Medicinal Plants Used in Sri Lankan Traditional Medicine for Dengue Fever
Abstract
:1. Introduction
1.1. Dengue
1.2. Clinical Presentation of Dengue
- Undifferentiated febrile illness, in which the absence of clinical features and the diagnosis can only be conducted based on serology or virology.
- Dengue fever, which is considered a mild illness even though massive bleeding may be associated; deaths are rarely reported.
- DHF, in which there is increasing vascular permeability seen even though the febrile-phase clinical presentations are similar to those of dengue fever.
- DSS, in which the clinical presentations are similar to DHF, but the patient develops shock because of severe plasma leakage.
- Unusual dengue, or expanded dengue syndrome, in which patients show severe organ involvement associated with dengue infection and which may be associated with complications of prolonged shock, co-infections, or co-morbidities [6].
1.3. Dengue Burden in Sri Lanka
1.4. Unveiling Current Treatment Options and Vaccine Prospects for Dengue
2. Methodology
2.1. Use of Medicinal Plants for the Treatment of Dengue Fever
2.2. Munronia pinnata
2.3. Azadirachta indica
2.4. Cissampelos pareira L.
2.5. Carica papaya
2.6. Zingiber officinale
2.7. Curcuma longa
2.8. Bambusa vulgaris
3. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schaefer, T.; Panda, P.; Wolford, R. Dengue Fever; National Center for Biotechnology Information: Bethesda, MD, USA, 2021. [Google Scholar]
- WHO. Dengue and Severe Dengue; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Soares-Pinheiro, V.; Dasso-Pinheiro, W.; Trindade-Bezerra, J.M.; Tadei, W. Eggs viability of Aedes aegypti Linnaeus (Diptera, Culicidae) under different environmental and storage conditions in Manaus, Amazonas, Brazil. Braz. J. Biol. 2017, 77, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, M.; Rasotgi, V.; Jain, S.; Gupta, V. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med. J. Armed Forces India 2015, 71, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Kalayanarooj, S. Clinical Manifestations and Management of Dengue/DHF/DSS. Trop. Med. Health 2011, 39, 83–87. [Google Scholar] [CrossRef] [PubMed]
- WHO. Comprehensive Guideline for Prevention and Control of Dengue and Dengue Haemorrhagic Fever. Revised and Expanded Edition; WHO Regional Office for South-East Asia: New Delhi, India, 2011. [Google Scholar]
- Katzelnick, L.; Harris, E. Immune correlates of protection for dengue: State of the art and research agenda. Vaccine 2017, 35, 4659–4669. [Google Scholar] [CrossRef] [PubMed]
- WHO. Dengue: Guidelines for Diagnosis, Treatment, Prevention, and Control; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Halstead, S. Neutralization and antibody-dependent enhancement of dengue viruses. Adv. Virus Res. 2003, 60, 421–467. [Google Scholar] [PubMed]
- Gubler, D. Dengue and Dengue Hemorrhagic Fever. Clin. Microbiol. Rev. 1998, 11, 480–496. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Viral Hemorrhagic Fevers (VHFs); U.S. Department of Health and Human Services: Washington, DC, USA, 2021. [Google Scholar]
- Vitarana, T.; Jayakuru, W.; Withane, N. Historical Account of Dengue Haemorrhagic Fever in Sri Lanka. Dengue Bull. 1997, 21, 117–118. [Google Scholar]
- Epidemiology Unit. Disease Surveillance; Ministry of Health: Colombo, Sri Lanka, 2022. [Google Scholar]
- Nadugala, M.; Jeewandara, C.; Jadi, R.; Malavige, G.; de Silva, A.; Premaratne, P.; Goonasekara, C. Natural immunogenic propertiesof bioinformatically predicted linearB cell epitopes of dengue envelopeand pre membrane proteins. BMC Immunol. 2021, 22, 71. [Google Scholar] [CrossRef]
- National Dengue Control Unit. Dengue; National Dengue Control Unit, Ministry of Health: Colombo, Sri Lanka, 2023. [Google Scholar]
- Epidemiology Unit. Disease Surveillance; Ministry of Health: Colombo, Sri Lanka, 2023. [Google Scholar]
