. Bioinform. 2020, 69, e90. [Google Scholar] [CrossRef]
- Ernst, J.; Bar-Joseph, Z. STEM: A tool for the analysis of short time series gene expression data. BMC Bioinform. 2006, 7, 191. [Google Scholar] [CrossRef]
- Kolde, R. pheatmap: Pretty Heatmaps. R package Version 1.0.8. 2015. Available online: https://CRAN.R-project.org/package=pheatmap (accessed on 4 September 2024).
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- You, Y.; Xu, X.; Liu, H.; Zhang, L. Locust pathogen Aspergillus oryzae XJ1 is different from Aspergillus oryzae and Aspergillus flavus based on genomics comparisons. Microorganisms 2024, 12, 2501. [Google Scholar] [CrossRef]
- Benedetti, M.; Vecchi, V.; Betterle, N.; Natali, A.; Bassi, R.; Dall’Osto, L. Design of a highly thermostable hemicellulose-degrading blend from Thermotoga neapolitana for the treatment of lignocellulosic biomass. J. Biotechnol. 2019, 296, 42–52. [Google Scholar] [CrossRef]
- Ho, M.C.; Ong, V.Z.; Wu, T.Y. Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization—A review. Renew. Sustain. Energy Rev. 2019, 112, 75–86. [Google Scholar] [CrossRef]
- Jayasekara, S.; Ratnayake, R. Microbial cellulases: An overview and applications (Chapter 5). In Cellulose; IntechOpen: London, UK, 2019. [Google Scholar]
- Ariaeenejad, S.; Kavousi, K.; Mamaghani, A.S.A.; Motahar, S.F.S.; Nedaei, H.; Salekdeh, G.H. In-silico discovery of bifunctional enzymes with enhanced lignocellulose hydrolysis from microbiota big data. Int. J. Biol. Macromol. 2021, 177, 211–220. [Google Scholar] [CrossRef]
- Sethi, S.; Datta, A.; Gupta, B.L.; Gupta, S. Optimization of cellulase production from bacteria isolated from soil. Int. Sch. Res. Not. 2013, 2013, 1076–1082. [Google Scholar] [CrossRef]
- Janusz, G.; Pawlik, A.; Sulej, J.; Świderska-Burek, U.; Jarosz-Wilkołazka, A.; Paszczyński, A. Lignin degradation: Microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev. 2017, 41, 941–962. [Google Scholar] [CrossRef]
- Wang, Q.; Zhong, C.; Xiao, H. Genetic engineering of filamentous fungi for efficient protein expression and secretion. Front. Bioeng. Biotechnol. 2020, 8, 293. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Srivastava, M.; Ramteke, P.W.; Mishra, P.K. Synthetic biology strategy for microbial cellulases: An overview. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 229–238. [Google Scholar] [CrossRef]
- Prasanna, H.N.; Ramanjaneyulu, G.; Rajasekhar Reddy, B. Optimization of cellulase production by Penicillium sp. 3 Biotech 2016, 6, 162. [Google Scholar] [CrossRef] [PubMed]
- Navarro, S.L.; Tõlgo, M.; Olsson, L.; Nypelö, T. Carboxylation of sulfated cellulose nanocrystals by family AA9 lytic polysaccharide monooxygenases. Cellulose 2023, 30, 9331–9347. [Google Scholar] [CrossRef]
- Bauer, S.; Vasu, P.; Persson, S.; Mort, A.J.; Somerville, C.R. Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls. Proc. Natl. Acad. Sci. USA 2006, 103, 11417–11422. [Google Scholar] [CrossRef]
- Harris, P.V.; Welner, D.; McFarland, K.C.; Re, E.; Navarro Poulsen, J.C.; Brown, K.; Salbo, R.; Ding, H.; Vlasenko, E.; Merino, S.; et al. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: Structure and function of a large, enigmatic family. Biochemistry 2010, 49, 3305–3316. [Google Scholar] [CrossRef]
