Control of Pathogen Erysiphe alphitoides Present in Forest Crops in Current Climatic Conditions
Abstract
:1. Introduction
2. Materials and Methods
- (a)
- the Valea Iușului Nursery within the Lechința Experimental Base;
- (b)
- -
- ua—uninfected,
- -
- w—low: small, isolated yellow–green to yellow spots on 1–24% of leaf surface,
- -
- m—medium: large yellow spots, confluent on 25–74% of the leaf surface; these can also appear on non-lignified stems,
- -
- h—high over 75% generalized infections on the leaves and on the tips of the stems in the form of a white powder, which lead to their deformation and drying [33].
3. Results
Control of Oak Powdery Mildew (OPM)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EU | European Union |
FSC | Forest Stewardship Council |
OPM | oak powdery mildew |
INCDS | National Institute for Research and Development in Forestry |
ua | uninfected |
w | low affected |
m | medium affected |
h | highly affected |
mL | milliliter |
L | liter |
g | gram |
COS-OGA | chito-oligozaharide-oligogalacturonane |
PAL | phenylanine ammonium lyase |
DS | disease severity |
n | the degree of infection established according to a certain scale |
v | the number of individuals in the respective category |
N | the total number of classes |
V | the total number of individuals |
E | effectiveness |
DSv | degree of attack, in the treated variants |
DSc | degree of attack, in the control variants |
Z | the ratio between the degree of attack in the treated and control variants |
LD | limit difference test |
LSD | Least Significant Difference |
References
- Ghini, R.; Hamada, E.; Pedro Junior, M.J.; Marengo, J.A.; Gonçalves, R.R. Risk analysis of climate change on coffee nematodes and leaf miner in Brazil. Pesqui. Agropecuária Bras. 2008, 43, 187–194. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Tubiello, F.N. Adaptation and mitigation strategies in agriculture: An analysis of potential synergies. Mitig. Adapt. Strat. Glob. Chang. 2007, 12, 855–873. [Google Scholar] [CrossRef]
- Albrectsen, B.; Witzell, J. Disentangling functions of fungal endophytes in forest trees. In Fungi: Types, Environmental Impact and Role in Disease; Adolfo, P.S., María, S.N., Eds.; Science Publishers Incorporated: New York, NY, USA, 2012. [Google Scholar]
- Yáñez-López, R.; Torres-Pacheco, I.; Guevara-González, R.G.; Hernández-Zul, M.I.; Quijano-Carranza, J.A.; Rico-García, E. The effect of climate change on plant diseases. Afr. J. Biotechnol. 2012, 11, 2417–2428. [Google Scholar] [CrossRef]
- Bradshaw, R.E.; Ormond, S.; Dupont, P.Y.; Chettri, P.; Ozturk, I.K.; McDougal, R.L.; Bulman, L.S.; Cox, M.P. Reduced virulence of an introduced forest pathogen over 50 years. Microorganisms 2019, 7, 420. [Google Scholar] [CrossRef]
- Woods, A. Is the health of British Columbia’s forests being influenced by climate change? If so, was this predictable? Can. J. Plant Pathol. 2011, 33, 117–126. [Google Scholar] [CrossRef]
- Song, Q.; Deng, X.; Song, R.; Song, X. Plant growth-promoting rhizobacteria promote growth of seedlings, regulate soil microbial community, and alleviate damping-off disease caused by Rhizoctonia solani on Pinus sylvestris var. mongolica. Plant Dis. 2022, 106, 2730–2740. [Google Scholar] [CrossRef] [PubMed]
