Natural Products from Marine Actinomycete Genus Salinispora Might Inhibit 3CLpro and PLpro Proteins of SARS-CoV-2: An In Silico Evidence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein Retrieval
2.2. Ligand Retrieval
2.3. Visualization Software
2.4. Docking Preparations
2.5. Docking Validation
2.6. Molecular Docking
2.6.1. Binding Affinity and Residue Analyses
2.6.2. Selection of Best Interaction Complexes, 3CLpro and PLpro
- The ligand interacted with critical catalytic amino acids;
- The ligand made one or more hydrogen bond (RMSD Å ≤ 3.00);
- The ligand interacted with at least one of the catalytic amino acids to generate electrostatic connections;
- The predetermined threshold RMSD cutoff distance (Å ≤ 5.00) for electrostatic bonding was not exceeded.
- No interactions with crucial catalytic residues;
- No hydrogen bonds associated with key residues;
- Only hydrophobic interactions (VdW forces) occurred;
- Exceeded the maximum predetermined RMSD cutoff distance threshold for electrostatic associations (Å ≥ 5.00).
2.6.3. Residue–Residue and Ligand–Residue Contact Analyses
2.7. Molecular Dynamics Simulation
2.8. Toxicity Profile Evaluation
2.9. Pharmacokinetics Evaluation
3. Results and Discussion
3.1. SARS-CoV-2 Main Protease Protein (3CLpro/Mpro)
3.1.1. 3CLpro Enzyme Structure and Residue–Residue Interactions in Active Site
3.1.2. 3CLpro Docking
3.1.3. Best Amino Acid Interaction Complexes, 3CLpro
3.1.4. Ligand–Residue Non-Covalent Interactions for 3CLpro Complexes
3.1.5. Simulations for 3CLpro-Ligand Complexes
3.2. SARS-CoV-2 Papain-Like Protease Protein (PLpro)
3.2.1. PLpro Enzyme Structure and Residue–Residue Interactions in Active Site
3.2.2. PLpro Docking
3.2.3. Best Residue Interaction Complexes, PLpro
3.2.4. Ligand–Residue Non-Covalent Interactions for PLpro Complexes
3.2.5. Simulations for PLpro-Ligand Complexes
3.3. Toxicity Evaluation
3.3.1. ProTox-II Analysis
3.3.2. StopTox Analysis
3.4. Drug-Likeness Evaluation
3.4.1. Pfizer’s/Lipinski’s Rule of Five
3.4.2. Swiss-ADME
3.5. Probable Bioactivities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Full Name |
MNPs | Marine natural products |
NPs | Natural products |
COVID-19 | Coronavirus disease of 2019 |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
FDA | Food and drug administration |
RCSB PDB | Research Collaboratory for Structural Bioinformatics Protein Data Bank |
PDB | Protein Data Bank |
PDBQT | Protein Data Bank with partial charge Q and atom type T |
SDF | Structure data file |
MGL | Molecular Graphics Laboratory |
3CLpro | 3C-like protease |
Mpro | Main protease |
PLpro | Papain-like protease |
HETATM | Hetero atom |
RMSF | Root mean square fluctuation |
RMSD | Root mean square deviation |
GI | Gastrointestinal |
TPSA | Topological polar surface area |
ADME | Absorption, distribution, metabolism, excretion |
SMILES | Simplified molecular-input line-entry system |
QSAR | Quantitative structure–activity relationship |
VdW | Van der Waals |
PyMOL | Proprietary molecular visualization system |
PASS | Prediction of activity spectra for substances |
CAM | COVID-19-associated mucormycosis |
References
- Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; et al. The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar] [CrossRef]
- Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- She, J.; Jiang, J.; Ye, L.; Hu, L.; Bai, C.; Song, Y. 2019 novel coronavirus of pneumonia in Wuhan, China: Emerging attack and management strategies. Clin. Transl. Med. 2020, 9, 19. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Mishra, N.P.; Das, S.S.; Yadav, S.; Khan, W.; Afzal, M.; Alarifi, A.; Kenawy, E.R.; Ansari, M.T.; Hasnain, M.S.; Nayak, A.K. Global impacts of pre- and post-COVID-19 pandemic: Focus on socio-economic consequences. Sens. Int. 2020, 1, 100042. [Google Scholar] [CrossRef]
- Astuti, I.; Ysrafil. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 407–412. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol. 2020, 92, 418–423. [Google Scholar] [CrossRef]
- Li, Q.; Kang, C. Progress in Developing Inhibitors of SARS-CoV-2 3C-Like Protease. Microorganisms 2020, 8, 1250. [Google Scholar] [CrossRef]
- Suarez, D.; Diaz, N. SARS-CoV-2 Main Protease: A Molecular Dynamics Study. J. Chem. Inf. Model. 2020, 60, 5815–5831. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020, 368, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Telenti, A.; Arvin, A.; Corey, L.; Corti, D.; Diamond, M.S.; Garcia-Sastre, A.; Garry, R.F.; Holmes, E.C.; Pang, P.S.; Virgin, H.W. After the pandemic: Perspectives on the future trajectory of COVID-19. Nature 2021, 596, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.A.A.; Abdelrahman, A.H.M.; Hegazy, M.F. In-silico drug repurposing and molecular dynamics puzzled out potential SARS-CoV-2 main protease inhibitors. J. Biomol. Struct. Dyn. 2021, 39, 5756–5767. [Google Scholar] [CrossRef]
- Ibrahim, M.A.A.; Abdelrahman, A.H.M.; Allemailem, K.S.; Almatroudi, A.; Moustafa, M.F.; Hegazy, M.F. In Silico evaluation of prospective anti-COVID-19 drug candidates as potential SARS-CoV-2 main protease inhibitors. Protein J. 2021, 40, 296–309. [Google Scholar] [CrossRef]
- Pawar, A.Y. Combating devastating COVID-19 by drug repurposing. Int. J. Antimicrob. Agents 2020, 56, 105984. [Google Scholar] [CrossRef]
- Drozdzal, S.; Rosik, J.; Lechowicz, K.; Machaj, F.; Kotfis, K.; Ghavami, S.; Los, M.J. FDA approved drugs with pharmacotherapeutic potential for SARS-CoV-2 (COVID-19) therapy. Drug Resist. Updates 2020, 53, 100719. [Google Scholar] [CrossRef]
- Maltsev, O.V.; Kasyanenko, K.V.; Kozlov, K.V.; Zhdanov, K.V.; Lapikov, I.I. Prospects of using the nucleoside analogue riamilovir in patients with SARS-CoV-2 infection. Ter. Arkhiv 2022, 94, 1171–1176. [Google Scholar] [CrossRef]
