Bacillus Probiotic Strains Induce Gonadal Maturation and Sex Differentiation in Red Abalone Haliotis rufescens Using a Plant-Based Diet
Abstract
1. Introduction
2. Materials and Methods
2.1. Obtention and Phylogenetic Identification of Bacillus Probiotic Strains
2.2. Antibiotic Resistance of Bacillus Probiotic Strains
2.2.1. Enzymatic Activity of Bacillus Probiotic Strains
Proteases
Carbohydrases
α-Galactosidase and Lipase Activity
2.3. Probiotic-Enhanced Feed Formulation and Preparation
2.3.1. Feed Composition and Design
2.3.2. Probiotic Incorporation and Processing
2.4. Experimental Design and Animal Husbandry
2.5. Biometric Sampling and Reproductive Assessment
2.6. Statistical Analysis
3. Results
3.1. Probiotic Safety Profile and Enzymatic Activity
3.2. Probiotic-Enhanced Reproductive Development
3.3. Sex-Specific Maturation Responses at 180 Days
3.4. Relationship Between Size and Gonadal Maturation at 180 Days
3.5. Dietary Effects on Sex Ratios
4. Discussion
4.1. Bacillus Safety, Enzymatic Mechanisms, and Phytoestrogen Liberation
4.2. Sex-Specific Maturation Patterns in H. rufescens
4.3. Size-Maturation Decoupling Through Probiotic Enhancement
4.4. Effects on Sex Ratio
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VGI | Visual Gonad Index |
SBM | Soybean Meal |
SPC | Soy Protein Concentrate |
STR | Starch |
WHF | Wheat Flour |
References
- Olmos Soto, J.; Paniagua-Michel, J.d.J.; Lopez, L.; Ochoa, L. Functional Feeds in Aquaculture. In Springer Handbook of Marine Biotechnology; Kim, S.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1237–1266. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Sun, Y.-Z.; Wang, A.; Zhou, Z. Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front. Microbiol. 2018, 9, 2429. [Google Scholar] [CrossRef]
- Olmos, J.; Acosta, M.; Mendoza, G.; Pitones, V. Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Arch. Microbiol. 2020, 202, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Olmos, J.; Ochoa, L.; Paniagua-Michel, J.; Contreras, R. Functional feed assessment on Litopenaeus vannamei using 100% fish meal replacement by soybean meal, high levels of complex carbohydrates and Bacillus probiotic strains. Mar. Drugs 2011, 9, 1119–1132. [Google Scholar] [CrossRef]
- Soto, J.O. Feed intake improvement, gut microbiota modulation and pathogens control by using Bacillus species in shrimp aquaculture. World J. Microbiol. Biotechnol. 2021, 37, 28. [Google Scholar] [CrossRef]
- Chen, S.; Dai, J.; Chen, Y.; Chen, Q.; Dong, F.; Wang, C.; Sun, Y.; Wang, J.; Han, T. Effects of Bacillus subtilis-fermented soybean meal replacing fish meal on antioxidant activity, immunity, endoplasmic reticulum stress and hepatopancreas histology in Pacific white shrimp (Litopenaeus vannamei). Front. Mar. Sci. 2024, 11, 1449066. [Google Scholar] [CrossRef]
- Olmos, J.; López, L.M.; Gorriño, A.; Galaviz, M.A.; Mercado, V. Bacillus subtilis Effects on Growth Performance and Health Status of Totoaba macdonaldi Fed with High Levels of Soy Protein Concentrate. Animals 2022, 12, 3422. [Google Scholar] [CrossRef]