- Van den Brink, J.; de Vries, R.P. Fungal enzyme sets for plant polysaccharide degradation. Appl. Microbiol. Biotechnol. 2011, 91, 1477–1492. [Google Scholar] [CrossRef]
- Martinez, D.; Berka, R.M.; Henrissat, B.; Saloheimo, M.; Arvas, M.; Baker, S.E.; Chapman, J.; Chertkov, O.; Coutinho, P.M.; Cullen, D.; et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol. 2008, 26, 553–560. [Google Scholar] [CrossRef]
- Van Tilbeurgh, H.; Tomme, P.; Claeyssens, M.; Bhikhabhai, R.; Pettersson, G. Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei: Separation of functional domains. FEBS Lett. 1986, 204, 223–227. [Google Scholar] [CrossRef]
- Tomme, P.; Van Tilbeurgh, H.; Pettersson, G.; Van Damme, J.; Vandekerckhove, J.; Knowles, J.; Teeri, T.; Claeyssens, M. Studies of the cellulolytic system of Trichoderma reesei QM 9414: Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur. J. Biochem. 1988, 170, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P.M.; Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014, 42, D490–D495. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Ortiz, V.; Heins, R.A.; Cheng, G.; Kim, E.Y.; Vernon, B.C.; Elandt, R.B.; Adams, P.D.; Sale, K.L.; Hadi, M.Z.; Simmons, B.A.; et al. Addition of a carbohydrate-binding module enhances cellulase penetration into cellulose substrates. Biotechnol. Biofuels 2013, 6, 93. [Google Scholar] [CrossRef] [PubMed]
- Bernardes, A.; Pellegrini, V.O.A.; Curtolo, F.; Camilo, C.M.; Mello, B.L.; Johns, M.A.; Scott, J.L.; Guimarães, F.E.C.; Polikarpov, I. Carbohydrate binding modules enhance cellulose enzymatic hydrolysis by increasing access of cellulases to the substrate. Carbohydr. Polym. 2019, 211, 57–68. [Google Scholar] [CrossRef]
- Arai, T.; Araki, R.; Tanaka, A.; Karita, S.; Kimura, T.; Sakka, K.; Ohmiya, K. Characterization of a cellulase containing a family 30 carbohydrate-binding module (CBM) derived from Clostridium thermocellum CelJ: Importance of the CBM to cellulose hydrolysis. J. Bacteriol. 2003, 185, 504–512. [Google Scholar] [CrossRef]
- Courtade, G.; Forsberg, Z.; Heggset, E.B.; Eijsink, V.G.H.; Aachmann, F.L. The carbohydrate-binding module and linker of a modular lytic polysaccharide monooxygenase promote localized cellulose oxidation. J. Biol. Chem. 2018, 293, 13006–13015. [Google Scholar] [CrossRef]
- Teo, S.C.; Liew, K.J.; Shamsir, M.S.; Chong, C.S.; Bruce, N.C.; Chan, K.G.; Goh, K.M. Characterizing a halo-tolerant GH10 xylanase from Roseithermus sacchariphilus strain RA and its CBM-truncated variant. Int. J. Mol. Sci. 2019, 20, 2284. [Google Scholar] [CrossRef]
- Montanier, C.; Flint, J.E.; Bolam, D.N.; Xie, H.; Liu, Z.; Rogowski, A.; Weiner, D.P.; Ratnaparkhe, S.; Nurizzo, D.; Roberts, S.M.; et al. Circular permutation provides an evolutionary link between two families of calcium-dependent carbohydrate binding modules. J. Biol. Chem. 2010, 285, 31742–31754. [Google Scholar] [CrossRef]
