Assessment of the Impacts of Plant Growth-Promoting Micro-Organisms on Potato Farming in Different Climatic Conditions in Morocco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Plant Material
2.3. Bacterial Strains and Culture Conditions
2.4. Inoculum Preparation and Experimental Approach
2.5. Data Collection
2.6. Data Analysis
3. Results
3.1. Field Observation
3.2. Agronomic Parameters
3.3. Biological Control and Effects of PGPMs on Yield and Damaged Tubers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rising, J.; Devineni, N. Crop switching reduces agricultural losses from climate change in the United States by half under. Nat. Commun. 2020, 11, 4991. [Google Scholar] [CrossRef] [PubMed]
- Camaille, M.; Fabre, N.; Clément, C.; Barka, E.A. Advances in wheat physiology in response to drought and the role of plant growth promoting rhizobacteria to trigger drought tolerance. Microorganisms 2021, 9, 687. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L. Climate Change Impacts on Agriculture across Africa; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Rymuza, K.; Radzka, E.; Lenartowicz, T. Influence of weather conditions on early potato yields in east-central Poland. Commun. Biometry Crop Sci. 2015, 10, 65–72. [Google Scholar] [CrossRef]
- Shimoda, S.; Kanno, H.; Hirota, T. Analysis of temperature and rainfall-based weather patterns showing significant correlations between climatic shifts and potato yield trends in Japan. Agric. For. Meteorol. 2018, 263, 147–155. [Google Scholar] [CrossRef]
- Dhankher, O.P.; Foyer, C.H. The role of climate-resilient crops in enhancing global food security and safety. Plant Cell Environ. 2018, 41, 877–884. [Google Scholar] [CrossRef]
- Srivastav, A.L.; Dhyani, R.; Ranjan, M.; Madhav, S.; Sillanpää, M. Strategies for climate-resilient sustainable management of water resources and agriculture. Environ. Sci. Pollut. Res. 2021, 28, 41576–41595. [Google Scholar] [CrossRef]
- Vos, J.; Haverkort, A.J. Water availability and potato crop performance. In Potato Biology and Biotechnology; Elsevier: Amsterdam, The Netherlands, 2007; pp. 333–351. [Google Scholar] [CrossRef]
- Iwama, K.; Yamaguchi, J. Abiotic stresses. In Handbook of Potato Production, Improvement, and Postharvest Management; CRC: Boca Raton, FL, USA, 2006; pp. 231–278. [Google Scholar] [CrossRef]
- Levy, D.; Veilleux, R.E. Adaptation of potato to high temperatures and salinity—A review. Am. J. Potato Res. 2007, 84, 487–506. [Google Scholar] [CrossRef]
- Levy, D.; Coleman, W.K.; Veilleux, R.E. Adaptation of potato to water shortage: Irrigation management and enhancement of tolerance to drought and salinity. Am. J. Potato Res. 2013, 90, 186–206. [Google Scholar] [CrossRef]
- Sampaio, S.L.; Petropoulos, S.A.; Alexopoulos, A.; Heleno, S.A.; Santos-Buelga, C.; Barros, L.; Ferreira, I.C.F.R. Potato peels as sources of functional compounds for the food industry: A review. Trends Food Sci. 2020, 103, 118–129. [Google Scholar] [CrossRef]
- Sookhtanlou, M.; Allahyari, M.S.; Surujlal, J. Health Risk of Potato Farmers Exposed to Overuse of Chemical Pesticides in Iran. Saf. Health Work 2022, 13, 23–31. [Google Scholar] [CrossRef]
- Saifaddin, G. Agricultural Land Area in Morocco in 2021, by Selected Crop Type (in Hectares), Published in 26 April 2023, Statista Data. Available online: https://www.statista.com/statistics/1302523/agricultural-area-in-morocco-by-crop-type/ (accessed on 26 April 2023).