- Mercado, V.; Olmos, J.; López, L.M.; Galaviz, M.A. First report of significant growth improvement of Totoaba macdonaldi using Bacillus and soy. Aquac. Int. 2025, 33, 12. [Google Scholar] [CrossRef]
- Macias, L.; Mercado, V.; Olmos, J. Assessment of Bacillus species capacity to protect Nile tilapia from A. hydrophila infection and improve growth performance. Front. Cell. Infect. Microbiol. 2024, 14, 1354736. [Google Scholar] [CrossRef] [PubMed]
- El-Dakar, A.Y.; Elgamal, A.A.; Amer, M.A.B.; Mohammed, A.S.; Abdel-Aziz, M.F. Evaluation of fermented soybean meal by Bacillus subtilis as an alternative to fishmeal on the growth, and physiological status of Nile tilapia Oreochromis niloticus fingerlings. Heliyon 2023, 9, e19602. [Google Scholar] [CrossRef]
- Boonmee, T.; Deevong, P.; Rinthong, P.-O.; Yuangsoi, B. Improvement of nutritive value of soybean meal by microbial hydrolysis with Bacillus subtilis Hs-2 for use as raw material in Nile Tilapia (Oreochromis niloticus) diet. Aquac. Rep. 2024, 35, 101943. [Google Scholar] [CrossRef]
- Zhao, J.; Ling, Y.; Zhang, R.; Ke, C.-H.; Hong, G. Effects of dietary supplementation of probiotics on growth, immune responses, and gut microbiome of the abalone Haliotis diversicolor. Aquaculture 2018, 493, 289–295. [Google Scholar] [CrossRef]
- Xiaolong, G.; Caihuan, K.; Fucun, W.; Xian, L.; Ying, L. Effects of Bacillus lincheniformis feeding frequency on the growth, digestion and immunity of Haliotis discus hannai. Fish Shellfish Immunol. 2020, 96, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Cadangin, J.; Lee, J.-H.; Jeon, C.-Y.; Lee, E.-S.; Moon, J.-S.; Park, S.-J.; Hur, S.-W.; Jang, W.-J.; Choi, Y.-H. Effects of dietary supplementation of Bacillus, β-glucooligosaccharide and their synbiotic on the growth, digestion, immunity, and gut microbiota profile of abalone, Haliotis discus hannai. Aquac. Rep. 2024, 35, 102027. [Google Scholar] [CrossRef]
- Amin, M.; Bolch, C.J.S.; Adams, M.B.; Burke, C.M. Growth enhancement of tropical abalone, Haliotis asinina L, through probiotic supplementation. Aquac. Int. 2020, 28, 463–475. [Google Scholar] [CrossRef]
- Olmos, J.; Mercado, V. Use of alternative ingredients and probiotics in aquafeeds formulation. In Sustainable Aquafeeds; CRC Press: Boca Raton, FL, USA, 2021; pp. 21–56. [Google Scholar]
- Olmos, J.; Paniagua-Michel, J. Bacillus subtilis a potential probiotic bacterium to formulate functional feeds for aquaculture. J. Microb. Biochem. Technol. 2014, 6, 361–365. [Google Scholar] [CrossRef]
- Ochoa-Solano, J.L.; Olmos-Soto, J. The functional property of Bacillus for shrimp feeds. Food Microbiol. 2006, 23, 519–525. [Google Scholar] [CrossRef]
- Cederroth, C.R.; Nef, S. Soy, phytoestrogens and metabolism: A review. Mol. Cell. Endocrinol. 2009, 304, 30–42. [Google Scholar] [CrossRef]
- Muhammad, N.P.; Nirmal, T.; Prabhakaran, A.; Varghese, T. Phytoestrogens as endocrine-disrupting agents in aquaculture. In Xenobiotics in Aquatic Animals; Rather, M.A., Amin, A., Hajam, Y.A., Jamwal, A., Ahmad, I., Eds.; Springer: Singapore, 2023; pp. 325–342. [Google Scholar] [CrossRef]