- Yaniv, O.; Petkun, S.; Shimon, L.J.; Bayer, E.A.; Lamed, R.; Frolow, F. A single mutation reforms the binding activity of an adhesion-deficient family 3 carbohydrate-binding module. Acta Crystallogr. D Biol. Crystallogr. 2012, 68, 819–828. [Google Scholar] [CrossRef]
- Kunamneni, A.; Permaul, K.; Singh, S. Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus. J. Biosci. Bioeng. 2005, 100, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Norouzian, D. Effect of different factors on fermentative production of enzymes by fungi. Dyn. Biochem. Process Biotechnol. Mol. Biol. 2008, 2, 14–18. [Google Scholar]
- Okoye, I.G.; Ezugwu, A.L.; Udenwobele, D.I.; Eze, S.O.O.; Anyawu, C.U.; Chilaka, F.C. Production and partial characterization of cellulases from Aspergillus fumigatus using two distinct parts of corn cob as carbon sources. Niger. J. Biotechnol. 2013, 26, 50–59. [Google Scholar]
- Saini, A.; Aggarwal, N.K.; Yadav, A. Cost-effective cellulase production using Parthenium hysterophorus biomass as an unconventional lignocellulosic substrate. 3 Biotech 2017, 7, 12. [Google Scholar] [CrossRef]
- Sulyman, A.O.; Igunnu, A.; Malomo, S.O. Isolation, purification, and characterization of cellulase produced by Aspergillus niger cultured on Arachis hypogaea shells. Heliyon 2020, 6, e05668. [Google Scholar] [CrossRef]
- Bhanja, T.; Rout, S.; Banerjee, R.; Bhattacharya, B.C. Comparative profiles of α-amylase production in conventional tray reactor and GROWTEK bioreactor. Bioprocess Biosyst. Eng. 2007, 30, 369–376. [Google Scholar] [CrossRef]
- Ali, S.; Sayed, A.; Sarker, R.I.; Alam, R. Factors affecting cellulase production by Aspergillus terreus using water hyacinth. World J. Microbiol. Biotechnol. 1991, 7, 62–66. [Google Scholar]
- Iram, A.; Cekmecelioglu, D.; Demirci, A. Salt and nitrogen amendment and optimization for cellulase and xylanase production using dilute acid hydrolysate of distillers’ dried grains with solubles (DDGS) as the feedstock. Bioprocess Biosyst. Eng. 2022, 45, 527–540. [Google Scholar] [CrossRef]
- Lockington, R.A.; Rodbourn, L.; Barnett, S.; Carter, C.J.; Kelly, J.M. Regulation by carbon and nitrogen sources of a family of cellulases in Aspergillus nidulans. Fungal Genet. Biol. 2002, 37, 190–196. [Google Scholar] [CrossRef]
- Stricker, A.R.; Mach, R.L.; de Graaff, L.H. Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl. Microbiol. Biotechnol. 2008, 78, 211–220. [Google Scholar] [CrossRef]
- Amore, A.; Giacobbe, S.; Faraco, V. Regulation of cellulase and hemicellulase gene expression in fungi. Curr. Genom. 2013, 14, 230–249. [Google Scholar] [CrossRef]
GH Family | Gene_id | Protein_id | Protein Length (aa) | Description | Corresponding Activity |
---|---|---|---|---|---|
GH1 | Ao3042_07212 | EIT76661.1 | 483 | beta-glucosidase 1B | β-glucosidase (EC3.2.1.21) |
Ao3042_00218 | EIT82651.1 | 506 | beta-glucosidase 1B | β-glucosidase (EC3.2.1.21) | |
GH3 | Ao3042_00441 | EIT82380.1 | 848 | beta-glucosidase J | β-glucosidase (EC3.2.1.21) |
Ao3042_03611 | EIT79974.1 | 852 | beta-glucosidase B | β-glucosidase (EC3.2.1.21) | |
Ao3042_01015 | EIT72496.1 | 861 | beta-glucosidase | β-glucosidase (EC3.2.1.21) | |