- Alaoui, K.; Chafik, Z.; Arabi, M.; Abouloifa, H.; Asehraou, A.; Chaoui, J.; Kharmach, E.-Z. In vitro antifungal activity of Lactobacillus against potato Late blight Phytophthora infestans. Mater. Today Proc. 2021, 45, 7725–7733. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations), 2022. FAOSTAT-Crops and Livestock Products. Latest Update: 17 February 2022. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 23 May 2023).
- Pareek, A.; Dhankher, O.P.; Foyer, C.H. Mitigating the impact of climate change on plant productivity and ecosystem sustainability. J. Exp. Bot. 2020, 71, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Drost, S.M.; Rutgers, M.; Wouterse, M.; De Boer, W.; Bodelier, P.L. Decomposition of mixtures of cover crop residues increases microbial functional diversity. Geoderma 2020, 361, 114060. [Google Scholar] [CrossRef]
- Mehnaz, S.; Lazarovits, G. Harnessing the power of Plant Growth-Promoting Rhizobacteria for sustainable agriculture. Plant Biotechnol. J. 2021, 19, 179–183. [Google Scholar] [CrossRef]
- Khan, N.; Bano, A.; Ali, S.; Babar, M.A. Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul. 2020, 90, 189–203. [Google Scholar] [CrossRef]
- Zhou, C.; Zhu, L.; Xie, Y.; Li, F.; Xiao, X.; Ma, Z. Bacillus licheniformis SA03 Confers increased saline–alkaline tolerance in Chrysanthemum plants by induction of abscisic acid accumulation. Front. Plant Sci. 2017, 8, 1143. [Google Scholar] [CrossRef]
- Cordero, I.; Balaguer, L.; Rincón, A.; Pueyo, J.J. Inoculation of tomato plants with selected PGPR represents a feasible alternative to chemical fertilization under salt stress. J. Plant Nutr. Soil Sci. 2018, 181, 694–703. [Google Scholar] [CrossRef]
- Dodd, I.C.; Zinovkina, N.Y.; Safronova, V.I.; Belimov, A.A. Rhizobacterial mediation of plant hormone status. Ann. Appl. Biol. 2010, 157, 361–379. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Wirth, S.J.; Alqarawi, A.A.; Abd_Allah, E.F.; Hashem, A. Phytohormones and beneficial microbes: Essential components for plants to balance stress and fitness. Front. Microbiol. 2017, 8, 2104. [Google Scholar] [CrossRef]
- Sheng, Y.; Li, J.; Liu, X.; Gopalakrishnan, S.; Arias, R.S.; Xie, L.; Zhang, Y. Rhizobacteria Inoculants as a Sustainable Tool to Improve Potato Crop Production in a Semi-Arid Environment. Sustainability 2021, 12, 2828. [Google Scholar] [CrossRef]
- Gouda, M.H.B.; Zhang, C.; Peng, S.; Kong, X.; Chen, Y.; Li, H.; Yu, L. Combination of sodium alginate-based coating with L-cysteine and citric acid extends the shelf-life of fresh-cut lotus root slices by inhibiting browning and microbial growth. Postharvest Biol. Technol. 2021, 175, 111502. [Google Scholar] [CrossRef]
- Antar, M.; Lyu, D.; Nazari, M.; Shah, A.; Zhou, X.; Smith, D.L. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renew. Sustain. Energy Rev. 2021, 139, 110691. [Google Scholar] [CrossRef]
- Google-Earth. Available online: https://www.google.com/intl/fr/earth/ (accessed on 31 March 2021).