- Bautista-Teruel, M.N.; Millamena, O.M.; Fermin, A.C. Reproductive performance of hatchery-bred donkey’s ear abalone, Haliotis asinina, Linne, fed natural and artificial diets. Aquac. Res. 2001, 32, 249–254. [Google Scholar] [CrossRef]
- Li, X.; Huang, D.; Pan, M.; Sahandi, J.; Wu, Z.; Mai, K.; Zhang, W. Nutrition and feeds for abalone: Current knowledge and future directions. Rev. Aquac. 2024, 16, 1555–1579. [Google Scholar] [CrossRef]
- Bauer, J.; Beas-Luna, R.; Emeterio-Cerecero, M.; Vaca-Rodríguez, J.; Montaño-Moctezuma, G.; Lorda, J. Growth and survival of juvenile red abalone (Haliotis rufescens) fed invasive macroalgae. N. Z. J. Mar. Freshw. Res. 2025, 59, 88–100. [Google Scholar] [CrossRef]
- Bauer, J.; Lorda, J.; Beas-Luna, R.; Malpica-Cruz, L.; Lafarga-De la Cruz, F.; Micheli, F.; Searcy-Bernal, R.; Rogers-Bennett, L.; Bracamontes-Peralta, M. The effects of depth and diet on red abalone growth and survival in cage mariculture at San Jeronimo Island, Baja California, Mexico. Cienc. Mar. 2020, 46, 343–357. [Google Scholar] [CrossRef]
- Bauer, J.; Beas-Luna, R.; Searcy-Bernal, R.; Micheli, F.; Vázquez-Vera, L.; Boch, C.; Carpizo-Ituarte, E.; la Cruz, F.L.-D.; Montaño-Moctezuma, G.; Lorda, J. Growth of juvenile red abalone (Haliotis rufescens) co-cultivated with two densities of warty sea cucumber (Apostichopus parvimensis). N. Z. J. Mar. Freshw. Res. 2025, 59, 183–197. [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Metian, M. Feed matters: Satisfying the feed demand of aquaculture. Rev. Fish. Sci. Aquac. 2015, 23, 1–10. [Google Scholar] [CrossRef]
- Boyd, C.E.; D’Abramo, L.R.; Glencross, B.D.; Huyben, D.C.; Juarez, L.M.; Lockwood, G.S.; McNevin, A.A.; Tacon, A.G.J.; Teletchea, F.; Tomasso, J.R., Jr.; et al. Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. J. World Aquac. Soc. 2020, 51, 578–633. [Google Scholar] [CrossRef]
- Indexmundi. Commodity Prices—Price Charts, Data, and News. 2025. Available online: https://www.indexmundi.com/commodities/ (accessed on 1 April 2025).
- IMARC Group. Seaweed Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2024–2032. 2024. Available online: https://www.imarcgroup.com/seaweed-market (accessed on 1 April 2025).
- Cai, J.; Lovatelli, A.; Aguilar-Manjarrez, J.; Cornish, L.; Dabbadie, L.; Desrochers, A.; Yuan, X. Seaweeds and Microalgae: An Overview for Unlocking Their Potential in Global Aquaculture Development; FAO Fisheries and Aquaculture Circular 1229; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Eger, A.M.; Marzinelli, E.M.; Beas-Luna, R.; Blain, C.O.; Blamey, L.K.; Byrnes, J.E.K.; Carnell, P.E.; Choi, C.G.; Hessing-Lewis, M.; Kim, K.Y.; et al. The value of ecosystem services in global marine kelp forests. Nat. Commun. 2023, 14, 1894. [Google Scholar] [CrossRef]
- Bauer, J.; Beas-Luna, R.; Malpica-Cruz, L.; Abadía-Cardoso, A.; Filz, P.; Bonilla, J.C.; Lorda, J. Community-led management maintains higher predator biomass supporting kelp forests persistence in Baja California. Sci. Rep. 2025, 15, 23253. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, N.L.; Klinger, D.H.; Sims, N.A.; Yoshioka, J.-R.; Kittinger, J.N. Nutritional attributes, substitutability, scalability, and environmental intensity of an illustrative subset of current and future protein sources for aquaculture feeds: Joint consideration of potential synergies and trade-offs. Environ. Sci. Technol. 2018, 52, 5532–5544. [Google Scholar] [CrossRef] [PubMed]
