Comparative High-Throughput Sequencing Analysis of the Bacterial Community Associated with the Rhizosphere of Date Palm (Phoenix dactyllifera L.) Irrigated with Treated Wastewater and Groundwater
Abstract
:1. Background
2. Materials and Methods
2.1. Site Selection and Soil Sampling
2.2. Soil Physicochemical Parameters
2.3. DNA Extraction, Illumina Library Preparation, and MiSeq DNA Sequencing
2.4. Bioinformatics Analysis
Quality Analysis, Raw Data Trimming, and Filtering
3. Results
3.1. Soil Physicochemical Parameters
3.2. Taxonomic Profiling and OTU Generation and Alignment
3.3. Community Richness and Diversity
3.4. Bacterial Diversity and Taxonomic Composition
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aburizaiza, O.S.; Mahar, G.A. Degree of Wastewater Treatment versus Types of Reuses: Case Study, Saudi Arabia. Glob. Nest J. 2016, 18, 569–581. [Google Scholar] [CrossRef]
- Chopyk, J.; Nasko, D.J.; Allard, S.; Bui, A.; Treangen, T.; Pop, M.; Mongodin, E.F.; Sapkota, A.R. Comparative Metagenomic Analysis of Microbial Taxonomic and Functional Variations in Untreated Surface and Reclaimed Waters Used in Irrigation Applications. Water Res. 2020, 169, 115250. [Google Scholar] [CrossRef] [PubMed]
- Toze, S. Reuse of Effluent Water-Benefits and Risks. Agric. Water Manag. 2006, 80, 140–159. [Google Scholar] [CrossRef]
- Mañas, P.; Castro, E.; De Las Heras, J. Irrigation with Treated Wastewater: Effects on Soil, Lettuce (Lactuca sativa L.) Crop and Dynamics of Microorganisms. J. Environ. Sci. Health—Part A Toxic/Hazardous Subst. Environ. Eng. 2009, 44, 1261–1273. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Feng, Q.; Li, C.; Wei, Y.; Zhao, Y.; Feng, Y.; Zheng, H.; Li, F.; Li, H. Impacts of Aquaculture Wastewater Irrigation on Soil Microbial Functional Diversity and Community Structure in Arid Regions. Sci. Rep. 2017, 7, 11193. [Google Scholar] [CrossRef] [PubMed]
- Jueschke, E.; Marschner, B.; Tarchitzky, J.; Chen, Y. Effects of Treated Wastewater Irrigation on the Dissolved and Soil Organic Carbon in Israeli Soils. Water Sci. Technol. 2008, 57, 727–733. [Google Scholar] [CrossRef]
- Khan, S.; Cao, Q.; Zheng, Y.M.; Huang, Y.Z.; Zhu, Y.G. Health Risks of Heavy Metals in Contaminated Soils and Food Crops Irrigated with Wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Satpati, S.; Nayek, S.; Garai, D. Effect of Wastewater Irrigation on Vegetables in Relation to Bioaccumulation of Heavy Metals and Biochemical Changes. Environ. Monit. Assess. 2010, 165, 169–177. [Google Scholar] [CrossRef]
- Becerra-Castro, C.; Lopes, A.R.; Vaz-Moreira, I.; Silva, E.F.; Manaia, C.M.; Nunes, O.C. Wastewater Reuse in Irrigation: A Microbiological Perspective on Implications in Soil Fertility and Human and Environmental Health. Environ. Int. 2015, 75, 117–135. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wu, L.; Frankenberger, W.T.; Chang, A.C. Soil Enzyme Activities of Long-Term Reclaimed Wastewater-Irrigated Soils. J. Environ. Qual. 2008, 37, S-36–S-42. [Google Scholar] [CrossRef]
- Bourgeois, E.; Dequiedt, S.; Lelièvre, M.; van Oort, F.; Lamy, I.; Maron, P.A.; Ranjard, L. Positive Effect of the Miscanthus Bioenergy Crop on Microbial Diversity in Wastewater-Contaminated Soil. Environ. Chem. Lett. 2015, 13, 495–501. [Google Scholar] [CrossRef]