- Badri, H.; Achbani, E.H.; Jijakli, H. Aureobasidium pullulans strain Ach1-1 a biocontrol of postharvest diseases of apples: 15 crucial years of research before starting commercial development. In Proceedings of the International Symposium on Crop Protection, Ghent, Belgium, 22 May 2018. [Google Scholar]
- Ameur, A.; Rhallabi, N.; Doussomo, M.E.; Benbouazza, A.; Ennaji, M.M.; Achbani, E. Selection and efficacy biocontrol agents in vitro against fire blight (Erwinia amylovora) of the rosacea. Int. Res. J. Eng. Technol. 2017, 4, 539–545. [Google Scholar]
- Haggoud, A.; Benbouaza, A.; Bouaichi, A.; Achbani, E.H. Plant growth promotion and bacterial canker control of Lycopersicon esculentum L. cv. Campbell 33 by biocontrol agents. J. Crop Prot. 2017, 6, 235–244. [Google Scholar]
- Sadik, S.; Mazouz, H.; Benbouazza, A.B.A.; Achbani, E.H. Biological control of bacterial onion diseases using a bacterium, Pantoea agglomerans 2066-7. Int. J. Sci. Res. 2015, 4, 103–111. [Google Scholar]
- Habbadi, K.; Benkirane, R.; Benbouazza, A.; Bouaichi, A.; Maafa, I.; Chapulliot, D.; Achbani, E.H. Biological control of grapevine crown gall caused by Allorhizobium vitis using bacterial antagonists. Int. J. Sci. Res. 2017, 6, 1390–1397. [Google Scholar]
- Mohamed, O.Z.; Symanczik, S.; El Kinany, S.; Larbi, A.Z.I.Z.; Fagroud, M.; Abidar, A.; Bouamri, R. Effect of PGPR and mixed cropping on mycorrhizal status, soil fertility, and date palm productivity under organic farming system. Org. Agric. 2023; under review. [Google Scholar] [CrossRef]
- Achbani, E.H.; Mounir, R.; El Jaafari, S.; Douira, A.; Benbouazza, A.; Jijakli, H. Selection of antagonists of postharvest apple parasites: Penicillium expansum and Botrytis cinerea. Commun. Agric. Appl. Biol. Sci. 2005, 70, 143–149. [Google Scholar]
- Chamkhi, I.; Sbabou, L.; Aurag, J. Improved growth and quality of saffron (Crocus sativus L.) in field conditions through inoculation with selected native plant growth-promoting rhizobacteria (PGPR). Ind. Crop. Prod. 2023, 197, 116606. [Google Scholar] [CrossRef]
- Neelam, A.; Sharma, P.; Saini, R. Effects of planting methods on growth, yield and economics of potato (Solanum tuberosum L.) in hills of Uttarakhand. Indian J. Agron. 2018, 63, 315–318. [Google Scholar] [CrossRef]
- Bhatti, A.M.; Khan, I. Application of Randomized Complete Block Design in the design of experiments. Int. J. Soc. Sci. Hum. Rev. 2021, 11, 75–84. [Google Scholar]
- MoANR, Ministry of Agriculture and Natural Resource. Addis Ababa, Ethiopia. Plant Variety Release, Protection and Seed Quality Control Directorate. Crop Var. 2016, 19, 178. [Google Scholar]
- EIAR, Ethiopian Institute of Agricultural Research. Crop Technologies Guideline; Ethiopian Institute of Agricultural Research: Addis Ababa, Ethiopia, 2007; Volume 173. [Google Scholar]
- Abebe, T.; Wongchaochant, S.; Taychasinpitak, T. Evaluation of specific gravity of potato varieties in Ethiopia as criterion for determining processing quality. Kasetsart J. Nat. Sci. 2013, 47, 30–41. [Google Scholar]
- Díaz-Barradas, M.C.; Gallego-Fernández, J.B.; Zunzunegui, M. Plant response to water stress of native and non-native Oenothera drummondii populations. Plant Physiol. Biochem. 2020, 154, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J.V. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos. 2014, 119, 12500–12512. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing trends in regional heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef]