- Liggins, J.; Bluck, L.J.C.; Runswick, S.; Atkinson, C.; Coward, W.A.; Bingham, S.A. Daidzein and genistein contents of vegetables. Br. J. Nutr. 2000, 84, 717–725. [Google Scholar] [CrossRef]
- Meusel, E.; Menanteau-Ledouble, S.; Naylor, M.; Kaiser, H.; El-Matbouli, M. Gonad development in farmed male and female South African abalone, Haliotis midae, fed artificial and natural diets under a range of husbandry conditions. Aquac. Int. 2022, 30, 1279–1293. [Google Scholar] [CrossRef]
- Wu, Y.; Kaiser, H.; Jones, C.L.W. A first study on the effect of dietary soya levels and crystalline isoflavones on growth, gonad development and gonad histology of farmed abalone, Haliotis midae. Aquac. Int. 2019, 27, 167–193. [Google Scholar] [CrossRef]
- Richard, B., Jr.; Thanassi, N.; Nakada, H.I. Hepatopancreas glycosidases of the abalone (Haliotus rufescens). Comp. Biochem. Physiol. Part B Comp. Biochem. 1971, 40, 807–811. [Google Scholar] [CrossRef] [PubMed]
- Tripp-Valdez, M.A.; Galindo-Sánchez, C.E.; Ventura-López, C.; Cicala, F.; Montes-Orozco, V.; Lafarga-De la Cruz, F. Diet-driven transcriptional changes in weaning red abalone (Haliotis rufescens) and its hybrid (H. rufescens [♀] x H. fulgens [♂]). Comp. Biochem. Physiol. Part D Genom.—Proteom. 2025, 55, 101484. [Google Scholar] [CrossRef]
- Francis, G.; Makkar, H.P.S.; Becker, K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 2001, 199, 197–227. [Google Scholar] [CrossRef]
- Kuo, L.-C.; Cheng, W.-Y.; Wu, R.-Y.; Huang, C.-J.; Lee, K.-T. Hydrolysis of black soybean isoflavone glycosides by Bacillus subtilis natto. Appl. Microbiol. Biotechnol. 2006, 73, 314–320. [Google Scholar] [CrossRef]
- Zhang, T.; Yue, Y.; Jeong, S.-J.; Ryu, M.-S.; Wu, X.; Yang, H.-J.; Li, C.; Jeong, D.-Y.; Park, S. Improvement of estrogen deficiency symptoms by the intake of long-term fermented soybeans (doenjang) rich in Bacillus species through modulating gut microbiota in estrogen-deficient rats. Foods 2023, 12, 1143. [Google Scholar] [CrossRef]
- Zhang, Y.; Ishikawa, M.; Koshio, S.; Yokoyama, S.; Dossou, S.; Wang, W.; Zhang, X.; Shadrack, R.S.; Mzengereza, K.; Zhu, K.; et al. Optimization of Soybean Meal Fermentation for Aqua-Feed with Bacillus subtilis natto Using the Response Surface Methodology. Fermentation 2021, 7, 306. [Google Scholar] [CrossRef]
- Siddik, M.A.B.; Julien, B.B.; Islam, S.M.M.; Francis, D.S. Fermentation in aquafeed processing: Achieving sustainability in feeds for global aquaculture production. Rev. Aquac. 2024, 16, 1244–1265. [Google Scholar] [CrossRef]
- Rodríguez-Montesinos, Y.; Hernández-Carmona, G. Seasonal and geographic variations of Macrocystis pyrifera chemical composition at the western coast of Baja California. Cienc. Mar. 1991, 17, 91–107. [Google Scholar] [CrossRef]
- Cutting, S.M. Bacillus probiotics. Food Microbiol. 2011, 28, 214–220. [Google Scholar] [CrossRef]