Ao3042_01178 | EIT72708.1 | 791 | beta-glucosidase E | β-glucosidase (EC3.2.1.21) | |
Ao3042_10992 | EIT73097.1 | 866 | beta-glucosidase F | β-glucosidase (EC3.2.1.21) | |
Ao3042_10505 | EIT73694.1 | 796 | beta-glucosidase M | β-glucosidase (EC3.2.1.21) | |
Ao3042_09244 | EIT74688.1 | 820 | beta-glucosidase G | β-glucosidase (EC3.2.1.21) | |
Ao3042_07835 | EIT75905.1 | 768 | beta-glucosidase M | β-glucosidase (EC3.2.1.21) | |
Ao3042_06867 | EIT77066.1 | 634 | beta-glucosidase C | β-glucosidase (EC3.2.1.21) | |
Ao3042_07727 | EIT76115.1 | 1205 | beta-glucosidase | β-glucosidase (EC3.2.1.21) | |
Ao3042_06335 | EIT77566.1 | 726 | beta-glucosidase | β-glucosidase (EC3.2.1.21) | |
Ao3042_02850 | EIT80529.1 | 839 | beta-glucosidase J | β-glucosidase (EC3.2.1.21) | |
Ao3042_02876 | EIT80658.1 | 779 | beta-glucosidase | β-glucosidase (EC3.2.1.21) | |
Ao3042_02119 | EIT81463.1 | 764 | beta-glucosidase M | β-glucosidase (EC3.2.1.21) | |
Ao3042_01507 | EIT81952.1 | 856 | beta-glucosidase | β-glucosidase (EC3.2.1.21) | |
Ao3042_11294 | EIT83415.1 | 752 | beta-glucosidase D | β-glucosidase (EC3.2.1.21) | |
Ao3042_10796 | EIT83472.1 | 815 | beta-glucosidase G | β-glucosidase (EC3.2.1.21) | |
Ao3042_01568 | EIT81893.1 | 827 | beta-glucosidase H | β-glucosidase (EC3.2.1.21) | |
GH5 | Ao3042_05624 | EIT78233.1 | 490 | endoglucanase/cellulase | Endoglucanase (EC 3.2.1.4) |
Ao3042_04531 | EIT79150.1 | 333 | endo-beta-1,4-glucanase B | Endoglucanase (EC 3.2.1.4) | |
GH7 | Ao3042_08493 | EIT75638.1 | 416 | endo-1,4-beta-glucanase celB | Endoglucanase (EC 3.2.1.4) |
Ao3042_03186 | EIT80345.1 | 455 | 1,4-beta-D-glucan cellobiohydrolase B | Exoglucanase (EC.3.2.1.91) | |
Ao3042_11265 | EIT83444.1 | 465 | 1,4-beta-D-glucan-cellobiohydrolyase | Exoglucanase (EC.3.2.1.91) | |
GH12 | Ao3042_06889 | EIT77057.1 | 239 | endoglucanase A | Endoglucanase (EC 3.2.1.4) |
Glycoside Hydrolase Family | β-Glucosidase (EC3.2.1.21) | Exoglucanase/ Cellobilhydrolase (EC.3.2.1.91) | Endoglucanase (EC 3.2.1.4) | Number Genes |
---|---|---|---|---|
GH1 | √ | - | - | 2 |
GH3 | √ | - | - | 18 |
GH5 | - | - | √ | 2 |
GH7 | - | √ | √ | 3 |
GH12 | - | - | √ | 1 |
Total | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, D.; Zhao, R.; Lin, Y.; Jiang, C. Genome-Wide Analysis and Expression Profiling of the Cellulase Genes in Aspergillus oryzae. Microbiol. Res. 2025, 16, 214. https://doi.org/10.3390/microbiolres16100214
Hu D, Zhao R, Lin Y, Jiang C. Genome-Wide Analysis and Expression Profiling of the Cellulase Genes in Aspergillus oryzae. Microbiology Research. 2025; 16(10):214. https://doi.org/10.3390/microbiolres16100214
Chicago/Turabian StyleHu, Danni, Ruoyu Zhao, Yingxu Lin, and Chunmiao Jiang. 2025. "Genome-Wide Analysis and Expression Profiling of the Cellulase Genes in Aspergillus oryzae" Microbiology Research 16, no. 10: 214. https://doi.org/10.3390/microbiolres16100214
APA StyleHu, D., Zhao, R., Lin, Y., & Jiang, C. (2025). Genome-Wide Analysis and Expression Profiling of the Cellulase Genes in Aspergillus oryzae. Microbiology Research, 16(10), 214. https://doi.org/10.3390/microbiolres16100214