- Hlisnikovský, L.; Menšík, L.; Kunzová, E. The effect of soil-climate conditions, farmyard manure and mineral fertilizers on potato yield and soil chemical parameters. Plants 2021, 10, 2473. [Google Scholar] [CrossRef]
- Liang, K.; Qi, J.; Liu, E.Y.; Jiang, Y.; Li, S.; Meng, F.R. Estimated potential impacts of soil and water conservation terraces on potato yields under different climate conditions. JSWC 2019, 74, 225–234. [Google Scholar] [CrossRef]
- Karim, Z.; Hossain, M.S. Management of bacterial wilt (Ralstonia solanacearum) of potato: Focus on natural bioactive compounds. J. Biodiver. Conserv. Bioresour. Manag. 2018, 4, 73–92. [Google Scholar] [CrossRef]
- Mahfouze, H.A.; Ahmed, H.Z.; El-Sayed, O.E. Gene expression of pathogenesis-related proteins and isozymes in potato varieties resistant and susceptible to late blight disease. Int. J. Agric. Biol. 2021, 26, 490–498. [Google Scholar] [CrossRef]
- Daami-Remadi, M.; Jabnoun-Khiareddine, H.; Sdiri, A.; El Mahjoub, M. Comparative reaction of potato cultivars to Sclerotium rolfsii assessed by stem rot and tuber decay severity. Pest Technol. 2012, 6, 54–59. [Google Scholar] [CrossRef]
- Tsror, L.; Erlich, O.; Hazanovsky, M.; Ben Daniel, B.; Zig, U.; Lebiush, S. Detection of Dickeya spp. latent infection in potato seed tubers using PCR or ELISA and correlation with disease incidence in commercial field crops under hot-climate conditions. Plant Pathol. 2012, 61, 161–168. [Google Scholar] [CrossRef]
- Adesemoye, A.O.; Kloepper, J.W. Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl. Microbiol. Biotechnol. 2009, 85, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.F.; Sun, P.F.; Lu, H.Y.; Wei, J.Y.; Xiao, H.S.; Fang, W.T.; Cheng, B.Y.; Chou, J.Y. Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab. Fungal Biol. 2016, 120, 433–448. [Google Scholar] [CrossRef]
- Sun, P.F.; Chien, I.A.; Xiao, H.S.; Fang, W.T.; Hsu, C.H.; Chou, J.Y. Intra specific variation in plant growth-promoting traits of Aureobasidium pullulans. Chiang Mai J. Sci. 2019, 46, 15–31. [Google Scholar]
- Kour, D.; Rana, K.L.; Yadav, N.; Yadav, A.N. Bioprospecting of phosphorus solubilizing bacteria from Renuka Lake ecosystems, lesser Himalayas. J. Appl. Biol. Biotechnol. 2019, 7, 1–6. [Google Scholar] [CrossRef]
- Achbani, E.H.; Mounir, R.; Jaafari, S.; Douira, A.; Benbouazza, A.; Jiakli, M.H. La sélection des antagonistes de Penicillium expansum et Botrytis cinerea, deux parasites de post-récolte des pommes. Al AWAMIA 2006, 4, 4–16. [Google Scholar]
- Krimi Bencheqroun, S.; Bajji, M.; Massart, S.; Bentata, F.; Labhilili, M.; Achbani, H.; El Jaafari, S.; Jijakli, M.H. Biocontrol of Blue Mold on Apple Fruits by Aureobasidium Pullulans (Strain Ach1-1): In Vitro and In Situ Evidence for The Possible Involvement of Competition for Nutrients. Comm. Appl. Biol. Sci. 2006, 71, 1151–1157. [Google Scholar]
- Adikaram, N.K.B.; Joyce, D.C.; Terry, L.A. Biocontrol activity and induced resistance as a possible mode of action for Aureobasidium pullulans against grey mould of strawberry fruit. Australas. Plant Pathol. 2002, 31, 223–229. [Google Scholar] [CrossRef]
- Castoria, R.; De Curtis, F.; Lima, G.; Caputo, L.; Pacifio, S.; De Cicco, V. Aureobasidium pullulans (LS30) an antagonist of postharvest pathogens of fruits: Study on its mode of action. Postharvest Biol. Technol. 2001, 22, 7–17. [Google Scholar] [CrossRef]