- Grubert, M.A.; Ritar, A.J. Temperature effects on the dynamics of gonad and oocyte development in captive wild-caught blacklip (Haliotis rubra) and greenlip (H. laevigata) abalone. Invertebr. Reprod. Dev. 2004, 45, 185–196. [Google Scholar] [CrossRef][Green Version]
- Botwright, N.A.; Zhao, M.; Wang, T.; McWilliam, S.; Colgrave, M.L.; Hlinka, O.; Li, S.; Suwansa-Ard, S.; Subramanian, S.; McPherson, L.; et al. Greenlip Abalone (Haliotis laevigata) Genome and Protein Analysis Provides Insights into Maturation and Spawning. G3 Genes Genomes Genet. 2019, 9, 3067–3078. [Google Scholar] [CrossRef]
- Rogers-Bennett, L.; Dondanville, R.F.; Moore, J.D.; Vilchis, L.I. Size specific fecundity of red abalone (Haliotis rufescens): Evidence for reproductive senescence. J. Shellfish Res. 2004, 23, 553–560. [Google Scholar]
- Erasmus, J.H.; Cook, P.A.; Coyne, V.E. The role of bacteria in the digestion of seaweed by the abalone Haliotis midae. Aquaculture 1997, 155, 377–386. [Google Scholar] [CrossRef]
- Serviere-Zaragoza, E.; Navarrete del Toro, M.; García-Carreño, F. Protein-hydrolyzing enzymes in the digestive systems of the adult Mexican blue abalone, Haliotis fulgens (Gastropoda). Aquaculture 1997, 157, 325–336. [Google Scholar] [CrossRef]
- Bulsara, J.; Soni, A.; Patil, P.; Halpati, K.; Desai, S.; Acharya, S. Bio-enhancement of Soy Isoflavones (Genistein & Daidzein) Using Bacillus coagulans in Letrozole Induced Polycystic Ovarian Syndrome by Regulating Endocrine Hormones in Rats. Probiotics Antimicrob. Proteins 2022, 14, 560–572. [Google Scholar] [CrossRef]
- Soto, J.O. Bacillus Probiotic Enzymes: External Auxiliary Apparatus to Avoid Digestive Deficiencies, Water Pollution, Diseases, and Economic Problems in Marine Cultivated Animals. Adv. Food Nutr. Res. 2017, 80, 15–35. [Google Scholar] [CrossRef]
- Yang, H.-J.; Zhang, T.; Yue, Y.; Jeong, S.-J.; Ryu, M.-S.; Wu, X.; Li, C.; Jeong, D.-Y.; Park, S. protective effect of long-term fermented soybeans with abundant Bacillus subtilis on glucose and bone metabolism and memory function in ovariectomized rats: Modulation of the gut microbiota. Foods 2023, 12, 2958. [Google Scholar] [CrossRef]
- Jaeckle, W.B.; Manahan, D.T. Growth and energy imbalance during the development of a lecithotrophic molluscan larva (Haliotis rufescens). Biol. Bull. 1989, 177, 237–246. [Google Scholar] [CrossRef]
- Llodra, E.R. Fecundity and life-history strategies in marine invertebrates. Adv. Mar. Biol. 2002, 43, 87–170. [Google Scholar] [CrossRef]
- Litaay, M.; De Silva, S.S. Spawning season, fecundity and proximate composition of the gonads of wild-caught blacklip abalone (Haliotis rubra) from Port Fairy waters, south eastern Australia. Aquat. Living Resour. 2003, 16, 353–361. [Google Scholar] [CrossRef]
- Bullon, N.; Seyfoddin, A.; Alfaro, A.C. The role of aquafeeds in abalone nutrition and health: A comprehensive review. J. World Aquac. Soc. 2023, 54, 7–31. [Google Scholar] [CrossRef]
- Lorenzen, K. Toward a new paradigm for growth modeling in fisheries stock assessments: Embracing plasticity and its consequences. Fish. Res. 2016, 180, 4–22. [Google Scholar] [CrossRef]