- Ministry of Health and Indigenous Medical Services. Annual Health Bulletin; Ministry of Health and Indigenous Medical Services: Colombo, Sri Lanka, 2017. [Google Scholar]
- World Bank. Sri Lanka Open Datasets; World Bank: Washington, DC, USA, 2021. [Google Scholar]
- Undurraga, E.; Betancourt-Cravioto, M.; Ramos-Castañeda, J.; Martínez-Vega, R.; Méndez-Galván, J.; Gubler, D.; Guzmán, M.; Halstead, S.; Harris, E.; Kuri-Morales, P.; et al. Economic and Disease Burden of Dengue in Mexico. PLOS Neglected Trop. Dis. 2015, 9, 3. [Google Scholar] [CrossRef]
- Halasa, Y.; Shepard, D.; Zcng, W. Economic Cost of Dengue in Puerto Rico. Am. J. Trop. Med. Hygin 2012, 86, 745–752. [Google Scholar] [CrossRef]
- Thai, K.; Nishiura, H.; Hoang, P.; Tran, N.; Phan, G.; Le, H.; Tran, B.; Nguyen, N.; de Vries, P. Age-Specificity of Clinical Dengue during Primary and Secondary Infections. PLOS Neglected Trop. Dis. 2011, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Tissera, H.; Jayamanne, B.; Raut, R.; Janaki, S.; Tozan, Y.; Samaraweera, P.; Liyanage, P.; Ghouse, A.; Rodrigo, C.; Silva, A.d.; et al. Severe Dengue Epidemic, Sri Lanka, 2017. Emerg. Infect. Dis. 2020, 26, 682–691. [Google Scholar] [CrossRef] [PubMed]
- Thalagala, N.; Tissera, H.; Palihawadana, P.; Amarasinghe, A.; Ambagahawita, A.; Wilder-Smith, A.; Shepard, D.; Tozan, Y. Costs of Dengue Control Activities and Hospitalizations in the Public Health Sector during an Epidemic Year in Urban Sri Lanka. PLOS Neglected Trop. Dis. 2016, 10, e0004466. [Google Scholar] [CrossRef] [PubMed]
- Low, J.G.; Ooi, E.E.; Vasudevan, S.G. Current Status of Dengue Therapeutics Research and Development. J. Infect. Dis. 2017, 215, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Tricou, V.; Minh, N.N.; Van, T.P.; Lee, S.J.; Farrar, J.; Wills, B.; Tran, H.T.; Simmons, C.P. A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults. PLoS Neglected Trop. Dis. 2010, 4, 8. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.M.; Tran, C.N.; Phung, L.K.; Duong, K.T.; Huynh, H.l.A.; Farrar, J.; Nguyen, Q.T.; Tran, H.T.; Nguyen, C.V.; Merson, L.; et al. A randomized, double-blind placebo controlled trial of balapiravir, a polymerase inhibitor, in adult dengue patients. J. Infect. Dis. 2013, 207, 1442–1450. [Google Scholar] [CrossRef] [PubMed]
- Perng, K.; Chokephaibulkit, G.C. Challenges for the formulation of a universal vaccine against dengue. SAGE J. 2013, 238, 566–578. [Google Scholar]
- Perera, S.D.; Jayawardena, U.A.; Jayasinghe, C.D. Potential Use of Euphorbia hirta for Dengue: A Systematic Review of Scientific Evidence. Hindawi J. Trop. Med. 2018, 2018, 2048530. [Google Scholar]
- Chan, C.Y.; Ooi, E.E. Dengue: An update on treatment options. Future Microbiol. 2015, 10, 12. [Google Scholar] [CrossRef]
- Nedjadi, T.; El-Kafrawy, S.; Sohrab, S.S.; Desprès, P.; Damanhouri, G.; Azhar, E. Tackling dengue fever: Current status and Challenges. Virol. J. 2015, 12, 212. [Google Scholar] [CrossRef]
- Jasamai, M.; Boon, Y.W.; Sakulpanich, A.; Jaleel, A. Current Prevention and Potential Treatment Options for Dengue Infection. J. Pharm. 2019, 22, 440–456. [Google Scholar] [CrossRef] [PubMed]
- Shukla, R.; Ramasamy, V.; Shanmugam, R.K.; Ahuja, R.; Khanna, N. Antibody-Dependent Enhancement: A Challenge for Developing a Safe Dengue Vaccine. Front. Cell. Infect. Microbiol. 2020, 10, 572681. [Google Scholar] [CrossRef] [PubMed]
- Takeda Pharmaceuticals. Takeda’s QDENGA® (Dengue Tetravalent Vaccine [Live, Attenuated]) Approved in Indonesia for Use Regardless of Prior Dengue Exposure. 2022. Available online: https://www.takeda.com/newsroom/newsreleases/2022/takedas-qdenga-dengue-tetravalent-vaccine-live-attenuated-approved-in-indonesia-for-use-regardless-of-prior-dengue-exposure/ (accessed on 16 September 2023).