- Marzi, M.; Vakil, M.K.; Bahmanyar, M.; Zarenezhad, E. Paxlovid: Mechanism of Action, Synthesis, and In Silico Study. Biomed. Res. Int. 2022, 2022, 7341493. [Google Scholar] [CrossRef]
- Bartha, F.A.; Juhász, N.; Marzban, S.; Han, R.; Röst, G. In Silico Evaluation of Paxlovid’s Pharmacometrics for SARS-CoV-2: A Multiscale Approach. Viruses 2022, 14, 1103. [Google Scholar] [CrossRef]
- Panahi, Y.; Gorabi, A.M.; Talaei, S.; Beiraghdar, F.; Akbarzadeh, A.; Tarhriz, V.; Mellatyar, H. An overview on the treatments and prevention against COVID-19. Virol. J. 2023, 20, 23. [Google Scholar] [CrossRef] [PubMed]
- Musarra-Pizzo, M.; Pennisi, R.; Ben-Amor, I.; Mandalari, G.; Sciortino, M.T. Antiviral Activity Exerted by Natural Products against Human Viruses. Viruses 2021, 13, 828. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.T.; Hsu, W.C.; Lin, C.C. Antiviral natural products and herbal medicines. J. Tradit. Complement. Med. 2014, 4, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Pokharkar, O.; Anumolu, H.; Zyryanov, G.V.; Tsurkan, M.V. Natural Products from Red Algal Genus Laurencia as Potential Inhibitors of RdRp and nsp15 Enzymes of SARS-CoV-2: An In Silico Perspective. Microbiol. Res. 2023, 14, 1020–1048. [Google Scholar] [CrossRef]
- Pokharkar, O.; Lakshmanan, H.; Zyryanov, G.V.; Tsurkan, M.V. Antiviral Potential of Antillogorgia americana and elisabethae Natural Products against nsp16–nsp10 Complex, nsp13, and nsp14 Proteins of SARS-CoV-2: An In Silico Investigation. Microbiol. Res. 2023, 14, 993–1019. [Google Scholar] [CrossRef]
- Banerjee, P.; Mandhare, A.; Bagalkote, V. Marine natural products as source of new drugs: An updated patent review (July 2018–July 2021). Expert Opin. Ther. Pat. 2022, 32, 317–363. [Google Scholar] [CrossRef]
- Mia, M.M.; Hasan, M.; Miah, M.M.; Hossain, M.A.S.; Islam, S.; Shanta, V. Inhibitory Potentiality of Secondary Metabolites Extracted from Marine Fungus Target on Avian Influenza Virus-A Subtype H5N8 (Neuraminidase) and H5N1 (Nucleoprotein): A Rational Virtual Screening. Vet. Anim. Sci. 2022, 15, 100231. [Google Scholar] [CrossRef]
- Yasuhara-Bell, J.; Lu, Y. Marine compounds and their antiviral activities. Antivir. Res. 2010, 86, 231–240. [Google Scholar] [CrossRef]
- Gogineni, V.; Schinazi, R.F.; Hamann, M.T. Role of Marine Natural Products in the Genesis of Antiviral Agents. Chem. Rev. 2015, 115, 9655–9706. [Google Scholar] [CrossRef]
- Park, J.Y.; Kim, J.H.; Kwon, J.M.; Kwon, H.J.; Jeong, H.J.; Kim, Y.M.; Kim, D.; Lee, W.S.; Ryu, Y.B. Dieckol, a SARS-CoV 3CL(pro) inhibitor, isolated from the edible brown algae Ecklonia cava. Bioorg. Med. Chem. 2013, 21, 3730–3737. [Google Scholar] [CrossRef]
- Lira, S.P.d.; Seleghim, M.H.R.; Williams, D.E.; Marion, F.; Hamill, P.; Jean, F.; Andersen, R.J.; Hajdu, E.; Berlinck, R.G.S. A SARS-coronovirus 3CL protease inhibitor isolated from the marine sponge Axinella cf. corrugata: Structure elucidation and synthesis. J. Braz. Chem. Soc. 2007, 18, 440–443. [Google Scholar] [CrossRef]
- Ibrahim, M.A.A.; Abdelrahman, A.H.M.; Mohamed, D.E.M.; Abdeljawaad, K.A.A.; Naeem, M.A.; Gabr, G.A.; Shawky, A.M.; Soliman, M.E.S.; Sidhom, P.A.; Paré, P.W.; et al. Chetomin, a SARS-CoV-2 3C-like Protease (3CLpro) Inhibitor: In Silico Screening, Enzyme Docking, Molecular Dynamics and Pharmacokinetics Analysis. Viruses 2023, 15, 250. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Castro, L.; Martínez-García, S.; Cancino-Diaz, J.C.; Maldonado, L.A.; Hernández-Guerrero, C.J.; Martínez-Díaz, S.F.; González-Acosta, B.; Quintana, E.T. Marine Sediment Recovered Salinispora sp. Inhibits the Growth of Emerging Bacterial Pathogens and other Multi-Drug-Resistant Bacteria. Pol. J. Microbiol. 2020, 69, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Patin, N.V.; Duncan, K.R.; Dorrestein, P.C.; Jensen, P.R. Competitive strategies differentiate closely related species of marine actinobacteria. ISME J. 2016, 10, 478–490. [Google Scholar] [CrossRef]
- Patin, N.V.; Schorn, M.; Aguinaldo, K.; Lincecum, T.; Moore, B.S.; Jensen, P.R. Effects of Actinomycete Secondary Metabolites on Sediment Microbial Communities. Appl. Environ. Microbiol. 2017, 83, e02676-16. [Google Scholar] [CrossRef] [PubMed]
- Patin, N.V.; Floros, D.J.; Hughes, C.C.; Dorrestein, P.C.; Jensen, P.R. The role of inter-species interactions in Salinispora specialized metabolism. Microbiology 2018, 164, 946–955. [Google Scholar] [CrossRef] [PubMed]
- Chhun, A. Antimicrobial Potential of the Marine Actinomycete Salinispora Tropica CNB-440 in Co-Culture: A Metabolomic, Proteomic and Genome Engineering Approach. Ph.D. Thesis, University of Warwick, Coventry, UK, 2020. [Google Scholar]
- Chhun, A.; Sousoni, D.; Aguiló-Ferretjans, M.D.M.; Song, L.; Corre, C.; Christie-Oleza, J.A. Phytoplankton trigger the production of cryptic metabolites in the marine actinobacterium Salinispora tropica. Microb. Biotechnol. 2021, 14, 291–306. [Google Scholar] [CrossRef]
- Fischer, C.; Feys, J.R. SARS-CoV-2 Mpro Inhibitors: Achieved Diversity, Developing Resistance and Future Strategies. Future Pharmacol. 2023, 3, 80–107. [Google Scholar] [CrossRef]
- Mestres, J.; Gregori-Puigjané, E. Conciliating binding efficiency and polypharmacology. Trends Pharmacol. Sci. 2009, 30, 470–474. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Z.; Fu, Y.; Wu, Z.; Huang, C.; Zheng, C.; Shar, P.A.; Wang, Z.; Xiao, W.; Wang, Y. Weak-binding molecules are not drugs?-toward a systematic strategy for finding effective weak-binding drugs. Brief. Bioinform. 2017, 18, 321–332. [Google Scholar] [CrossRef]
- Home—Protein—NCBI. Available online: https://www.ncbi.nlm.nih.gov/protein/ (accessed on 10 June 2023).