- Duan, J.; Liu, H.; Zhu, J.; Lu, L.; Chen, S.; Lin, F.; Chang, L. A dynamic energy budget model for abalone, Haliotis discus hannai Ino. Ecol. Model. 2021, 451, 109569. [Google Scholar] [CrossRef]
- Jourdehi, A.Y.; Sudagar, M.; Bahmani, M.; Hosseini, S.A.; Dehghani, A.A.; Yazdani, M.A. Comparative study of dietary soy phytoestrogens genistein and equol effects on growth parameters and ovarian development in farmed female beluga sturgeon, Huso huso. Fish Physiol. Biochem. 2014, 40, 117–128. [Google Scholar] [CrossRef]
- Shohreh, P.; Mohammadzadeh, S.; Mood, S.M.; Ahmadifar, E.; Naiel, M.A.E.; Chandran, D. the potentials of phytoestrogen compounds in aquaculture—A Review. Ann. Anim. Sci. 2024, 24, 695–705. [Google Scholar] [CrossRef]
- Wojnarowski, K.; Podobiński, P.; Cholewińska, P.; Smoliński, J.; Dorobisz, K. Impact of estrogens present in environment on health and welfare of animals. Animals 2021, 11, 2152. [Google Scholar] [CrossRef] [PubMed]
- Sirotkin, A.V.; Harrath, A.H. Phytoestrogens and their effects. Eur. J. Pharmacol. 2014, 741, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ha, D.; Yoshitake, R.; Chan, Y.S.; Sadava, D.; Chen, S. Exploring the biological activity and mechanism of xenoestrogens and phytoestrogens in cancers: Emerging methods and concepts. Int. J. Mol. Sci. 2021, 22, 8798. [Google Scholar] [CrossRef]
- Morash, A.J.; Alter, K. Effects of environmental and farm stress on abalone physiology: Perspectives for abalone aquaculture in the face of global climate change. Rev. Aquac. 2016, 8, 342–368. [Google Scholar] [CrossRef]
- Orlando, E.F.; Guillette, L.J. Sexual dimorphic responses in wildlife exposed to endocrine disrupting chemicals. Environ. Res. 2007, 104, 163–173. [Google Scholar] [CrossRef]
- Lambert, M.R. Clover root exudate produces male-biased sex ratios and accelerates male metamorphic timing in wood frogs. R. Soc. Open Sci. 2015, 2, 150433. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.-F.M.; Abdel-Aziz, E.-S.H.; Abdel-Ghani, H.M. Effects of phytoestrogens on sex reversal of Nile tilapia (Oreochromis niloticus) larvae fed diets treated with 17α-Methyltestosterone. Aquaculture 2012, 360–361, 58–63. [Google Scholar] [CrossRef]
- Tzchori, I.; Degani, G.; Elisha, R.; Eliyahu, R.; Hurvitz, A.; Vaya, J.; Moav, B. The influence of phytoestrogens and oestradiol-17beta on growth and sex determination in the European eel (Anguilla anguilla). Aquac. Res. 2004, 35, 1213–1219. [Google Scholar] [CrossRef]
- Kurzer, M.S.; Xu, X. Dietary Phytoestrogens. Annu. Rev. Nutr. 1997, 17, 353–381. [Google Scholar] [CrossRef]
- Fodor, I.; Markov, G.V.; Yañez-Guerra, L.A.; Elekes, K.; Pollák, E.; Molnár, L.; Pirger, Z. Istv Cholesterol and sterols in molluscan endocrinology: Past, present, future. Front. Endocrinol. 2025, 16, 1627166. [Google Scholar] [CrossRef]
- Thitiphuree, T.; Nagasawa, K.; Osada, M. Molecular identification of steroidogenesis-related genes in scallops and their potential roles in gametogenesis. J. Steroid Biochem. Mol. Biol. 2019, 186, 22–33. [Google Scholar] [CrossRef]