- Kandeler, F.; Kampichler, C.; Horak, O. Influence of Heavy Metals on the Functional Diversity of Soil Microbial Communities. Biol. Fertil. Soils 1996, 23, 299–306. [Google Scholar] [CrossRef]
- Angin, I.; Yaganoglu, A.V.; Turan, M. Effects of Long-Term Wastewater Irrigation on Soil Properties. J. Sustain. Agric. 2005, 26, 31–42. [Google Scholar] [CrossRef]
- Mohammad, M.J.; Mazahreh, N. Changes in Soil Fertility Parameters in Response to Irrigation of Forage Crops with Secondary Treated Wastewater. Commun. Soil Sci. Plant Anal. 2003, 34, 1281–1294. [Google Scholar] [CrossRef]
- Wafula, D.; White, J.R.; Canion, A.; Jagoe, C.; Pathak, A.; Chauhan, A. Impacts of Long-Term Irrigation of Domestic Treated Wastewater on Soil Biogeochemistry and Bacterial Community Structure. Appl. Environ. Microbiol. 2015, 81, 7143–7158. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, P.; Olson, N.D.; Raspanti, G.A.; Goldstein, R.E.R.; Gibbs, S.G.; Sapkota, A.; Sapkota, A.R. Antibiotic Concentrations Decrease during Wastewater Treatment but Persist at Low Levels in Reclaimed Water. Int. J. Environ. Res. Public Health 2017, 14, 668. [Google Scholar] [CrossRef] [PubMed]
- Akponikpè, P.B.I.; Wima, K.; Yacouba, H.; Mermoud, A. Reuse of Domestic Wastewater Treated in Macrophyte Ponds to Irrigate Tomato and Eggplant in Semi-Arid West-Africa: Benefits and Risks. Agric. Water Manag. 2011, 98, 834–840. [Google Scholar] [CrossRef]
- Cui, B.; Liang, S. Monitoring Opportunistic Pathogens in Domestic Wastewater from a Pilot-Scale Anaerobic Biofilm Reactor to Reuse in Agricultural Irrigation. Water 2019, 11, 1283. [Google Scholar] [CrossRef]
- Kulkarni, P.; Olson, N.D.; Paulson, J.N.; Pop, M.; Maddox, C.; Claye, E.; Rosenberg, R.E.; Sharma, M.; Gibbs, S.G.; Mongodin, E.F.; et al. Science of the Total Environment Conventional Wastewater Treatment and Reuse Site Practices Modify Bacterial Community Structure but Do Not Eliminate Some Opportunistic Pathogens in Reclaimed Water. Sci. Total Environ. 2018, 639, 1126–1137. [Google Scholar] [CrossRef] [PubMed]
- Makowska, N.; Philips, A.; Nowis, K.; Trzebny, A.; Koczura, R.; Mokracka, J. Metagenomic Analysis of b -Lactamase and Carbapenemase Genes in the Wastewater Resistome. Water Res. 2020, 170, 115277. [Google Scholar] [CrossRef] [PubMed]
- Pham, M.P.T.; Castle, J.W.; Rodgers, J.H. Application of Water Quality Guidelines and Water Quantity Calculations to Decisions for Beneficial Use of Treated Water. Appl. Water Sci. 2011, 1, 85–101. [Google Scholar] [CrossRef]
- Hidri, Y.; Bouziri, L.; Maron, P.A.; Anane, M.; Jedidi, N.; Hassan, A.; Ranjard, L. Soil DNA Evidence for Altered Microbial Diversity after Long-Term Application of Municipal Wastewater. Agron. Sustain. Dev. 2010, 30, 423–431. [Google Scholar] [CrossRef]
- Krause SM, B.; Dohrmann, A.B.; Gillor, O.; Christensen, B.T.; Merbach, I.; Tebbe, C.C. Soil Properties and Habitats Determine the Response of Bacterial Communities to Agricultural Wastewater Irrigation. Pedosphere 2020, 30, 146–158. [Google Scholar] [CrossRef]
- Truu, M.; Truu, J.; Heinsoo, K. Changes in Soil Microbial Community under Willow Coppice: The Effect of Irrigation with Secondary-Treated Municipal Wastewater. Ecol. Eng. 2009, 35, 1011–1020. [Google Scholar] [CrossRef]