- Ghelardini, L.; Pepori, A.L.; Luchi, N.; Capretti, P.; Santini, A. Drivers of emerging fungal diseases of forest trees. For. Ecol. Manag. 2016, 381, 235–246. [Google Scholar] [CrossRef]
- Desprez-Loustau, M.-L.; Aguayo, J.; Dutech, C.; Hayden, K.J.; Husson, C.; Jakushkin, B.; Marcais, B.; Piou, D.; Robin, C.; Vacher, C. An evolutionary ecology perspective to address forest pathology challenges of today and tomorrow. Ann. For. Sci. 2016, 73, 45–67. [Google Scholar] [CrossRef]
- Marçais, B.; Desprez-Loustau, M.L. European oak powdery mildew: Impact on trees, effects of environmental factors, and potential effects of climate change. Ann. For. Sci. 2014, 71, 633–642. [Google Scholar] [CrossRef]
- Desprez-Loustau, M.L. Alien fungi of Europe. In Handbook of Alien Species in Europe; Hulme, P.E., Nentwig, W., Pysek, P., Vila, M., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 15–28. [Google Scholar]
- Ramut, R.A.; Pusz, W. Fungi complicit in oak powdery mildew infection in the Oława Forest District. Acta Mycol. 2023, 58, 166060. [Google Scholar] [CrossRef]
- Pangga, I.B.; Hanan, J.; Chakraborty, S. Pathogen dynamics in a crop canopy and their evolution under changing climate. Plant Pathol. 2011, 60, 70–81. [Google Scholar] [CrossRef]
- Li, P.; Tedersoo, L.; Crowther, T.W.; Wang, B.; Shi, Y.; Kuang, L.; Li, T.; Wu, M.; Liu, M.; Luan, L.; et al. Global diversity and biogeography of potential phytopathogenic fungi in a changing world. Nat. Commun. 2023, 14, 6482. [Google Scholar] [CrossRef]
- Santini, A.; Ghelardini, L.; De Pace, C.; Desprez-Loustau, M.L.; Capretti, P.; Chandelier, A.; Cech, T.; Chira, D.; Diamandis, S.; Gaitniekis, T.; et al. Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytologist 2013, 197, 238–250. [Google Scholar] [CrossRef]
- Turczański, K.; Bełka, M.; Spychalski, M.; Kukawka, R.; Prasad, R.; Smiglak, M. Resistance inducers for the protection of pedunculate oak (Quercus robur L.) seedlings against powdery mildew Erysiphe alphitoides. Plants 2023, 12, 635. [Google Scholar] [CrossRef]
- Georgescu, C.C.; Petrescu, M.; Ene, M.; Ștefănescu, M.; Miron, V. Bolile și dăunătorii pădurilor, Biologie și combatere, Vol. I Bolile [Forest Diseases and Pests, Biology and Control, Vol. I Diseases]; State Agro-forestry Publishing House: Bucharest, Romania, 1957. [Google Scholar]
- El-Sayed, A.; Kamel, M. Climatic changes and their role in emergence and re-emergence of diseases. Environ. Sci. Pollut. Res. 2020, 27, 22336–22352. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.; Orlikowski, L.; Henricot, B.; Abad-Campos, P.; Aday, A.G.; Aguín Casal, O.; Bakonyi, J.; Cassiola, S.O. Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. For. Pathol. 2016, 46, 134–163. [Google Scholar] [CrossRef]
- Şimonca, V.; Oroian, I.; Chira, D.; Tăut, I. Methods for Quantification of the Decline Phenomenon and Determination of the Vulnerability Degree for the Oak Stands in Northwestern Transylvania, Romania. Not. Bot. Horti Agrobo 2017, 45, 623–631. [Google Scholar] [CrossRef]
- Popa, I.; Leca, S.; Crăciunescu, A.; Sidor, C.; Badea, O. Dendroclimatic response variability of Quercus species in the Romanian intensive forest monitoring network. Not. Bot. Horti Agrobo 2013, 41, 326–332. [Google Scholar] [CrossRef]
- Sonesson, K.; Drobyshev, I. Recent advances on oak decline in southern Sweden. Ecol. Bull. 2010, 53, 197–207. [Google Scholar]