- Kariyawasam, R.; Lachman, M.; Mansuri, S.; Chakrabarti, S.; Boggild, A.K. A dengue vaccine whirlwind update. Ther. Adv. Infect. Dis. 2023, 10, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Nivarthi, U.K.; Swanstrom, J.; Delacruz, M.J.; Patel, B.; Durbin, A.P.; Whitehead, S.S.; Kirkpatrick, B.D.; Pierce, K.K.; Diehl, S.A.; Katzelnick, L.; et al. A tetravalent live attenuated dengue virus vaccine stimulates balanced immunity to multiple serotypes in humans. Nat. Commun. 2021, 12, 1102. [Google Scholar] [CrossRef]
- Kallas, E.G.; Precioso, A.R.; Palacios, R.; Thomé, B.; Braga, P.E.; Vanni, T.; Campos, L.M.A.; Ferrari, L.; Mondini, G.; da Graça Salomão, M.; et al. Safety and immunogenicity of the tetravalent, live-attenuated dengue vaccine Butantan-DV in adultsin Brazil: A two-step, double-blind, randomised placebo-controlled phase 2 trial. Lancet Infect. Dis. 2020, 20, 839–850. [Google Scholar] [CrossRef]
- Khanna, N.; Swaminathan, S. Dengue vaccine development: Global and Indian scenarios. Int. J. Infect. Dis. 2018, 84S, S80–S86. [Google Scholar]
- Farnworth, N.F.; Fabricant, D.S. The Value of Plants Used in Traditional Medicine for Drug Discovery. Environ. Health Perspect. 2001, 109, 69–75. [Google Scholar]
- Patwardhan, B.; Vaidya, A.; Chorghade, M.; Joshi, S. Reverse Pharmacology and Systems Approaches for Drug Discovery and Development. Curr. Bioact. Compd. 2008, 4, 201–212. [Google Scholar] [CrossRef]
- Li, J.W.; Vederas, J.C. Drug Discovery and Natural Products:End of an Era or an Endless Frontier? Science 2009, 325, 161–165. [Google Scholar] [CrossRef]
- Proestos, C. The Benifits of Plant Extracts for Human Health. Foods 2020, 9, 1653. [Google Scholar] [CrossRef]
- Veerasham, C. Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res. 2012, 3, 200–201. [Google Scholar] [CrossRef] [PubMed]
- Jayasinghe, S.; Bandara, B.M.R.; Wickramasinghe, A.; Karunarathna, D.N.; Wijesundara, D.S.A.; Karunarathna, V. The importance of harnessing the rich diversity of Sri Lankan flora for their medicinal value. Ceylon J. Sci. 2017, 46, 3–13. [Google Scholar] [CrossRef]
- WHO Regional Office for South-East Asia. A Review of Traditional Medicine Research in Sri Lanka: 2015–2019; WHO Regional Office for South-East Asia: New Delhi, India, 2021. [Google Scholar]
- Kuruppu, A.I.; Paranagama, P.; De Silva, R. Anticancer potential of natural products: A review focussing on Sri Lankan plants. Front. Biosci. 2019, 11, 161–177. [Google Scholar] [CrossRef] [PubMed]
- Petrovska, B.B. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 2012, 6, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Saleh, M.S.M.; Kamisah, Y. Potential Medicinal Plants for the Treatment of Dengue Fever and Severe Acute Respiratory Syndrome-Coronavirus. Biomolecules 2021, 11, 42. [Google Scholar] [CrossRef] [PubMed]
- Hemalika, D.; Chandrika, U.G. Anti-dengue effects of medicinal plants: A review. Int. J. Herb. Med. 2020, 6, 50–56. [Google Scholar] [CrossRef]
- The Plant List. Version 1.1. 2013. Available online: http://www.theplantlist.org/ (accessed on 10 April 2023).