- Kayikcioglu, H. Short-Term Effects of Irrigation with Treated Domestic Wastewater on Microbiological Activity of a Vertic Xerofluvent Soil under Mediterranean Conditions. J. Environ. Manag. 2012, 15, 108–114. [Google Scholar] [CrossRef]
- Alghamdi, A.G.; Aly, A.A.; Aldhumri, S.A.; Al-Barakaha, F.N. Hydrochemical and Quality Assessment of Groundwater Resources in Al-Madinah City, Western Saudi Arabia. Sustainability 2020, 12, 3106. [Google Scholar] [CrossRef]
- Chowdhury, S.; Al-Zahrani, M. Characterizing Water Resources and Trends of Sector Wise Water Consumptions in Saudi Arabia. J. King Saud Univ.-Eng. Sci. 2015, 27, 68–82. [Google Scholar] [CrossRef]
- Salama, K.F.; Randhawa, M.A.; Al Mulla, A.A.; Labib, O.A. Heavy Metals in Some Date Palm Fruit Cultivars in Saudi Arabia and Their Health Risk Assessment. Int. J. Food Prop. 2019, 22, 1684–1692. [Google Scholar] [CrossRef]
- Lugtenberg, B.; Kamilova, F. Plant-Growth-Promoting Rhizobacteria. Annu. Rev. Microbiol. 2009, 63, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jaramillo, J.E.; Mendes, R.; Raaijmakers, J.M. Impact of Plant Domestication on Rhizosphere Microbiome Assembly and Functions. Plant Mol. Biol. 2016, 90, 635–644. [Google Scholar] [CrossRef]
- Ambardar, S.; Sangwan, N.; Manjula, A.; Rajendhran, J.; Gunasekaran, P.; Lal, R.; Vakhlu, J. Identification of Bacteria Associated with Underground Parts of Crocus Sativus by 16S RRNA Gene Targeted Metagenomic Approach. World J. Microbiol. Biotechnol. 2014, 30, 2701–2709. [Google Scholar] [CrossRef] [PubMed]
- Kazeeroni, E.A.; Al-sadi, A.M. 454-Pyrosequencing Reveals Variable Fungal Diversity Across Farming Systems. Front. Plant Sci. 2016, 7, 314. [Google Scholar] [CrossRef] [PubMed]
- Sudarikov, K.; Tyakht, A.; Alexeev, D. Methods for The Metagenomic Data Visualization and Analysis. Curr. Issues Mol. Biol. 2017, 24, 37–58. [Google Scholar] [CrossRef] [PubMed]
- Ferjani, R.; Marasco, R.; Rolli, E.; Cherif, H.; Cherif, A.; Gtari, M.; Boudabous, A.; Daffonchio, D.; Ouzari, H.I. The Date Palm Tree Rhizosphere Is a Niche for Plant Growth Promoting Bacteria in the Oasis Ecosystem. Biomed Res. Int. 2015, 2015, 153851. [Google Scholar] [CrossRef] [PubMed]
- Yaish, M.W. Proline Accumulation Is a General Response to Abiotic Stress in the Date Palm Tree (Phoenix dactylifera L.). Genet. Mol. Res. 2015, 14, 9943–9950. [Google Scholar] [CrossRef] [PubMed]
- Yaish, M.W.; Al-Harrasi, I.; Alansari, A.S.; Al-Yahyai, R.; Glick, B.R. The Use of High Throughput DNA Sequence Analysis to Assess the Endophytic Microbiome of Date Palm Roots Grown under Different Levels of Salt Stress. Int. Microbiol. 2016, 19, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Black, C.A.; Evans, D.D.; White, J.L.; Ensminger, L.E.; Clark, F.E.; Dinauer, R.C. Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling; Wiley: New York, NY, USA, 2015. [Google Scholar]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef] [PubMed]
- Magoc, T.; Salzberg, S.L. FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME Improves Sensitivity and Speed of Chimera Detection. 2011, 27, 2194–2200. [CrossRef]
- Caporaso, J.G.; Bittinger, K.; Bushman, F.D.; Desantis, T.Z.; Andersen, G.L.; Knight, R. PyNAST: A Flexible Tool for Aligning Sequences to a Template Alignment. Bioinformatics 2010, 26, 266–267. [Google Scholar] [CrossRef] [PubMed]