- Jankowiak, R.; Stepniewska, H.; Bilański, P.; Kolařík, M. Occurrence of Phytophthora plurivora and other Phytophthora sp. in oaks forests of southern Poland and their association with site conditions and the health status of trees. Folia Microbiol. 2014, 59, 531–542. [Google Scholar] [CrossRef]
- Keca, N.; Koufakis, I.; Dietershagen, J.; Nowakowska, J.A.; Oszako, T. European oak decline phenomenon in relation to climatic changes. Folia For. Pol. 2016, 58, 170–177. [Google Scholar]
- Olenici, N. Identificarea factorilor dăunători care afectează culturile forestiere–principii generale și un studiu de caz [Identification of pests affecting forest crops–general principles and a case study]. Bucov. For. 2021, 21, 165–181. [Google Scholar] [CrossRef]
- Chira, F.; Mantale, C.; Enoiu, I.; Chira, D. Tratamente complexe la puieții forestieri de rășinoase din pepiniere [Complex treatments of softwood forest saplings in nurseries.]. Rev. Silvic. Cineg. 2019, 24, 53. [Google Scholar]
- Haase, D.L.; Pike, C.; Enebak, S.; Mackey, L.; Ma, Z.; Silva, C.; Warren, J. Forest nursery seedling production in the United States—Fiscal year 2020. Tree Plant Notes 2021, 64, 108–114. [Google Scholar]
- Hessenauer, P.; Feau, N.; Gill, U.; Schwessinger, B.; Brar, G.S.; Hamelin, R.C. Evolution and adaptation of forest and crop pathogens in the Anthropocene. Phytopathology 2021, 111, 49–67. [Google Scholar] [CrossRef]
- Lurwanu, Y.; Wang, Y.P.; Abdul, W.; Zhan, J.; Yang, L.N. Temperature-mediated plasticity regulates the adaptation of Phytophthora infestans to azoxystrobin fungicide. Sustainability 2020, 12, 1188. [Google Scholar] [CrossRef]
- Desprez-Loustau, M.L.; Hamelin, F.; Marçais, B. The ecological and evolutionary trajectory of oak powdery mildew in Europe. In Wildlife Disease Ecology: Linking Theory to Data and Application (Ecological Reviews); Cambridge University Press: Cambridge, UK, 2019; pp. 429–457. [Google Scholar]
- Buras, A.; Rammig, A.; Zang, C.S. Quantifying impacts of the drought 2018 on European ecosystems in comparison to 2003. Biogeosci. Discuss. 2020, 17, 1655–1672. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Tăut, I.; Moldovan, M. Controlul făinării frunzelor de gorun în culturi de pepinieră [Control of sessile oak leaf powdery mildew in nursery crops]. Rev. de Silvic. si Cinegetică 2022, XXVII, 43–50. [Google Scholar]
- Essling, M.; McKay, S.; Petrie, P.R. Fungicide Programs Used to Manage Powdery Mildew (Erysiphe necator) in Australian Vineyards. Crop Prot. 2021, 139, 105369. [Google Scholar] [CrossRef]
- Berrie, A.; Xu, X. Developing Biopesticide-Based Programmes for Managing Powdery Mildew in Protected Strawberries in the UK. Crop Prot. 2021, 149, 105766. [Google Scholar] [CrossRef]
- PN19070205 (BIOSERV Core Program) 2019–2022. INCDS “Marin Dracea”. Available online: https://icas.ro/programs-and-projects/national-programs-and-projects/bioserv-core-program-2019-2022/?lang=en (accessed on 27 July 2024).
- Kebert, M.; Kostić, S.; Zlatković, M.; Stojnic, S.; Čapelja, E.; Zorić, M.; Kiprovski, B.; Budakov, D.; Orlović, S. Ectomycorrhizal Fungi Modulate Biochemical Response against Powdery Mildew Disease in Quercus robur L. Forests 2022, 13, 1491. [Google Scholar] [CrossRef]
- Bobeș, I. Atlas de fitopatologie și protecția agroecosistemelor [Atlas of Phytopathology and Protection of Agroecosystems]; Ceres Ed.: Bucharest, Romania, 1983. [Google Scholar]