- Dharmawardana, C. Botanical Names Sinhala Names Chandra Dharmawardana. 2011. Available online: https://dh-web.org/place.names/sinhala2bot.html (accessed on 20 March 2023).
- Hapuarachchi, S.D.; Suresh, T.S.; Senerath, W.T.P.S.K. Preliminary Phytochemical Analysis of Methanol and Chloroform Extracts of Crude Whole Plant and Dried Callus cultures of Munronia pinnata. Planta Medica 2013, 81, 79. [Google Scholar] [CrossRef]
- Institute of Ayurweda and Alternative Medicine. Ayurvedic Medicinal Plants of Sri Lanka Compendium; Barberyn Ayurveda Resort: Beruwala, Sri Lanka, 2013; Available online: http://www.instituteofayurveda.org/english/index.htm (accessed on 15 January 2024).
- Ayurvedic Medicinal Plants of Sri Lanka, Barberyn Ayurveda Resort and the University of Ruhuna. Ayurvedic Medicinal Plants of Sri Lanka Compendium; Sri Lanka, 2008. Available online: http://www.instituteofayurveda.org/plants/copyright.htm (accessed on 15 January 2024).
- Jayasekara, K.G.; Soysa, P.; Suresh, T.S.; Goonasekara, C.L.; Gunasekera, K.M. In Vitro Dengue Virus Inhibition by Aqueous Extracts of Aegle marmelos, Munronia pinnata and Psidium guajava. Alternatives to Laboratory Animals. Altern. Lab. Anim. 2023, 51, 136–143. [Google Scholar] [CrossRef]
- Pájaro-Castro, N.; Flechas, M.C.; Ocazionez, R.; Stashenko, E.; Olivero-Verbel, J. Potential interaction of components from essential oils with dengue virus proteins. Boletín Latinoam Caribe Plantas Med. Aromáticas 2015, 14, 141–155. [Google Scholar]
- Jha, N.K.; Sharma, C.; Hashiesh, H.M.; Arunachalam, S.; Meeran, M.N.; Javed, H.; Patil, C.R.; Goyal, S.N.; Ojha, S. β-Caryophyllene, A Natural Dietary CB2 Receptor Selective Cannabinoid can be a Candidate to Target the Trinity of Infection, Immunity, and Inflammation in COVID-19. Front. Pharmacol. 2021, 12, 590201. [Google Scholar] [CrossRef]
- Sato, N.; Zhang, Q.; Ma, C.M.; Hattori, M. Anti-human Immunodeficiency Virus-1 Protease Activity of New Lanostane-Type Triterpenoids from Ganoderma sinense. Chem. Pharm. Bull. 2009, 57, 1076–1080. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.B.; Yeturu, K. Possible Anti-viral effects of Neem (Azadirachta indica) on Dengue virus. Proc. Natl. Acad. Sci. USA 2020, 069567. [Google Scholar]
- Samal, A. IMPPAT: Indian Medicinal Plants, Phytochemistry and Therapeutics; The Institute of Mathematical Science: Tamil Nadu, India, 2018. [Google Scholar]