- Kuczynski, J.; Stombaugh, J.; Walters, W.A.; González, A.; Caporaso, J.G.; Knight, R. Using QIIME to Analyze 16S rRNA Gene Sequences from Microbial Communities. Curr. Protoc. 2011, 36, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Costa, O.Y.; De Hollander, M.; Pijl, A.; Liu, B.; Kuramae, E.E. Cultivation-Independent and Cultivation-Dependent Metagenomes Reveal Genetic and Enzymatic Potential of Microbial Community Involved in the Degradation of a Complex Microbial Polymer. Microbiome 2020, 8, 76. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.L.; Mecham, B. On Golf Course Fairways. Agron. J. 2005, 97, 717–721. [Google Scholar] [CrossRef]
- Adrover, M.; Farrus, E.; Moya, G.; Vadell, J. Chemical Properties and Biological Activity in Soils of Mallorca Following Twenty Years of Treated Wastewater Irrigation. J. Environ. Manag. 2012, 95, S188–S192. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wu, L.; Chang, A.; Zhang, Y. No Title Impact of Long-Term Reclaimed Wastewater Irrigation on Agricultural Soils: A Preliminary Assessment. J. Hazard. Mater. 2010, 183, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Neal, A.L.; Zhang, X.; Cui, E.; Gao, F.; Fan, X.; Hu, C. Increasing Livestock Wastewater Application in Alternate-Furrow Irrigation Reduces Nitrification Gene Abundance but Not Nitrification Rate in Rhizosphere. Biol. Fertil. Soils 2019, 55, 439–455. [Google Scholar] [CrossRef]
- Canfora, L.; Bacci, G.; Pinzari, F.; Lo Papa, G.; Dazzi, C.; Benedetti, A. Salinity and Bacterial Diversity: To What Extent Does the Concentration of Salt Affect the Bacterial Community in a Saline Soil? PLoS ONE 2014, 9, e106662. [Google Scholar] [CrossRef] [PubMed]
- Mosqueira, M.J.; Marasco, R.; Fusi, M.; Michoud, G.; Merlino, G.; Cherif, A.; Daffonchio, D. Consistent Bacterial Selection by Date Palm Root System across Heterogeneous Desert Oasis Agroecosystems. Sci. Rep. 2019, 9, 4033. [Google Scholar] [CrossRef] [PubMed]
- Frenk, S.; Hadar, Y.; Minz, D. Resilience of Soil Bacterial Community to Irrigation with Water of Different Qualities under Mediterranean Climate. Environ. Microbiol 2014, 16, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Bastida, F.; Torres, I.F.; Romero-Trigueros, C.; Baldrian, P.; Větrovský, T.; Bayona, J.M.; Alarcón, J.J.; Hernández, T.; García, C.; Nicolás, E. Combined Effects of Reduced Irrigation and Water Quality on the Soil Microbial Community of a Citrus Orchard under Semi-Arid Conditions. Soil Biol. Biochem 2017, 104, 226–237. [Google Scholar] [CrossRef]
- Aislabie, J.; Deslippe, J.R.; Dymond, J. Soil Microbes and Their Contribution to Soil Services. In Ecosystem Services in New Zealand: Conditions and Trends; Dymond, J., Ed.; Manaaki Whenua Press: Lincoln, New Zealand, 2013; pp. 143–161. [Google Scholar]
- Broszat, M.; Nacke, H.; Blasi, R.; Siebe, C.; Huebner, J.; Daniel, R. Wastewater Irrigation Increases the Abundance of Potentially Harmful Gammaproteobacteria in Soils in Mezquital Valley, Mexico. Appl. Environ. Microbiol. 2014, 80, 5282–5291. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an Ecological Classification of Soil Bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Leff, J.W.; Adams, B.J.; Nielsen, U.N.; Bates, S.T.; Lauber, C.L.; Owens, S.; Gilbert, J.A.; Wall, D.H.; Caporaso, J.G. Cross-Biome Metagenomic Analyses of Soil Microbial Communities and Their Functional Attributes. Proc. Natl. Acad. Sci. USA 2012, 109, 21390–21395. [Google Scholar] [CrossRef] [PubMed]