- Wang, Y.; Xu, B.; Ma, S.; Wang, H.; Shang, L.; Zhu, C.; Ye, S. Discovery of SARS-CoV-2 3CLPro Peptidomimetic Inhibitors through the Catalytic Dyad Histidine-Specific Protein-Ligand Interactions. Int. J. Mol. Sci. 2022, 23, 2392. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Qin, B.; Chen, P.; Zhu, K.; Hou, P.; Wojdyla, J.A.; Wang, M.; Cui, S. Crystal structure of SARS-CoV-2 papain-like protease. Acta Pharm. Sin. B. 2021, 11, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Srivari, C.; Kurapati, S.; Reddy, G.; Mainkar, P. Total syntheses of arenamides A, B and C. Tetrahedron Asymmetry 2014, 25, 348–355. [Google Scholar] [CrossRef]
- Asolkar, R.N.; Freel, K.C.; Jensen, P.R.; Fenical, W.; Kondratyuk, T.P.; Park, E.J.; Pezzuto, J.M. Arenamides A-C, cytotoxic NFkappaB inhibitors from the marine actinomycete Salinispora arenicola. J. Nat. Prod. 2009, 72, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.G.; Miller, E.D.; Asolkar, R.N.; Jensen, P.R.; Fenical, W. Arenicolides A-C, 26-membered ring macrolides from the marine actinomycete Salinispora arenicola. J. Org. Chem. 2007, 72, 5025–5034. [Google Scholar] [CrossRef]
- Asolkar, R.N.; Kirkland, T.N.; Jensen, P.R.; Fenical, W. Arenimycin, an antibiotic effective against rifampin- and methicillin-resistant Staphylococcus aureus from the marine actinomycete Salinispora arenicola. J. Antibiot. 2010, 63, 37–39. [Google Scholar] [CrossRef]
- Bose, U.; Hodson, M.P.; Shaw, P.N.; Fuerst, J.A.; Hewavitharana, A.K. Two peptides, cycloaspeptide A and nazumamide A from a sponge associated marine actinobacterium Salinispora sp. Nat. Prod. Commun. 2014, 9, 545–546. [Google Scholar] [CrossRef]
- Lewer, P.; Graupner, P.R.; Hahn, D.R.; Karr, L.L.; Duebelbeis, D.O.; Lira, J.M.; Anzeveno, P.B.; Fields, S.C.; Gilbert, J.R.; Pearce, C. Discovery, synthesis, and insecticidal activity of cycloaspeptide E. J. Nat. Prod. 2006, 69, 1506–1510. [Google Scholar] [CrossRef]
- Banerjee, U.C.; Saxena, B.; Chisti, Y. Biotransformations of rifamycins: Process possibilities. Biotechnol. Adv. 1992, 10, 577–595. [Google Scholar] [CrossRef]
- Bonet, B.; Teufel, R.; Crüsemann, M.; Ziemert, N.; Moore, B.S. Direct capture and heterologous expression of Salinispora natural product genes for the biosynthesis of enterocin. J. Nat. Prod. 2015, 78, 539–542. [Google Scholar] [CrossRef]
- Bose, U.; Hodson, M.P.; Shaw, P.N.; Fuerst, J.A.; Hewavitharana, A.K. Bacterial production of the fungus-derived cholesterol-lowering agent mevinolin. Biomed. Chromatogr. 2014, 28, 1163–1166. [Google Scholar] [CrossRef] [PubMed]
- Bose, U.; Hewavitharana, A.K.; Ng, Y.K.; Shaw, P.N.; Fuerst, J.A.; Hodson, M.P. LC-MS-based metabolomics study of marine bacterial secondary metabolite and antibiotic production in Salinispora arenicola. Mar. Drugs. 2015, 13, 249–266. [Google Scholar] [CrossRef] [PubMed]
- Bose, U.; Hewavitharana, A.K.; Vidgen, M.E.; Ng, Y.K.; Shaw, P.N.; Fuerst, J.A.; Hodson, M.P. Discovering the recondite secondary metabolome spectrum of Salinispora species: A study of inter-species diversity. PLoS ONE 2014, 9, e91488. [Google Scholar] [CrossRef] [PubMed]
- Bose, U.; Ortori, C.A.; Sarmad, S.; Barrett, D.A.; Hewavitharana, A.K.; Hodson, M.P.; Fuerst, J.A.; Shaw, P.N. Production of N-acyl homoserine lactones by the sponge-associated marine actinobacteria Salinispora arenicola and Salinispora pacifica. FEMS Microbiol. Lett. 2017, 364, fnx002. [Google Scholar] [CrossRef]
- Buchanan, G.O.; Williams, P.G.; Feling, R.H.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Sporolides A and B: Structurally unprecedented halogenated macrolides from the marine actinomycete Salinispora tropica. Org. Lett. 2005, 7, 2731–2734. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.B.; Pinto, F.C.L.; Silveira, E.R.; Costa-Lotufo, L.V.; Costa, W.S.; Ayala, A.P.; Canuto, K.M.; Barros, A.B.; Araújo, A.J.; Marinho Filho, J.D.B.; et al. 4-Hydroxy-pyran-2-one and 3-hydroxy-N-methyl-2-oxindole derivatives of Salinispora arenicola from Brazilian marine sediments. Fitoterapia 2019, 138, 104357. [Google Scholar] [CrossRef]
- da Silva, A.B.; Silveira, E.R.; Wilke, D.V.; Ferreira, E.G.; Costa-Lotufo, L.V.; Torres, M.C.M.; Ayala, A.P.; Costa, W.S.; Canuto, K.M.; de Araújo-Nobre, A.R.; et al. Antibacterial Salinaphthoquinones from a Strain of the Bacterium Salinispora arenicola Recovered from the Marine Sediments of St. Peter and St. Paul Archipelago, Brazil. J. Nat. Prod. 2019, 82, 1831–1838. [Google Scholar] [CrossRef]
- Duncan, K.R.; Crüsemann, M.; Lechner, A.; Sarkar, A.; Li, J.; Ziemert, N.; Wang, M.; Bandeira, N.; Moore, B.S.; Dorrestein, P.C.; et al. Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species. Chem. Biol. 2015, 22, 460–471. [Google Scholar] [CrossRef]
- Eustáquio, A.S.; Nam, S.J.; Penn, K.; Lechner, A.; Wilson, M.C.; Fenical, W.; Jensen, P.R.; Moore, B.S. The discovery of Salinosporamide K from the marine bacterium “Salinispora pacifica” by genome mining gives insight into pathway evolution. ChemBioChem 2011, 12, 61–64. [Google Scholar] [CrossRef]
- Farrell, D.J.; Putnam, S.D.; Biedenbach, D.J.; Moro, L.; Bozzella, R.; Celasco, G.; Jones, R.N. In vitro activity and single-step mutational analysis of rifamycin SV tested against enteropathogens associated with traveler’s diarrhea and Clostridium difficile. Antimicrob. Agents Chemother. 2011, 55, 992–996. [Google Scholar] [CrossRef]