- Ippolito, A.; El Ghaouth, A.; Wilson, C.L.; Wisniewski, M. Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biol. Technol. 2000, 19, 265–272. [Google Scholar] [CrossRef]
- Janisiwicz, W.J.; Tworkoski, T.J.; Sharer, C. Characterizing the mechanism of biological control of postharvest diseases on fruits with a simple method to study competition for nutrients. Phytopathology 2000, 90, 1196–1200. [Google Scholar] [CrossRef] [PubMed]
- Kunz, S.; Schmitt, A.; Haug, P. Development of strategies for fire blight control in organic fruit growing. Integrated Plant Protection in Fruit Crops Subgroup Pome Fruit Diseases. IOBC-WPRS Bull. 2012, 84, 71–78. [Google Scholar]
- Lima, G.; Arru, S.; De Curtis, F.; Arras, G. Influence of antagonist, host fruit and pathogen on the biological control of postharvest fungal diseases by yeasts. J. Ind. Microbio. Biotech. 1999, 23, 223–229. [Google Scholar] [CrossRef]
- Schena, L.; Nigro, F.; Pentimone, I.; Ligoria, A.; Ippolito, A. Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biol. Technol. 2003, 30, 209–220. [Google Scholar] [CrossRef]
- Glick, B.R.; Penrose, D.M.; Li, J. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 1998, 190, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Shaharoona, B.; Jamro, G.M.; Zahir, Z.A.; Arshad, M.; Memon, K.S. Evaluating the efficacy of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase in enhancing growth and yield of wheat (Triticum aestivum L.). J. Microbiol. Biotechnol. 2007, 17, 1300–1307. [Google Scholar]
- Liu, Y.; Wang, H.; Sun, X.; Yang, H.; Wang, Y.; Song, W. Research on colonization mechanisms of nitrogen-fixing PGPB, Klebsiella pneumoniae NG14 on the root surface of rice and biofilm formation. Curr. Microbiol. 2011, 62, 1113–1122. [Google Scholar] [CrossRef]
- Mazumdar, D.; Saha, S.P.; Ghosh, S. Isolation of potent PGPR Klebsiella pneumoniae rs26 from the rhizosphere of chickpea (Cicer arietinum). J. Pharm. Innov. 2018, 7, 56–62. [Google Scholar]
- Dey, S.; Dutta, P.; Majumdar, S. Biological control of Macrophomina phaseolina in Vigna mungo L. through the use of endophytic Klebsiella pneumoniae HR1. Jordan J. Biol. Sci. 2019, 12, 219–227. [Google Scholar]
- Zhang, M.; Zhang, C.; Zhang, S.; Yu, H.; Pan, H.; Zhang, H. Promoting maize growth and resistance to northern corn leaf blight with Klebsiella jilinsis 2N3. Biol. Control 2021, 156, 104554. [Google Scholar] [CrossRef]
- Cook, R.J. Enhancing the utility of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 1993, 31, 53–80. [Google Scholar] [CrossRef] [PubMed]
- Haas, D.; Défago, G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 2005, 3, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Mercado-Blanco, J. Biocontrol properties of Pseudomonas strains against plant pathogens. In Pseudomonas: New Aspects of Pseudomonas Biology; Ramos, J.-L., Goldberg, J.B., Filloux, A., Eds.; Springer: Dordrecht, The Netherlands, 2015; Volume 7, pp. 121–172. [Google Scholar] [CrossRef]
- Olorunleke, F.E.; Kieu, N.P.; Höfte, M.; Kieu Phuong, N.; Höfte, M. Advances in Pseudomonas biocontrol. In Bacteria-Plant Interactions: Advanced Research and Future Trends; Murillo, J., Vinatzer, B.A., Jackson, R.W., Arnold, D.L., Eds.; Caister Academic Press: Wymondham, UK, 2015; pp. 167–198. [Google Scholar] [CrossRef]