- Bougnom, B.P.; Thiele-Bruhn, S.; Ricci, V.; Zongo, C.; Piddock, L.J.V. Raw Wastewater Irrigation for Urban Agriculture in Three African Cities Increases the Abundance of Transferable Antibiotic Resistance Genes in Soil, Including Those Encoding Extended Spectrum β-Lactamases (ESBLs). Sci. Total Environ. 2020, 698, 134201. [Google Scholar] [CrossRef]
- Teixeira, L.C.R.S.; Peixoto, R.S.; Cury, J.C.; Sul, W.J.; Pellizari, V.H.; Tiedje, J.; Rosado, A.S. Bacterial Diversity in Rhizosphere Soil from Antarctic Vascular Plants of Admiralty Bay, Maritime Antarctica. ISME J. 2010, 4, 989–1001. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, S.; Mirza, B.S.; Mehnaz, S.; Mirza, M.S.; Mclean, J.; Malik, K.A. Impact of Soil Salinity on the Microbial Structure of Halophyte Rhizosphere Microbiome. World J. Microbiol. Biotechnol. 2018, 34, 136. [Google Scholar] [CrossRef] [PubMed]
- Janssen, P.H. Identifying the Dominant Soil Bacterial Taxa in Libraries of 16S RRNA and 16S RRNA Genes. Appl. Environ. Microbiol. 2006, 72, 1719–1728. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Tian, J.; Shi, F.; Su, L.; Liu, K.; Xiang, M. Rhizosphere Bacterial Communities Associated with Healthy and Heterodera Glycines -Infected Soybean Roots. Eur. J. Soil Biol. 2013, 58, 32–37. [Google Scholar] [CrossRef]
- Nour, S.M.; Lawrence, J.R.; Zhu, H.; Swerhone GD, W.; Welsh, M.; Welacky, T.W.; Topp, E. Bacteria Associated with Cysts of the Soybean Cyst Nematode (Heterodera glycines). Appl. Environ. Microbiol. 2003, 69, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Cui, E.; Fan, X.; Li, Z.; Liu, Y.; Neal, A.L.; Hu, C.; Gao, F. Variations in Soil and Plant-Microbiome Composition with Different Quality Irrigation Waters and Biochar Supplementation. Appl. Soil Ecol. 2019, 142, 99–109. [Google Scholar] [CrossRef]
- Kaur, I.; Das, A.P.; Acharya, M.; Klenk, H.P.; Sree, A.; Mayilraj, S. Planococcus plakortidis Sp. Nov., Isolated from the Marine Sponge Plakortis simplex (Schulze). Int. J. Syst. Evol. Microbiol. 2012, 62, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Prauser, H. Nocardioides, a New Genus of the Order Actinomycetales. Int. J. Syst. Evol. Microbiol. 1976, 26, 58–65. [Google Scholar] [CrossRef]
- Yan, Y.; Kuramae, E.E.; De Hollander, M.; Klinkhamer, P.G.L.; Van Veen, J.A. Functional Traits Dominate the Diversity-Related Selection of Bacterial Communities in the Rhizosphere. ISME J. 2017, 11, 56–66. [Google Scholar] [CrossRef] [PubMed]
Sample ID | pH | EC (µS/cm) | Salinity (µS/cm) | OM (%) | TN (mg N/g) |
---|---|---|---|---|---|
TWW soil | 7.850 ± 0.04 | 87.6 ± 0.5 | 0 | 2.80 * ± 0.04 | 1.170 * ± 0.01 |
GW soil | 8.204 ± 0.06 | 105.6 * ± 0.4 | 0 | 2.02 ± 0.06 | 0.667 ± 0.03 |
Sample ID | Raw Reads | Filtered Reads | OTU Number |
---|---|---|---|
TWW | 79,601 | 9543 | 242 |
GW | 81,715 | 15,342 | 327 |
Total | 161,316 | 24,885 | 569 |
Sample ID | OTUs | Chao1 | Shannon | Inverse Simpson | Good’s Coverage |
---|---|---|---|---|---|
TWW | 242 | 251.13 | 4.96 | 0.88 | 0.99 |
GW | 327 | 338.38 | 5.88 | 0.95 | 0.99 |
Phylum | Sample TWW | Sample GW | Total |
---|---|---|---|
Firmicutes | 43.6% | 15.5% | 29.5% |
Actinobacteria | 14.6% | 44.1% | 29.4% |
Proteobacteria | 15.2% | 23.4% | 19.3% |
Bacteroidetes | 17.3% | 1.6% | 9.4% |