- Barbie, P.; Kazmaier, U. Total Synthesis of Cyclomarin A, a Marine Cycloheptapeptide with Anti-Tuberculosis and Anti-Malaria Activity. Org. Lett. 2016, 18, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.J.; Yao, Z.J. Total synthesis of cyclomarin C. Org. Lett. 2004, 6, 2721–2724. [Google Scholar] [CrossRef] [PubMed]
- Schultz, A.W.; Oh, D.C.; Carney, J.R.; Williamson, R.T.; Udwary, D.W.; Jensen, P.R.; Gould, S.J.; Fenical, W.; Moore, B.S. Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin. J. Am. Chem. Soc. 2008, 130, 4507–4516. [Google Scholar] [CrossRef] [PubMed]
- Greunke, C.; Glöckle, A.; Antosch, J.; Gulder, T.A. Biocatalytic Total Synthesis of Ikarugamycin. Angew. Chem. Int. Ed. Engl. 2017, 56, 4351–4355. [Google Scholar] [CrossRef] [PubMed]
- Jomon, K.; Kuroda, Y.; Ajisaka, M.; Sakai, H. A new antibiotic, ikarugamycin. J. Antibiot. 1972, 25, 271–280. [Google Scholar] [CrossRef]
- Xu, J.; Mahmud, T.; Floss, H.G. Isolation and characterization of 27-O-demethylrifamycin SV methyltransferase provides new insights into the post-PKS modification steps during the biosynthesis of the antitubercular drug rifamycin B by Amycolatopsis mediterranei S699. Arch. Biochem. Biophys. 2003, 411, 277–288. [Google Scholar] [CrossRef]
- Laumer, J.M.; Kim, D.D.; Beak, P. Enantioselective synthesis of 2-substituted 2-phenylethylamines by lithiation-substitution sequences: Synthetic development and mechanistic pathway. J. Org. Chem. 2002, 67, 6797–6804. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Yan, Y.; Chen, S.; Xu, X.; Zhang, H.; Wang, H. Quorum sensing inhibitors from marine bacteria Oceanobacillus sp. XC22919. Nat. Prod. Res. 2019, 33, 1819–1823. [Google Scholar] [CrossRef]
- Liu, J.; Brabander, J.K. A concise total synthesis of saliniketal B. J. Am. Chem. Soc. 2009, 131, 12562–12563, Erratum in J. Am. Chem. Soc. 2010, 132, 8223. [Google Scholar] [CrossRef]
- Williams, P.G.; Asolkar, R.N.; Kondratyuk, T.; Pezzuto, J.M.; Jensen, P.R.; Fenical, W. Saliniketals A and B, bicyclic polyketides from the marine actinomycete Salinispora arenicola. J. Nat. Prod. 2007, 70, 83–88. [Google Scholar] [CrossRef]
- Paterson, I.; Razzak, M.; Anderson, E.A. Total synthesis of (-)-saliniketals A and B. Org. Lett. 2008, 10, 3295–3298. [Google Scholar] [CrossRef] [PubMed]
- Yadav, J.S.; Hossain, S.S.; Madhu, M.; Mohapatra, D.K. Formal total synthesis of (-)-saliniketals. J. Org. Chem. 2009, 74, 8822–8825. [Google Scholar] [CrossRef] [PubMed]
- Schlawis, C.; Harig, T.; Ehlers, S.; Guillen-Matus, D.G.; Creamer, K.E.; Jensen, P.R.; Schulz, S. Extending the Salinilactone Family. Chembiochem. 2020, 21, 1629–1632. [Google Scholar] [CrossRef]
- Murphy, B.T.; Narender, T.; Kauffman, C.A.; Woolery, M.; Jensen, P.R.; Fenical, W. Saliniquinones A-F, New Members of the Highly Cytotoxic Anthraquinone-γ-Pyrones from the Marine Actinomycete Salinispora arenicola. Aust. J. Chem. 2010, 63. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, S.; Adachi, K.; Matsuo, Y.; Nukina, M.; Shizuri, Y. Salinisporamycin, a novel metabolite from Salinispora arenicola. J. Antibiot. 2009, 62, 519–526, Erratum in J. Antibiot. 2009, 62, 537. [Google Scholar] [CrossRef]
- Chen, M.; Roush, W.R. Crotylboron-based synthesis of the polypropionate units of chaxamycins A/D, salinisporamycin, and rifamycin S. J. Org. Chem. 2013, 78, 3–8. [Google Scholar] [CrossRef]
- Villadsen, N.L.; Jacobsen, K.M.; Keiding, U.B.; Weibel, E.T.; Christiansen, B.; Vosegaard, T.; Bjerring, M.; Jensen, F.; Johannsen, M.; Tørring, T.; et al. Synthesis of ent-BE-43547A1 reveals a potent hypoxia-selective anticancer agent and uncovers the biosynthetic origin of the APD-CLD natural products. Nat. Chem. 2017, 9, 264–272. [Google Scholar] [CrossRef]
- Xu, M.; Hillwig, M.L.; Lane, A.L.; Tiernan, M.S.; Moore, B.S.; Peters, R.J. Characterization of an orphan diterpenoid biosynthetic operon from Salinispora arenicola. J. Nat. Prod. 2014, 77, 2144–2147. [Google Scholar] [CrossRef]
- Schlawis, C.; Kern, S.; Kudo, Y.; Grunenberg, J.; Moore, B.S.; Schulz, S. Structural Elucidation of Trace Components Combining GC/MS, GC/IR, DFT-Calculation and Synthesis-Salinilactones, Unprecedented Bicyclic Lactones from Salinispora Bacteria. Angew. Chem. Int. Ed. Engl. 2018, 57, 14921–14925. [Google Scholar] [CrossRef]
- Bruns, H.; Crüsemann, M.; Letzel, A.C.; Alanjary, M.; McInerney, J.O.; Jensen, P.R.; Schulz, S.; Moore, B.S.; Ziemert, N. Function-related replacement of bacterial siderophore pathways. ISME J. 2018, 12, 320–329. [Google Scholar] [CrossRef]
- Richter, T.K.; Hughes, C.C.; Moore, B.S. Sioxanthin, a novel glycosylated carotenoid, reveals an unusual subclustered biosynthetic pathway. Environ. Microbiol. 2015, 17, 2158–2171. [Google Scholar] [CrossRef]
- Lane, A.L.; Nam, S.J.; Fukuda, T.; Yamanaka, K.; Kauffman, C.A.; Jensen, P.R.; Fenical, W.; Moore, B.S. Structures and comparative characterization of biosynthetic gene clusters for cyanosporasides, enediyne-derived natural products from marine actinomycetes. J. Am. Chem. Soc. 2013, 135, 4171–4174. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.C.; Gontang, E.A.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Salinipyrones and pacificanones, mixed-precursor polyketides from the marine actinomycete Salinispora pacifica. J. Nat. Prod. 2008, 71, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Liu, J.; Carrasco, Y.P.; MacMillan, J.B.; Brabander, J.K. Rifamycin biosynthetic congeners: Isolation and total synthesis of rifsaliniketal and total synthesis of salinisporamycin and saliniketals A and B. J. Am. Chem. Soc. 2016, 138, 7130–7142. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.C.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J. Nat. Prod. 2007, 70, 515–520. [Google Scholar] [CrossRef]