- Constantinescu, O. Metode și tehnici în micologie [Methods and Techniques in Mycology]; Ceres Ed.: Bucharest, Romania, 1974. [Google Scholar]
- Atak, A. Determination of downy mildew and powdery mildew resistance of some grape cultivars. S. Afr. J. Enol. Vitic. 2017, 38, 11–17. [Google Scholar] [CrossRef]
- Aldentun, Y. Life cycle inventory of forest seedling production—From seed to regeneration site. J. Clean. Prod. 2002, 10, 47–55. [Google Scholar] [CrossRef]
- Mataruga, M.; Cvjetković, B.; De Cuyper, B.; Aneva, I.; Zhelev, P.; Cudlín, P.; Metslaid, M.; Kankaanhuhta, V.; Collet, C.; Annighofer, P.; et al. Monitoring and control of forest seedling quality in Europe. For. Ecol. Manag. 2023, 546, 121308. [Google Scholar] [CrossRef]
- La Porta, N.; Capretti, P.; Thomsen, I.M.; Kasanen, R.; Hietala, A.M.; Von Weissenberg, K. Forest pathogens with higher damage potential due to climate change in Europe. Can. J. Plant Pathol. 2008, 30, 177–195. [Google Scholar] [CrossRef]
- Green, S.; Cooke, D.E.; Dunn, M.; Barwell, L.; Purse, B.; Chapman, D.S.; Valatin, G.; Schlenzig, A.; Barbrook, J.; Pettitt, T.; et al. PHYTO-THREATS: Addressing threats to UK forests and woodlands from Phytophthora; identifying risks of spread in trade and methods for mitigation. Forests 2021, 12, 1617. [Google Scholar] [CrossRef]
- Skwarek-Fadecka, M.; Patykowski, J.; Nawrocka, J.; Szymczak, K.; Kaźmierczak, A.; Wielanek, M.; Ruszkiewicz-Michalska, M. Biochemical changes in Quercus robur L. leaves after Erysiphe alphitoides infection. For. Pathol. 2022, 52, e12756. [Google Scholar] [CrossRef]
- Hewitt, H.G. Conidial germination in Microsphaera alphitoides. Trans. Br. Mycol. Soc. 1974, 63, 587–589. [Google Scholar] [CrossRef]
- Pap, P.; Ranković, B.; Masirevic, S. Effect of temperature, relative humidity and light on conidial germination of oak powdery mildew (Microsphaera alphitoides Griff. et Maubl.) under controlled conditions. Arch. Biol. Sci. 2013, 65, 1069–1077. [Google Scholar] [CrossRef]
- Karadžić, D.; Milijašević, T. Najčešće “pepelnice“našumskim drvenastim vrstama i njihov značaj [The most common “powdery mildews” of forest woody species and their significance]. Glas. Šumarskog Fak. 2005, 91, 9–29. [Google Scholar]
- Glavaš, M. Zaštita hrastovih sastojina od pepelnice (Microsphaera alphitoides Griff. et Maubl.) [Protection of oak stands against powdery mildew (Microsphaera alphitoides Griff. et Maubl.)]. Croat. J. For. Eng. 2011, 32, 205–210. [Google Scholar]
- Rockström, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; DeClerck, F.; Shah, M.; Steduto, P.; et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 2017, 46, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Gikas, G.D.; Parlakidis, P.; Mavropoulos, T.; Vryzas, Z. Particularities of fungicides and factors affecting their fate and removal efficacy: A review. Sustainability 2022, 14, 4056. [Google Scholar] [CrossRef]
- Vielba-Fernández, A.; Polonio, Á.; Ruiz-Jiménez, L.; de Vicente, A.; Pérez-García, A.; Fernández-Ortuño, D. Fungicide resistance in powdery mildew fungi. Microorganisms 2020, 8, 1431. [Google Scholar] [CrossRef] [PubMed]
- Hanif, M.; Ashraf, Z.; Bashir, S.; Riaz, F.; Amanat, R.; Yousaf, N.; Sarwar, S. Ectomycorrhizal Fungi as Biofertilizers in Forestry. In Arbuscular Mycorrhizal Fungi in Agriculture-New Insights; IntechOpen: Vienna, Austria, 2023. [Google Scholar]