Gemmatimonadetes | 1.0% | 4.9% | 3.0% |
Chloroflexi | 3.0% | 2.5% | 2.7% |
Acidobacteria | 1.0% | 2.9% | 2.0% |
Class | |||
Bacilli | 42.6% | 11.7% | 27.1% |
Actinobacteria | 12.9% | 35.2% | 24.0% |
Alpha-proteobacteria | 11.3% | 9.3% | 10.3% |
Flavobacteriia | 11.7% | 0.7% | 6.2% |
Gamma-proteobacteria | 1.7% | 8.9% | 5.3% |
Acidimicrobiia | 0.9% | 5.6% | 3.2% |
Delta-proteobacteria | 1.0% | 5.1% | 3.1% |
Unclassified | 2.1% | 3.4% | 2.7% |
Gemmatimonadetes | 1.0% | 3.3% | 2.1% |
Chitinophagia | 3.8% | 0.0% | 1.9% |
Genus | |||
Planococcus | 32.1% | 0.4% | 16.3% |
Nocardioides | 1.2% | 22.8% | 12.0% |
Paenisporosarcina | 8.6% | 1.4% | 5.0% |
Blastococcus | 2.4% | 6.5% | 4.5% |
Luteimonas | 0.0% | 6.4% | 3.2% |
Bacillus | 0.7% | 5.4% | 3.1% |
Pseudarthrobacter | 5.7% | 0.0% | 2.9% |
Pelobacter | 0.8% | 4.1% | 2.5% |
Mariniflexile | 4.2% | 0.0% | 2.1% |
Aquihabitans | 0.3% | 3.3% | 1.8% |
Flavitalea | 3.7% | 0.0% | 1.8% |
Metabacillus | 0.4% | 3.0% | 1.7% |
Fluviicola | 3.1% | 0.0% | 1.5% |
Hydrogenispora | 0.2% | 2.7% | 1.4% |
Brevundimonas | 2.6% | 0.0% | 1.3% |
Streptomyces | 1.0% | 1.6% | 1.3% |
Flavobacterium | 2.4% | 0.0% | 1.2% |
Aciditerrimonas | 0.5% | 1.7% | 1.1% |
Haloechinothrix | 0.0% | 2.0% | 1.0% |
Gaiella | 0.6% | 1.4% | 1.0% |
Unclassified | 2.1% | 3.4% | 2.7% |
Species | |||
Planococcus plakortidis | 32.1% | 0.4% | 16.3% |
Nocardioides mesophilus | 0.6% | 16.4% | 8.5% |
Paenisporosarcina quisquiliarum | 8.6% | 1.4% | 5.0% |
Blastococcus saxobsidens | 2.4% | 6.3% | 4.4% |
Luteimonas pelagia | 0.0% | 6.4% | 3.2% |
Mariniflexile soesokkakense | 4.2% | 0.0% | 2.1% |
Gemmatimonas phototrophica | 1.0% | 3.3% | 2.1% |
Nocardioides panacisoli | 0.0% | 4.5% | 2.2% |
Pseudarthrobacter phenanthrenivorans | 5.7% | 0.0% | 2.9% |
Pelobacter carbinolicus | 0.8% | 4.1% | 2.5% |
Flavitalea gansuensis | 3.7% | 0.0% | 1.8% |
Aquihabitans daechungensis | 0.3% | 3.3% | 1.8% |
Fluviicola taffensis | 3.1% | 0.0% | 1.5% |
Rhodoligotrophos appendicifer | 0.8% | 1.3% | 1.0% |
Unclassified | 2.1% | 3.4% | 2.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouadri, F. Comparative High-Throughput Sequencing Analysis of the Bacterial Community Associated with the Rhizosphere of Date Palm (Phoenix dactyllifera L.) Irrigated with Treated Wastewater and Groundwater. Microbiol. Res. 2024, 15, 1163-1177. https://doi.org/10.3390/microbiolres15030078
Kouadri F. Comparative High-Throughput Sequencing Analysis of the Bacterial Community Associated with the Rhizosphere of Date Palm (Phoenix dactyllifera L.) Irrigated with Treated Wastewater and Groundwater. Microbiology Research. 2024; 15(3):1163-1177. https://doi.org/10.3390/microbiolres15030078
Chicago/Turabian StyleKouadri, Fayza. 2024. "Comparative High-Throughput Sequencing Analysis of the Bacterial Community Associated with the Rhizosphere of Date Palm (Phoenix dactyllifera L.) Irrigated with Treated Wastewater and Groundwater" Microbiology Research 15, no. 3: 1163-1177. https://doi.org/10.3390/microbiolres15030078
APA StyleKouadri, F. (2024). Comparative High-Throughput Sequencing Analysis of the Bacterial Community Associated with the Rhizosphere of Date Palm (Phoenix dactyllifera L.) Irrigated with Treated Wastewater and Groundwater. Microbiology Research, 15(3), 1163-1177. https://doi.org/10.3390/microbiolres15030078