- Macherla, V.R.; Mitchell, S.S.; Manam, R.R.; Reed, K.A.; Chao, T.H.; Nicholson, B.; Deyanat-Yazdi, G.; Mai, B.; Jensen, P.R.; Fenical, W.F.; et al. Structure-activity relationship studies of salinosporamide A (NPI-0052), a novel marine derived proteasome inhibitor. J. Med. Chem. 2005, 48, 3684–3687. [Google Scholar] [CrossRef]
- Miyanaga, A.; Janso, J.E.; McDonald, L.; He, M.; Liu, H.; Barbieri, L.; Eustáquio, A.S.; Fielding, E.N.; Carter, G.T.; Jensen, P.R.; et al. Discovery and assembly-line biosynthesis of the lymphostin pyrroloquinoline alkaloid family of mTOR inhibitors in Salinispora bacteria. J. Am. Chem. Soc. 2011, 133, 13311–13313. [Google Scholar] [CrossRef]
- Feling, R.H.; Buchanan, G.O.; Mincer, T.J.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Salinosporamide A: A highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew. Chem. Int. Ed. 2003, 42, 355–357. [Google Scholar] [CrossRef]
- Kudo, Y.; Awakawa, T.; Du, Y.L.; Jordan, P.A.; Creamer, K.E.; Jensen, P.R.; Linington, R.G.; Ryan, K.S.; Moore, B.S. Expansion of Gamma-Butyrolactone Signaling Molecule Biosynthesis to Phosphotriester Natural Products. ACS Chem. Biol. 2020, 15, 3253–3261. [Google Scholar] [CrossRef]
- Reed, K.A.; Manam, R.R.; Mitchell, S.S.; Xu, J.; Teisan, S.; Chao, T.H.; Deyanat-Yazdi, G.; Neuteboom, S.T.; Lam, K.S.; Potts, B.C. Salinosporamides D-J from the marine actinomycete Salinispora tropica, bromosalinosporamide, and thioester derivatives are potent inhibitors of the 20S proteasome. J. Nat. Prod. 2007, 70, 269–276. [Google Scholar] [CrossRef]
- Manam, R.R.; Macherla, V.R.; Tsueng, G.; Dring, C.W.; Weiss, J.; Neuteboom, S.T.; Lam, K.S.; Potts, B.C. Antiprotealide is a natural product. J. Nat. Prod. 2009, 72, 295–297. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.G.; Buchanan, G.O.; Feling, R.H.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. New cytotoxic salinosporamides from the marine Actinomycete Salinispora tropica. J. Org. Chem. 2005, 70, 6196–6203. [Google Scholar] [CrossRef] [PubMed]
- Groenhagen, U.; Leandrini, D.O.; Fielding, E.; Moore, B.S.; Schulz, S. Coupled Biosynthesis of Volatiles and salinosporamide A in Salinispora tropica. Chembiochem 2016, 17, 1978–1985. [Google Scholar] [CrossRef] [PubMed]
- Niewerth, D.; Jansen, G.; Riethoff, L.F.; Meerloo, V.J.; Kale, A.J.; Moore, B.S.; Assaraf, Y.G.; Anderl, J.L.; Zweegman, S.K.; Cloos, J. Antileukemic activity and mechanism of drug resistance to the marine Salinispora tropica proteasome inhibitor salinosporamide A (Marizomib). Mol. Pharmacol. 2014, 86, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Udwary, D.W.; Zeigler, L.; Asolkar, R.N.; Singan, V.; Lapidus, A.; Fenical, W.; Jensen, P.R.; Moore, B.S. Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc. Natl. Acad. Sci. USA 2007, 104, 10376–10381. [Google Scholar] [CrossRef] [PubMed]
- Harig, T.; Schlawis, C.; Ziesche, L.; Pohlner, M.; Engelen, B.; Schulz, S. Nitrogen-Containing Volatiles from Marine Salinispora pacifica and Roseobacter-Group Bacteria. J. Nat. Prod. 2017, 80, 3289–3295. [Google Scholar] [CrossRef]
- Woo, C.M.; Beizer, N.E.; Janso, J.E.; Herzon, S.B. Isolation of lomaiviticins C-E, transformation of lomaiviticin C to lomaiviticin A, complete structure elucidation of lomaiviticin A, and structure-activity analyses. J. Am. Chem. Soc. 2012, 134, 15285–15288. [Google Scholar] [CrossRef]
- Oh, D.C.; Williams, P.G.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Cyanosporasides A and B, chloro- and cyano-cyclopenta[a]indene glycosides from the marine actinomycete “Salinispora pacifica”. Org. Lett. 2006, 8, 1021–1024. [Google Scholar] [CrossRef]
- Woo, C.M.; Gholap, S.L.; Herzon, S.B. Insights into lomaiviticin biosynthesis. Isolation and structure elucidation of (-)-homoseongomycin. J. Nat. Prod. 2013, 76, 1238–1241. [Google Scholar] [CrossRef]
- Roberts, A.A.; Schultz, A.W.; Kersten, R.D.; Dorrestein, P.C.; Moore, B.S. Iron acquisition in the marine actinomycete genus Salinispora is controlled by the desferrioxamine family of siderophores. FEMS Microbiol. Lett. 2012, 335, 95–103. [Google Scholar] [CrossRef]
- Castro, F.G.; Hahn, D.; Reimer, D.; Hughes, C.C. Thiol Probes to Detect Electrophilic Natural Products Based on Their Mechanism of Action. ACS Chem. Biol. 2016, 11, 2328–2336. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, S.; Kim, M.; Lee, C.; Yang, I.; Nam, S.J. Bioactive natural products from the genus salinospora: A review. Arch. Pharm. Res. 2020, 43, 1230–1258. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016, 44, D1202. [Google Scholar] [CrossRef] [PubMed]
- Pence, H.E.; Williams, A. ChemSpider: An Online Chemical Information Resource. J. Chem. Educ. 2010, 87, 1123–1124. [Google Scholar] [CrossRef]
- BIOVIA DS, Discovery, Studio. Available online: https://discover.3ds.com/discovery-studio-visualizer-download (accessed on 15 June 2023).
- The PyMOL Molecular Graphics System, Version 2.5.5, Schrödinger, LLC. Available online: https://pymol.org/ (accessed on 30 June 2023).
- Avogadro: An Open-Source Molecular Builder and Visualization Tool. Version 1.95. Available online: http://avogadro.cc/ (accessed on 10 June 2023).