- Argiroff, W.A.; Zak, D.R.; Upchurch, R.A.; Pellitier, P.T.; Belke, J.P. Fungal community composition and genetic potential regulate fine root decay in northern temperate forests. Mol. Ecol. 2023, 32, 2005–2021. [Google Scholar] [CrossRef]
- Almeida, J.P.; Menichetti, L.; Ekblad, A.; Rosenstock, N.P.; Wallander, H. Phosphorus regulates ectomycorrhizal fungi biomass production in a Norway spruce forest. Biogeosciences 2023, 20, 1443–1458. [Google Scholar] [CrossRef]
- Calderone, F.; Vitale, A.; Panebianco, S.; Lombardo, M.F.; Cirvilleri, G. COS-OGA Applications in Organic Vineyard Manage Major Airborne Diseases and Maintain Postharvest Quality of Wine Grapes. Plants 2022, 11, 1763. [Google Scholar] [CrossRef]
- Opalski, K.S.; Tresch, S.; Kogel, K.-H.; Grossmann, K.; Köhle, H.; Hückelhoven, R. Metrafenone: Studies on the mode of action of a novel cereal powdery mildew fungicide. Pest Manag. Sci. 2006, 62, 393–401. [Google Scholar] [CrossRef]
- Selby, T.P.; Sternberg, C.G.; Bereznak, J.F.; Coats, R.A.; Marshall, E.A. The Discovery of Proquinazid: A New and Potent Powdery Mildew Control Agent. In Synthesis and Chemistry of Agrochemicals VII; Lyga, J.W., Theodoridis, G., Eds.; American Chemical Society: Washington, DC, USA, 2007; Volume 948, pp. 209–222. [Google Scholar]
- Rantsiou, K.; Giacosa, S.; Pugliese, M.; Englezos, V.; Ferrocino, I.; Río Segade, S.; Monchiero, M.; Gribaudo, I.; Gambino, G.; Gullino, M.L.; et al. Impact of chemical and alternative fungicides applied to grapevine cv Nebbiolo on microbial ecology and chemical-physical grape characteristics at harvest. Front. Plant Sci. 2020, 11, 700. [Google Scholar] [CrossRef]
- La Torre, A.; Iovino, V.; Caradonia, F. Copper in plant protection: Current situation and prospects. Phytopathol. Mediterr. 2018, 57, 201–236. [Google Scholar]
- Marçais, B.; Piou, D.; Dezette, D.; Desprez-Loustau, M.L. Can oak powdery mildew severity be explained by indirect effects of climate on the composition of the Erysiphe pathogenic complex? Phytopathology 2017, 107, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Buraczyk, W.; Żybura, H.; Ostaszewska, E.; Studnicki, M.; Aleksandrowicz−Trzcińska, M. Zastosowanie biostymulatorów w hodowli I ochronie sadzonek dębu szypułkowego (Quercus robur L.) w gruntowej szkółce leśnej. [Application of biostimulators in the growth and protection of pedunculated oak (Quercus robur L.) seedlings in bare-root nursery]. Sylwan 2020, 164, 292–299. [Google Scholar] [CrossRef]
- Tkaczyk, M.; Szmidla, H.; Sikora, K. The use of biostimulants containing Ascophyllum nodosum (L.) Le Jolis algal extract in the cultivation and protection of English oak Quercus robur L. seedlings in forest nurseries. Sylwan 2022, 166, 244–252. [Google Scholar]
No. | Name | Coordinates | Altitude (masl) | |
---|---|---|---|---|
Latitude (N) | Longitude (E) | |||
1 | Valea Iușului Nursery | 46.947683° | 24.243044° | 467 |
2 | Voivodeni nursery | 46.725072° | 24.605525° | 378 |
Source of Variation | SS | df | MS | F | p-Value | F Crit | |
---|---|---|---|---|---|---|---|
Rows | 17.75 | 5 | 3.55 | 6.85 | 0.002 | 2.90 | |
Columns | 8.71 | 3 | 2.90 | 5.61 | 0.009 | 3.29 | |
Error | 7.77 | 15 | 0.52 | ||||
Total | 34.23 | 23 | |||||