- Sarker, M.M.R.; Khan, F.; Mohamed, I.N. Dengue Fever: Therapeutic Potential of Carica papaya L. Leaves. Front. Pharmacol. 2021, 12, 610912. [Google Scholar] [CrossRef] [PubMed]
- Karanpriya, V.; Rani, V.; Singh, A. Antimicrobial Properties of Curcuma longa L. and Their Bioactive Compounds. Biopharmacological Activities of Medicinal Plants; Nova Science Publisher: Lucknow, India, 2021. [Google Scholar]
- Flasche, S.; Wilder-Smith, A.; Hombach, J.; Smith, P.G. Estimating the proportion of vaccine-induced hospitalized dengue cases among Dengvaxia vaccinees in the Philippines. Wellcome Open Res. 2019, 4, 165. [Google Scholar] [CrossRef] [PubMed]
- Wachtel-Galor, S.; Yuen, J.; Buswell, J.A.; Benzie, I.F.F. Ganoderma lucidum (Reishi or Ling Zhi); A Medicinal Mushroom. In Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Kim, I.S.; Silwal, P.; Jo, E.K. Peroxisome Proliferator-Activated Receptor-Targeted Therapies: Challenges upon Infectious Diseases. Cells 2023, 12, 650. [Google Scholar] [CrossRef] [PubMed]
- Samaranada, V.A.; Wijekumar, P.J.; Nirmani, D.; Samarakoon, A.W.; Perera, P.K. The phytochemical constituents and pharmacological properties of Munronia pinnata: A review. Int. J. Herb. Med. 2021, 9, 85–91. [Google Scholar]
- Lusweti, A.; Wabuyele, E.; Ssegawa, P.; Mauremootoo, J. Azadirachta indica (Neem). BioNET-EAFRINET. 2011. Available online: https://keys.lucidcentral.org/keys/v3/eafrinet/weeds/key/weeds/Media/Html/Azadirachta_indica_(Neem).htm (accessed on 23 March 2023).
- Atawodi, S.E.; Atawodi, J.C. Azadirachta indica (neem): A plant of multiple biological and pharmacological activities. Phytochem. Rev. 2009, 8, 601–620. [Google Scholar] [CrossRef]
- Singh, P.K.; Rawat, P. Evolving herbal formulations in management of dengue fever. J. Ayurveda Integr. Med. 2017, 8, 207–210. [Google Scholar] [CrossRef]
- Parida, M.M.; Upadhay, C.; Pandya, G.; Jana, A.M. Inhibitory potential of neem (Azadirachta indica Juss) leaves on. J. Ethnopharmacol. 2002, 79, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Imrana, I.; Altafb, I.; Ashrafa, M.; Javeeda, A.; Munirc, N.; Bashir, R. In vitro evaluation of antiviral activity of leaf extracts of Azadirachta indica, Moringa oleifera, and Morus alba against the foot and mouth disease virus on BHK-21 cell line. Sci. Asia 2016, 42, 392–396. [Google Scholar] [CrossRef]
- Rathnayake, K. Diyamiththa-Cissampelos Pareira. Herbal plants Sri Lanka 2013. Available online: https://herbalplantslanka.blogspot.com/2013/11/ (accessed on 15 January 2024).