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef]
- Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 1997, 18, 2714–2723. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Kayikci, M.; Venkatakrishnan, A.J.; Scott-Brown, J.; Ravarani, C.N.J.; Flock, T.; Babu, M.M. Visualization and analysis of non-covalent contacts using the Protein Contacts Atlas. Nat. Struct. Mol. Biol. 2018, 25, 185–194. [Google Scholar] [CrossRef]
- Kuriata, A.; Gierut, A.M.; Oleniecki, T.; Ciemny, M.P.; Kolinski, A.; Kurcinski, M.; Kmiecik, S. CABS-flex 2.0: A web server for fast simulations of flexibility of protein structures. Nucleic Acids Res. 2018, 46, W338–W343. [Google Scholar] [CrossRef]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef]
- Borba, J.; Alves, V.; Overdahl, K.; Silva, A.; Hall, S.; Overdahl, E.; Braga, R.; Kleinstreuer, N.; Strickland, J.; Allen, D.; et al. STopTox: An In-Silico Alternative to Animal Testing for Acute Systemic and TOPical TOXicity. Environ. Health Perspect. 2022, 130, 27012. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 71, 42717. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.H.; Abraham, M.H.; Le, J.; Hersey, A.; Luscombe, C.N.; Beck, G.; Sherborne, B.; Cooper, I. Rate-limited steps of human oral absorption and QSAR studies. Pharm. Res. 2002, 19, 1446–1457. [Google Scholar] [CrossRef] [PubMed]
- Husain, A.; Ahmad, A.; Khan, S.A.; Asif, M.; Bhutani, R.; Al-Abbasi, F.A. Synthesis, molecular properties, toxicity and biological evaluation of some new substituted imidazolidine derivatives in search of potent anti-inflammatory agents. Saudi Pharm. J. 2016, 24, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, D.; Nandi, R.; Jagadeesan, R.; Kumar, N.; Prakash, A.; Kumar, D. Identification of potential inhibitors against SARS-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches. Infect. Genet. Evol. 2020, 84, 104451. [Google Scholar] [CrossRef]
- Lagunin, A.; Stepanchikova, A.; Filimonov, D.; Poroikov, V. PASS: Prediction of activity spectra for biologically active substances. Bioinformatics 2000, 16, 747–748. [Google Scholar] [CrossRef]
- Moustaqil, M.; Ollivier, E.; Chiu, H.P.; Van Tol, S.; Rudolffi-Soto, P.; Stevens, C.; Bhumkar, A.; Hunter, D.J.B.; Freiberg, A.N.; Jacques, D.; et al. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): Implications for disease presentation across species. Emerg. Microbes Infect. 2021, 10, 178–195. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, H.; Lin, Q.; Lyu, J.; Lu, L.; Chen, H.; Zhang, X.; Zhang, Y.; Chen, K. Progress on SARS-CoV-2 3CLpro Inhibitors: Inspiration from SARS-CoV 3CLpro Peptidomimetics and Small-Molecule Anti-Inflammatory Compounds. Drug Des. Devel Ther. 2022, 16, 1067–1082. [Google Scholar] [CrossRef]
- Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020, 582, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.C.; Fadl, S.; Villanueva, A.J.; Rabeh, W.M. Catalytic Dyad Residues His41 and Cys145 Impact the Catalytic Activity and Overall Conformational Fold of the Main SARS-CoV-2 Protease 3-Chymotrypsin-Like Protease. Front. Chem. 2021, 9, 692168. [Google Scholar] [CrossRef] [PubMed]
- Calistri, A.; Munegato, D.; Carli, I.; Parolin, C.; Palù, G. The ubiquitin-conjugating system: Multiple roles in viral replication and infection. Cells 2014, 3, 386–417. [Google Scholar] [CrossRef]
- Mielech, A.M.; Kilianski, A.; Baez-Santos, Y.M.; Mesecar, A.D.; Baker, S.C. MERS-CoV papain-like protease has deISGylating and deubiquitinating activities. Virology 2014, 450–451, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Lindner, H.A.; Lytvyn, V.; Qi, H.; Lachance, P.; Ziomek, E.; Ménard, R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch. Biochem. Biophys. 2007, 466, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Barretto, N.; Jukneliene, D.; Ratia, K.; Chen, Z.; Mesecar, A.D.; Baker, S.C. The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J. Virol. 2005, 79, 15189–15198. [Google Scholar] [CrossRef]
- Gao, H.; Dai, R.; Su, R. Computer-aided drug design for the papain-like protease (PLpro) inhibitors against SARS-CoV-2. Biomed. Pharmacother. 2023, 159, 114247. [Google Scholar] [CrossRef]
- Osipiuk, J.; Azizi, S.A.; Dvorkin, S.; Endres, M.; Jedrzejczak, R.; Jones, K.A.; Kang, S.; Kathayat, R.S.; Kim, Y.; Lisnyak, V.G.; et al. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat. Commun. 2021, 12, 743. [Google Scholar] [CrossRef]
- Muhammad, M.; Habib, I.Y.; Yunusa, A.; Mikail, T.A.; ALhassan, A.J.; Alkhatib, A.J.; Sule, H.; Ismail, S.Y.; Liu, D. Identification of potential SARS-CoV-2 papain-like protease inhibitors with the ability to interact with the catalytic triad. AIMS Biophys. 2023, 10, 50–66. [Google Scholar] [CrossRef]
- Pokharkar, O.; Lakshmanan, H.; Zyryanov, G.; Tsurkan, M. In Silico Evaluation of Antifungal Compounds from Marine Sponges against COVID-19-Associated Mucormycosis. Mar. Drugs 2022, 20, 215. [Google Scholar] [CrossRef]
- Worldometer Coronavirus Statistics. Available online: https://www.worldometers.info/coronavirus/ (accessed on 31 January 2023).