- Müller, T.; Behrendt, U. Harnessing the biocontrol potential of plant-associated pseudomonads—Towards pesticide-free agriculture? Biol. Control 2021, 155, 104538. [Google Scholar] [CrossRef]
- Vacheron, J.; Moënne-Loccoz, Y.; Dubost, A.; Gonçalves-Martins, M.; Muller, D.; Prigent-Combaret, C. Fluorescent Pseudomonas strains with limited plant beneficial properties are favored in the maize rhizosphere. Front. Plant Sci. 2016, 7, 1212. [Google Scholar] [CrossRef]
Strain Code | Specie | Origin | N2 | PS | KS | ZnS | IAA | Sider | Reference |
---|---|---|---|---|---|---|---|---|---|
GAJ222 | Pseudomonas koreensis | Rhizosphere of Phoenix dactylifera | + | + | − | + | ++ | ++ | [34] |
GAB111 | Serratia nematodiphila | Rhizosphere of Phoenix dactylifera | + | + | + | + | + | + | [34] |
2066-7 | Pantoea agglomerans | Olea europea (Picholine variety) | − | − | − | − | + | + | [32] |
Ach1.1 | Aureobasidium pullulans | Apple tree washing (var. Golden Delicious) | − | + | − | + | − | + | [35] |
Ach1.2 | Aureobasidium pullulans | Apple tree washing (var. Golden Delicious) | − | + | − | + | − | + | [35] |
GLM10 | Klebsiella sp. | Rhizosphere of Phoenix dactylifera | + | − | + | − | + | + | [34] |
2332-A1 | Rahnella aquatilis | Apple tree | +++ | − | − | − | +++ | − | [33] |
2515-3 | Bacillus subtilis | Apple tree | − | + | − | − | + | + | [33] |
Yield | Damaged Tubers | |||||||
---|---|---|---|---|---|---|---|---|
Type III SS | ddl | D | Sig. | Type III SS | ddl | D | Sig. | |
Site | 364.705 *** | 1 | 104.911 | 0.000 | 53.333 *** | 1 | 15.348 | 0.000 |
Variety | 29.008 ** | 1 | 8.345 | 0.005 | 26.133 ** | 1 | 7.520 | 0.008 |
Treatment | 282.294 *** | 9 | 9.023 | 0.000 | 386.467 *** | 9 | 12.357 | 0.000 |
Site—Variety | 0.000 | 1 | 0.000 | 0.992 | 0.033 | 1 | 0.010 | 0.922 |
Site—Treatment | 134.043 *** | 9 | 4.284 | 0.000 | 2.500 | 9 | 0.080 | 1.000 |
Variety—Treatment | 0.103 | 9 | 0.003 | 1.000 | 0.700 | 9 | 0.022 | 1.000 |
Site—Variety—Treatment | 0.038 | 9 | 0.001 | 1.000 | 0.800 | 9 | 0.026 | 1.000 |
Error | 278.107 | 80 | 278.000 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Allaoui, N.; Yahyaoui, H.; Douira, A.; Benbouazza, A.; Ferrahi, M.; Achbani, E.H.; Habbadi, K. Assessment of the Impacts of Plant Growth-Promoting Micro-Organisms on Potato Farming in Different Climatic Conditions in Morocco. Microbiol. Res. 2023, 14, 2090-2104. https://doi.org/10.3390/microbiolres14040141
El Allaoui N, Yahyaoui H, Douira A, Benbouazza A, Ferrahi M, Achbani EH, Habbadi K. Assessment of the Impacts of Plant Growth-Promoting Micro-Organisms on Potato Farming in Different Climatic Conditions in Morocco. Microbiology Research. 2023; 14(4):2090-2104. https://doi.org/10.3390/microbiolres14040141
Chicago/Turabian StyleEl Allaoui, Nadia, Hiba Yahyaoui, Allal Douira, Abdellatif Benbouazza, Moha Ferrahi, El Hassan Achbani, and Khaoula Habbadi. 2023. "Assessment of the Impacts of Plant Growth-Promoting Micro-Organisms on Potato Farming in Different Climatic Conditions in Morocco" Microbiology Research 14, no. 4: 2090-2104. https://doi.org/10.3390/microbiolres14040141
APA StyleEl Allaoui, N., Yahyaoui, H., Douira, A., Benbouazza, A., Ferrahi, M., Achbani, E. H., & Habbadi, K. (2023). Assessment of the Impacts of Plant Growth-Promoting Micro-Organisms on Potato Farming in Different Climatic Conditions in Morocco. Microbiology Research, 14(4), 2090-2104. https://doi.org/10.3390/microbiolres14040141