- Haider, M.; Dholakia, D.; Panwar, A.; Garg, P.; Gheware, A.; Singh, D.; Singhal, K.; Burse, S.A.; Kumari, S.; Sharma, A.; et al. Transcriptome analysis and connectivity mapping of Cissampelos pareira L. provides molecular links of ESR1 modulation to viral inhibition. Sci. Rep. 2021, 11, 20095. [Google Scholar] [CrossRef] [PubMed]
- Sood, R.; Raut, R.; Tyagi, P.; Pareek, P.K.; Barman, T.K.; Singhal, S.; Shirumalla, R.K.; Kanoje, V.; Subbarayan, R.; Rajerethinam, R.; et al. Cissampelos pareira Linn: Natural Source of Potent Antiviral Activity against All Four Dengue Virus Serotypes. PLoS Neglected Trop. Dis. 2015, 9, e0004255. [Google Scholar] [CrossRef] [PubMed]
- Kanna, S.U.; Krishnakumar, N. Anti-dengue medicinal plants: A mini review. J. Pharmacogn. Phytochem. 2019, 8, 4245–4249. [Google Scholar]
- Njeru, S.N.; Obonyo, M.A.; Nyambati, S.; Ngari, S.M. Bioactivity of Cissampelos pareira medicinal plant. J. Pharmacol. Phytochem. 2015, 3, 167–173. [Google Scholar]
- Zunjar, V.; Dash, R.P.; Jivrajani, M.; Trivedi, B.; Nivsarkar, M. Antithrombocytopenic activity of carpaine and alkaloidal extract of Carica papaya Linn. leaves in busulfan induced thrombocytopenic Wistar rats. J. Ethnopharmacol. 2016, 181, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Ranasinghe, P.; Ranasinghe, P.; Abeysekera, W.P.; Premakumara, G.A.; Perera, Y.S.; Gurugama, P.; Gunatilake, S.B. In vitro erythrocyte membrane stabilization properties of Carica papaya L. leaf extracts. Pharmacogn. Res. 2012, 4, 196–202. [Google Scholar] [CrossRef]
- Shetty, D.; Manoj, A.; Jain, D.; Narayane, M.; Rudrakar, A. The Effectiveness of Carica Papaya Leaf Extract in Children with Dengue Fever. Eur. J. Biomed. Pharm. Sci. 2019, 6, 380–383. [Google Scholar]
- Gadhwal, A.K.; Ankit, B.S.; Chahar, C.; Tantia, P.; Sirohi, P.; Agrawal, R.P. Effect of Carica papaya Leaf Extract Capsule on Platelet Count in Patients of Dengue Fever with Thrombocytopenia. J. Assoc. Physicians India 2016, 64, 22–26. [Google Scholar]
- Plants of the World Online. Zingiber officinale, Royal Botanical Gardens Kew. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:798372-1/ (accessed on 30 August 2023).
- Moghaddasi, S.M.; Kashani, H.H. Ginger (Zingiber officinale): A review. J. Med. Plants Res. 2012, 6, 4255–4258. [Google Scholar]
- Sharma, B.K.; Klinzing, D.C.; Ramos, J.D. Zingiber officinale Roscoe aqueous extract modulates Matrixmetalloproteinases and tissue inhibitors of Metalloproteinases expressions in Dengue virus-infected cells: Implications for prevention of vascular permeability. Trop. J. Pharm. Res. 2015, 14, 1371. [Google Scholar] [CrossRef]
- Kaushik, S.; Jangra, G.; Kundu, V.; Yadav, J.P.; Kaushik, S. Anti-viral activity of Zingiber officinale (Ginger) ingredients. Virus Dis. 2020, 31, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Padilla, S.L.; Rodríguez, A.; Gonzales, M.M.; Gallego, G.J.C.; Castaño, O.J.C. Inhibitory effects of curcumin on dengue virus type 2-infected cells in vitro. Arch. Virol. 2014, 159, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.K.; Kumari, P.; Maurya, R.K.; Kumar, V.; Verma, R.B.; Singh, R.K. Medicinal properties of turmeric (Curcuma longa L.): A review. Int. J. Chem. Stud. 2018, 6, 1354–1357. [Google Scholar]
- Ichsyani, M.; Ridhanya, A.; Risanti, M.; Desti, H.; Ceria, R.; Putri, D.H.; Sudiro, T.M.; Dewi, B.E. Antiviral effect of Curcuma longa L. against dengue virus in vitro and in vivo. Earth Environ. Sci. 2017, 101, 012005. [Google Scholar] [CrossRef]
- Roshdy, W.H.; Rashed, H.A.; Kandeil, A.; Mostafa, A.; Moatasim, Y.; Kutkat, O.; Abo Shama, N.M.; Gomaa, M.R.; El-Sayed, I.H.; El Guindy, N.M.; et al. EGYVIR: An immunomodulatory herbal extract with potent antiviral activity against SARS-CoV-2. PLoS ONE 2020, 15, e0241739. [Google Scholar] [CrossRef] [PubMed]
- Flowers of India. Common Bamboo. 2016. Available online: http://www.flowersofindia.net/catalog/slides/Bamboo.html (accessed on 15 January 2024).