- Sharapov, A.D.; Fatykhov, R.F.; Khalymbadzha, I.A.; Zyryanov, G.V.; Chupakhin, O.N.; Tsurkan, M.V. Plant Coumarins with Anti-HIV Activity: Isolation and Mechanisms of Action. Int. J. Mol. Sci. 2023, 24, 2839. [Google Scholar] [CrossRef] [PubMed]
- Satish, L.; Santra, S.; Tsurkan, M.V.; Werner, C.; Jana, M.; Sahoo, H. Conformational changes of GDNF-derived peptide induced by heparin, heparan sulfate, and sulfated hyaluronic acid-Analysis by circular dichroism spectroscopy and molecular dynamics simulation. Int. J. Biol. Macromol. 2021, 182, 2144–2150. [Google Scholar] [CrossRef] [PubMed]
Docking Scores of All 125 Ligands for 3CLpro | |||
---|---|---|---|
Low Values | Moderate Values | High Values | |
−4 to −5.9 kcal/mol | −6 to −6.9 kcal/mol | −7 to −7.9 kcal/mol | −8 kcal/mol and More |
Antiprotealide | Arenamide C | Arenamide A | Arenamide B |
Cyclomarin D | Arenicolide A | Arenicolide C | Arenimycin A |
Lomaiviticin A | Arenicolide B | BE-43547A1 | Arenimycin C |
N-(3-Oxodecanoyl)-L-homoserine lactone | Arenimycin B | BE-43547A2 | Arenimycin D |
N-(3-oxododecanoyl)-L-homoserine lactone | Bromosalinosporamide | Cyanosporaside A | Cyanosporaside F |
N-(2′-phenylethyl)isobutyramide | Cyclomarazine A | Cyanosporaside B | Cycloaspeptide A |
N-(2′-phenylethyl)isovaleramide | Cyclomarin A | Cyanosporaside C | Desferrioxamine E |
2-methyl-N-(2′-phenylethyl)butyramide | Cyclomarin C | Cyanosporaside D | Ikarugamycin |
Retimycin A | Desferrioxamine B | Cyanosporaside E | Lovastatin |
Rifamycin B | Emericellamide A | Cyclomarazine B | Neolymphostin D |
Rifamycin SW | Isopimara-8,15-dien-19-ol | Emericellamide B | Rifsaliniketal |
Sal-GBL1 | Isopimara-8,15-diene | Enterocin | Rifamycin O |
Sal-GBL2 | Lomaiviticin C | Homoseongomycin | Salinaphthoquinone B |
Salinilactone A | Lomaiviticin E | Lomaiviticin B | Salinaphthoquinone C |
Salinilactone B | Mycalamide A | Lomaiviticin D | Salinaphthoquinone D |
Salinilactone C | Pacificanone A | Lymphostin | Saliniquinone A |
Salinilactone D | Pacificanone B | Lymphostinol | Saliniquinone B |
Salinilactone E | Salinaphthoquinone A | Neolymphostin A | Saliniquinone C |
Salinilactone F | Salinichelin C | Neolymphostin B | Saliniquinone D |
Salinilactone G | Saliniketal B | Neolymphostin C | Saliniquinone F |
Salinilactone H | Salinipostin E | Neolymphostinol A | Salinisporamycin |
Salinipostin A | Salinipyrone A | Neolymphostinol B | 27-O-demethyl-25-O-desacetylrifamycin SV |
Salinipostin B | Salinipyrone B | Neolymphostinol C | |
Salinipostin C | Salinosporamide A | Neolymphostinol D | |
Salinipostin D | Salinosporamide B | Rifamycin S | |
Salinipostin F | Salinosporamide C | Rifamycin W | |
Salinipostin G | Salinosporamide E | Salinaphthoquinone E | |
Salinipostin H | Salinosporamide F | Salinichelin A | |
Salinipostin I | Salinosporamide G | Salinichelin B | |
Salinipostin J | Salinosporamide H | Saliniketal A | |
Salinipostin K | Salinosporamide I | Salinilactam | |
Salinosporamide J | Saliniquinone E | ||
Salinosporamide K | Salinosporamide D | ||
Sporolide A | |||
Sporolide B | |||
Staurosporine | |||
Sioxanthin | |||
Tirandalydigin | |||
27-O-demethylrifamycin SV |
Top Ligands | Residue Interactions |
---|---|
Bromosalinosporamide | HIS41 CYS44 MET49 TYR54 ASN142 CYS145 HIS164 MET165 GLU166 PRO168 ASP187 ARG188 GLN189 |
Lymphostin | THR25 THR26 LEU27 HIS41 CYS44 MET49 PHE140 LEU141 ASN142 GLY143 SER144 CYS145 HIS163 HIS164 MET165 GLU166 |
Neolymphostinol B | HIS41 CYS44 MET49 LEU141 ASN142 GLY143 SER144 CYS145 HIS163 HIS164 MET165 GLU166 ASP187 ARG188 GLN189 THR190 GLN192 |
Salinaphthoquinone B | HIS41 MET49 ASN142 GLY143 CYS145 HIS163 MET165 GLU166 LEU167 PRO168 ASP187 ARG188 GLN189 THR 190 GLN 192 |
Salinaphthoquinone E | HIS41 MET49 ASN142 GLY143 CYS145 HIS163 MET165 GLU166 ARG188 GLN189 |
Salinipostin A | THR25 HIS41 CYS44 MET49 ASN142 CYS145 HIS164 MET165 GLU166 LEU167 PRO168 ASP187 ARG188 GLN189 THR190 |
Saliniquinone F | HIS41 CYS44 MET49 TYR54 ASN142 CYS145 HIS164 MET165 GLU166 PRO168 ASP187 ARG188 GLN189 THR190 ALA191 GLN192 |
Salinosporamide C | THR25 HIS41 CYS44 MET49 ASN142 CYS145 HIS164 MET165 ASP187 ARG188 GLN189 |
Salinosporamide I | THR25 HIS41 CYS44 MET49 CYS145 HIS164 MET165 GLU166 LEU167 PRO168 ASP187 ARG188 GLN189 GLN192 |
Docking Scores of all 125 Ligands for PLpro | |||
---|---|---|---|
Low Values | Moderate Values | High Values | |
−4 to −5.9 kcal/mol | −6 to −6.9 kcal/mol | −7 to −7.9 kcal/mol | −8 kcal/mol and Above |
Antiprotealide | Arenamide A | Arenimycin D | Homoseongomycin |
Arenamide C | Arenamide B | Cyclomarazine B | Neolymphostin A |
Arenicolide B | Arenicolide A | Ikarugamycin | Neolymphostin B |
Arenimycin B | Arenicolide C | Lymphostin | Neolymphostin C |
Bromosalinosporamide | Arenimycin A | Lymphostinol | Neolymphostin D |
Cyanosporaside A | Arenimycin C | Retimycin A | Neolymphostinol A |
Cyanosporaside C | BE-43547A1 | Salinipyrone A | Neolymphostinol B |
Cyanosporaside D | BE-43547A2 | Salinipyrone B | Neolymphostinol C |
Cyclomarin A | Cyanosporaside B | Saliniquinone C | Neolymphostinol D |
Cyclomarin C | Cyanosporaside E | Saliniquinone D | Salinaphthoquinone D |
Cyclomarin D | Cyanosporaside F | Saliniquinone F | Saliniquinone B |
Emericellamide A | CycloaspeptideA | Salinosporamide B | Saliniquinone E |
Enterocin | Cyclomarazine A | Staurosporine | Salinisporamycin |
Isopimara-8,15-diene | Desferrioxamine B | Tirandalydigin | |
Lomaiviticin A | Desferrioxamine E | ||
Lomaiviticin B | Emericellamide B | ||
Lomaiviticin C | Isopimara-8,15-dien-19-ol | ||
Lomaiviticin D | Lovastatin | ||