Component | Plant-Based Diet + Probiotics | Fish-Based Diet + Probiotics | Control (Macrocystis pyrifera) |
---|---|---|---|
Macronutrient Composition (%) | |||
Protein | 21.0 | 21.0 | 7.67–9.41 1 |
Carbohydrates | 55.0 | 55.0 | 47.2–75.3 1 |
Lipids | 5.0 | 5.0 | 0.86–0.99 1 |
NDF | 3 | 3 | 6.92–7.15 1 |
DF | 5 | 5 | |
Primary Ingredients (%) | |||
Fishmeal 2 | 10.0 | 30.0 | 0 |
Soybean meal 3 | 10 | 0 | 0 |
Vegetable meals 4 | 74.0 | 64.0 | 0 |
Vitamin and mineral premix 5 | 2.0 | 2.0 | n.a. |
Bacillus strains (Sp1 + Sp3) | 2 × 106 CFU/g | 2 × 106 CFU/g | 0 |
Enzyme Activity | Substrate | Sp1 | Sp3 | Significance for Plant-Based Feeds |
---|---|---|---|---|
Proteases | Soy protein concentrate | +++ | ++ | Eliminates protease inhibitors |
Soybean meal | ++ | +++ | Releases core proteins from carbohydrates matrix by degrading oligosaccharides | |
Wheat flour | +++ | ++ | Enhances protein digestibility | |
Carbohydrases | Starch | ++ | +++ | Hydrolyzes complex carbohydrates |
Wheat flour | ++ | +++ | ||
α-Galactosidase | Oligosaccharides from soybean meal | + | ++ | Breakdown Melibiose/Raffinose toxic oligosaccharides into bioavailable sugars. |
Lipases | Soybean oil | ++ | ++ | Enhances lipid utilization |
Parameter | Fresh Kelp Control | Fish Diet + Probiotics | Plant Diet + Probiotics | Statistical Significance |
---|---|---|---|---|
Female VGI Level 3 Achievement | 0% (0/41) | 0% (0/42) | 55.6% (30/54) | p < 0.001 |
Male VGI Level 2 Achievement | 4.0% (2/50) | 7.7% (3/39) | 27.8% (10/36) | p < 0.01 |
Final Female VGI | 1.38 ± 0.08 | 1.02 ± 0.09 | 2.50 ± 0.09 | p < 0.001 |
Final Male VGI | 0.81 ± 0.05 | 1.05 ± 0.12 | 1.27 ± 0.14 | p < 0.05 |
Sex Ratio (F:M) | 0.8:1 | 1.1:1 | 1.5:1 | p < 0.05 |
Size-Maturation Correlation (Females) | r = 0.348 * | r = 0.424 ** | r = 0.207 (ns) | Decoupling achieved |
Survival Rate | 96/99 (97.0%) | 93/99 (93.9%) | 96/99 (97.0%) | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olmos, J.; Acosta-Ruiz, M.; Lafarga-De la Cruz, F.; Bauer, J. Bacillus Probiotic Strains Induce Gonadal Maturation and Sex Differentiation in Red Abalone Haliotis rufescens Using a Plant-Based Diet. Microbiol. Res. 2025, 16, 211. https://doi.org/10.3390/microbiolres16100211
Olmos J, Acosta-Ruiz M, Lafarga-De la Cruz F, Bauer J. Bacillus Probiotic Strains Induce Gonadal Maturation and Sex Differentiation in Red Abalone Haliotis rufescens Using a Plant-Based Diet. Microbiology Research. 2025; 16(10):211. https://doi.org/10.3390/microbiolres16100211
Chicago/Turabian StyleOlmos, Jorge, Manuel Acosta-Ruiz, Fabiola Lafarga-De la Cruz, and Jeremie Bauer. 2025. "Bacillus Probiotic Strains Induce Gonadal Maturation and Sex Differentiation in Red Abalone Haliotis rufescens Using a Plant-Based Diet" Microbiology Research 16, no. 10: 211. https://doi.org/10.3390/microbiolres16100211
APA StyleOlmos, J., Acosta-Ruiz, M., Lafarga-De la Cruz, F., & Bauer, J. (2025). Bacillus Probiotic Strains Induce Gonadal Maturation and Sex Differentiation in Red Abalone Haliotis rufescens Using a Plant-Based Diet. Microbiology Research, 16(10), 211. https://doi.org/10.3390/microbiolres16100211