Variants | V6 | V4 | V5 | V3 | V1 | V2 | |
Variants | Means | 4.25 | 3.59 | 3.03 | 2.81 | 2.37 | 1.83 |
V6 | 4.25 | 1.10 * | 1.72 ** | 1.77 ** | 2.00 ** | 2.79 ** | |
V4 | 3.59 | 0.62 | 0.67 | 0.90 | 1.69 ** | ||
V5 | 3.03 | 0.05 | 0.28 | 1.07 * | |||
V3 | 2.81 | 0.23 | 1.02 | ||||
V1 | 2.37 | 0.79 | |||||
V2 | 1.83 |
Source of Variation | SS | df | MS | F | p-Value | F Crit | |
---|---|---|---|---|---|---|---|
Rows | 317.35 | 5 | 63.47 | 6.94 | 0.001531 | 2.90 | |
Columns | 257.5 | 3 | 85.83 | 9.38 | 0.000974 | 3.28 | |
Error | 137.15 | 15 | 9.14 | ||||
Total | 711.98 | 23 | |||||
Variants | V2 | V1 | V3 | V5 | V4 | V6 | |
Variants | Means | 92.01 | 89.98 | 88.95 | 87.19 | 85.33 | 81.95 |
V2 | 92.01 | 3.19 | 3.77 | 4.14 | 6.61 * | 11.80 ** | |
V1 | 89.98 | 0.58 | 0.95 | 3.42 | 8.61 ** | ||
V3 | 88.95 | 0.37 | 2.84 | 8.03 ** | |||
V5 | 87.19 | 2.47 | 7.66 ** | ||||
V4 | 85.33 | 5.19 | |||||
V6 | 81.95 |
Source of Variation | SS | df | MS | F | p-Value | F Crit | |
---|---|---|---|---|---|---|---|
Rows | 417.47 | 5 | 83.49 | 13.96 | 0.000034 | 2.90 | |
Columns | 228.27 | 3 | 76.09 | 12.72 | 0.000212 | 3.29 | |
Error | 89.69 | 15 | 5.98 | ||||
Total | 735.44 | 23 | |||||
Variants | V6 | V4 | V5 | V1 | V3 | V2 | |
Variants | Means | 13.4 | 11.81 | 11.21 | 4.21 | 3.9 | 3.64 |
V6 | 13.40 | 1.59 | 2.19 | 9.19 ** | 9.5 ** | 9.76 *** | |
V4 | 11.81 | 0.6 | 7.6 ** | 7.91 ** | 8.17 ** | ||
V5 | 11.21 | 7 | 7.31 ** | 7.57 ** | |||
V1 | 4.21 | 0.31 | 0.57 | ||||
V3 | 3.90 | 0.26 | |||||
V2 | 3.64 |
Source of Variation | SS | df | MS | F | p-Value | F Crit | |
---|---|---|---|---|---|---|---|
Rows | 3972.08 | 5 | 794.42 | 62.66 | 1.62378 × 10−9 | 2.90 | |
Columns | 140.35 | 3 | 46.78 | 3.69 | 0.035942983 | 3.29 | |
Error | 190.16 | 15 | 12.68 | ||||
Total | 4302.59 | 23 | |||||
Variants | V2 | V3 | V1 | V5 | V4 | V6 | |
Variants | Means | 88.78 | 87.04 | 86.88 | 66.58 | 61.57 | 58.7 |
V2 | 88.78 | 1.74 | 1.90 | 22.20 *** | 27.21 *** | 30.08 *** | |
V3 | 87.04 | 0.16 | 20.46 *** | 25.47 *** | 28.34 *** | ||
V1 | 86.88 | 20.3 *** | 25.31 *** | 28.18 *** | |||
V5 | 66.58 | 5.01 | 7.88 * | ||||
V4 | 61.57 | 2.87 | |||||
V6 | 58.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tăut, I.; Moldovan, M.; Șimonca, V.; Varga, M.I.; Rob, M.; Chira, F.; Chira, D. Control of Pathogen Erysiphe alphitoides Present in Forest Crops in Current Climatic Conditions. Microbiol. Res. 2024, 15, 1441-1458. https://doi.org/10.3390/microbiolres15030097
Tăut I, Moldovan M, Șimonca V, Varga MI, Rob M, Chira F, Chira D. Control of Pathogen Erysiphe alphitoides Present in Forest Crops in Current Climatic Conditions. Microbiology Research. 2024; 15(3):1441-1458. https://doi.org/10.3390/microbiolres15030097
Chicago/Turabian StyleTăut, Ioan, Mircea Moldovan, Vasile Șimonca, Mircea Ioan Varga, Marinel Rob, Florentina Chira, and Dănuț Chira. 2024. "Control of Pathogen Erysiphe alphitoides Present in Forest Crops in Current Climatic Conditions" Microbiology Research 15, no. 3: 1441-1458. https://doi.org/10.3390/microbiolres15030097
APA StyleTăut, I., Moldovan, M., Șimonca, V., Varga, M. I., Rob, M., Chira, F., & Chira, D. (2024). Control of Pathogen Erysiphe alphitoides Present in Forest Crops in Current Climatic Conditions. Microbiology Research, 15(3), 1441-1458. https://doi.org/10.3390/microbiolres15030097