- Guinness World Records Limited. Fastest Growing Plant; Guinness World Records Limited: London, UK, 2022. [Google Scholar]
- Kumarasinghe, N.; Perera, P.K.; Lankeshwara, L.K.; Subasinghe, H.G.; Aberathne, W. A Sri Lankan Traditional Medicine (Bamboo swarasa) to Control Dengue Symptoms and Signs—A Preliminary Observation. In Proceedings of the 2nd International Conference on Ayurveda, Unani, Siddha and Traditional Medicine and Ayu Expo—2014, Colombo, Sri Lanka, 16–18 December 2014. [Google Scholar]
- Ojo, O.O.; Oluyege, J.O.; Famurewa, O. Antiviral properties of two Nigerian plants. Afr. J. Plant Sci. 2009, 3, 157–159. [Google Scholar]
- Petrera, E.; Nittolo, A.G.; Alche, L.E. Antiviral action of synthetic stigmasterol derivatives on herpes simplex virus replication in nervous cells in vitro. BioMed Res. Int. 2014, 2014, 947560. [Google Scholar] [CrossRef]
- Liu, B.; Guo, Z.Y.; Bussmann, R.; Li, F.F.; Li, J.Q.; Hong, L.Y.; Long, C.L. Ethnobotanical approaches of traditional medicine studies in Southwest China: A literature review. J. Ethnopharmacol. 2016, 186, 343–350. [Google Scholar] [CrossRef]
- WHO. WHO Traditional Medicine Strategy: 2014–2023; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and Resupply of Pharmacologically Active Plant Derived Natural Products: A Review. Biotechnol Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef]
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef]
Plant Name | Chemical Compound Present in the Plant | Structure of the Compound | Reference |
---|---|---|---|
Munronia pinnata | beta-Caryophyllene | [56] | |
Ganoderiol F | [57] | ||
Azadirachta indica | Gedunin | [58] | |
8-(alpha,beta-Dimethylallyl) (Pongamol) | [58] | ||
Cissampelos pareira L. | Cycleanine | [59] | |
Laudanosine | [59] | ||
Corytuberine | [59] | ||
Zingiber officinale | Myrcenol | [59] | |
2-Heptanol | [59] | ||
Carica papaya | 1′-OH-gamma-carotene glucoside/(Carotenoids B-G) | [59] | |
Carpaine | [60] | ||
Curcuma longa | Curcumin | [61] | |
Myrtenol | [59] | ||
(-)-beta-Curcumene | [59] | ||
Bambusa vulgaris | Stigmasterol | [59] | |
Taxiphyllin | [59] | ||
beta-Sitosterol | [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Handagala, J.K.; Kumarasinghe, N.; Goonasekara, C.L.; Kuruppu, A.I. Medicinal Plants Used in Sri Lankan Traditional Medicine for Dengue Fever. Microbiol. Res. 2024, 15, 468-488. https://doi.org/10.3390/microbiolres15020032
Handagala JK, Kumarasinghe N, Goonasekara CL, Kuruppu AI. Medicinal Plants Used in Sri Lankan Traditional Medicine for Dengue Fever. Microbiology Research. 2024; 15(2):468-488. https://doi.org/10.3390/microbiolres15020032
Chicago/Turabian StyleHandagala, Jayani K., Nishantha Kumarasinghe, Charitha L. Goonasekara, and Anchala I. Kuruppu. 2024. "Medicinal Plants Used in Sri Lankan Traditional Medicine for Dengue Fever" Microbiology Research 15, no. 2: 468-488. https://doi.org/10.3390/microbiolres15020032
APA StyleHandagala, J. K., Kumarasinghe, N., Goonasekara, C. L., & Kuruppu, A. I. (2024). Medicinal Plants Used in Sri Lankan Traditional Medicine for Dengue Fever. Microbiology Research, 15(2), 468-488. https://doi.org/10.3390/microbiolres15020032