Lomaiviticin E | N-(3-Oxodecanoyl)-L-homoserine lactone | ||
Mycalamide A | N-(3-oxododecanoyl)-L-homoserine lactone | ||
Pacificanone A | N-(2′-phenylethyl)isobutyramide | ||
Rifamycin SV | N-(2′-phenylethyl)isovaleramide | ||
Rifamycin W | 2-methyl-N-(2′-phenylethyl)butyramide | ||
Salinilactam | Pacificanone B | ||
Salinilactone A | Rifsaliniketal | ||
Salinilactone B | Rifamycin B | ||
Salinilactone D | Rifamycin O | ||
Salinilactone E | Rifamycin S | ||
Salinilactone F | Sal-GBL1 | ||
Salinilactone G | Sal-GBL2 | ||
Salinipostin C | Salinaphthoquinone A | ||
Salinipostin D | Salinaphthoquinone B | ||
Salinipostin F | Salinaphthoquinone C | ||
Salinipostin G | Salinaphthoquinone E | ||
Salinipostin H | Salinichelin A | ||
Salinipostin I | Salinichelin B | ||
Salinipostin K | Salinichelin C | ||
Salinisporamide C | Saliniketal A | ||
Salinisporamide E | Saliniketal B | ||
Salinisporamide F | Salinilactone C | ||
Salinisporamide I | Salinilactone H | ||
Sporolide A | Salinipostin A | ||
Sporolide B | Salinipostin B | ||
Sioxanthin | Salinipostin E | ||
27-O-demethylrifamycin SV | Salinipostin J | ||
27-O-demethyl-25-O-desacetylrifamycin SV | Saliniquinone A | ||
Salinosporamide A | |||
Salinosporamide D | |||
Salinosporamide G | |||
Salinosporamide H | |||
Salinosporamide J | |||
Salinosporamide K |
Top Ligands | Residue Interactions |
---|---|
Cycloaspeptide A | TRP106 ALA107 ASP108 ASN109 CYS111 TYR112 LEU162 GLY163 TYR264 CYS270 GLY271 HIS272 TYR273 ASP286 |
Rifamycin B | TRP106 ALA107 ASN109 ASN110 CYS111 LEU162 THR265 GLN269 CYS270 GLY271 HIS272 LYS274 ASP286 |
Salinaphthoquinone B | TRP106 ALA107 ASN109 ASN110 CYS111 LEU162 GLY163 CYS270 GLY271 HIS272 |
Salinilactam | TRP106 ASN109 LEU162 THR265 GLY266 CYS270 GLY271 HIS272 LYS274 ASP286 |
Salinipostin C | TRP106 ASN109 ASN110 CYS111 TYR112 LEU162 GLY163 TYR264 THR265 CYS270 GLY271 HIS272 TYR273 LYS274 |
Sporolide A | TRP106 ASN109 CYS111 LEU162 CYS270 GLY271 HIS272 |
ProTox-II Predictions | ||||||
---|---|---|---|---|---|---|
Top Ligands | Toxicity Values | Probability | ||||
LD50 (mg/kg) | Toxicity Class | Hepatotoxicity | Carcinogenicity | Immunotoxicity | Mutagenicity | |
Bromosalinosporamide | 2000 | 4 | Inactive | Inactive | Inactive | Inactive |
Cycloaspeptide A | 6000 | 6 | Inactive | Inactive | Active | Inactive |
Lymphostin | 1500 | 4 | Inactive | Active | Inactive | Active |
Neolymphostinol B | 1000 | 4 | Inactive | Inactive | Inactive | Inactive |
Rifamycin B | 3000 | 5 | Inactive | Inactive | Active | Inactive |
Salinaphthoquinone B | 3000 | 5 | Inactive | Inactive | Inactive | Active |
Salinaphthoquinone E | 1000 | 4 | Inactive | Inactive | Active | Inactive |
Salinipostin A | 29 | 2 | Inactive | Active | Active | Inactive |
Salinipostin C | 29 | 2 | Inactive | Active | Active | Inactive |
Saliniquinone F | 450 | 4 | Inactive | Inactive | Active | Active |
Salinosporamide C | 225 | 3 | Inactive | Inactive | Inactive | Inactive |
Salinosporamide I | 2573 | 5 | Inactive | Inactive | Active | Inactive |
Salinilactam | 1000 | 4 | Inactive | Inactive | Active | Inactive |
Sporolide A | 620 | 4 | Inactive | Inactive | Active | Inactive |
StopTox Predictions | |||||
---|---|---|---|---|---|
Top Ligands | Endpoints | ||||
Inhalation | Oral | Dermal | Irritation and Corrosion | Skin Sensitization | |
Bromosalinosporamide | Non-Toxic | Non-Toxic | Non-Toxic | Eyes | Non-Sensitizer |
Cycloaspeptide A | Non-Toxic | Non-Toxic | Non-Toxic | Eyes | Non-Sensitizer |
Lymphostin | Non-Toxic | Non-Toxic | Non-Toxic | Eyes | Non-Sensitizer |
Neolymphostinol B | Non-Toxic | Non-Toxic | Non-Toxic | Eyes | Non-Sensitizer |
Rifamycin B | Non-Toxic | Non-Toxic | Non-Toxic | Eyes | Non-Sensitizer |
Salinaphthoquinone B | Non-Toxic | Non-Toxic | Non-Toxic | Eyes | Non-Sensitizer |
Salinaphthoquinone E | Non-Toxic | Non-Toxic | Non-Toxic | Eyes | Non-Sensitizer |
Salinipostin A | Non-Toxic | Toxic | Toxic | Skin | Sensitizer |
Salinipostin C | Non-Toxic | Toxic | Toxic | Skin | Sensitizer |
Saliniquinone F | Non-Toxic | Non-Toxic | Toxic | Negative | Sensitizer |
Salinosporamide C | Non-Toxic | Toxic | Non-Toxic | Eyes | Non-Sensitizer |
Salinosporamide I | Non-Toxic | Non-Toxic | Non-Toxic | Eyes | Non-Sensitizer |
Salinilactam | Non-Toxic | Non-Toxic | Non-Toxic | Eyes | Non-Sensitizer |
Sporolide A | Non-Toxic | Non-Toxic | Toxic | Negative | Non-Sensitizer |
Drug-Likeness Indications | ||||||
---|---|---|---|---|---|---|
Top Ligands | Mol. Weight (g/mol) MW ≤ 500 | Rotatable Bonds RB ≤ 10 | H Bond Acceptors HBA ≤ 10 | H Bond Donors HBD ≤ 5 | C Log p Log p ≤ 5 | TPSA (Å2) ≤ 140 |
Bromosalinosporamide | 358.23 | 4 | 4 | 2 | 1.86 | 75.63 |
Cycloaspeptide A | 641.76 | 6 | 6 | 4 | 2.7 | 148.15 |
Lymphostin | 310.31 | 4 | 5 | 2 | 1.36 | 110.43 |
Neolymphostinol B | 312.32 | 6 | 5 | 4 | 0.95 | 118.93 |
Rifamycin B | 755.8 | 6 | 14 | 6 | 2.93 | 227.61 |
Salinaphthoquinone B | 325.32 | 1 | 5 | 2 | 1.97 | 110.6 |
Salinaphthoquinone E | 441.47 | 3 | 7 | 2 | 2.09 | 132.99 |
Salinipostin A | 472.59 | 18 | 6 | 0 | 6.65 | 80.87 |
Salinipostin C | 444.54 | 16 | 6 | 0 | 5.95 | 80.87 |
Saliniquinone F | 390.39 | 3 | 6 | 2 | 3.13 | 104.81 |
Salinosporamide C | 283.75 | 2 | 3 | 1 | 1.2 | 57.61 |
Salinosporamide I | 327.8 | 5 | 4 | 2 | 2.05 | 75.63 |
Salinilactam | 469.61 | 0 | 5 | 5 | 2.49 | 110.02 |
Sporolide A | 538.89 | 1 | 12 | 5 | −1 | 184.74 |
Swiss-ADME Output | |||||
---|---|---|---|---|---|
Top Ligands | Water Solubility | Bioavailability | GI Absorption | Absorption (AB%) | BBB Permeant |
Bromosalinosporamide | Soluble | 0.55 | High | 82.90 | No |
Cycloaspeptide A | Poor | 0.17 | Low | 57.88 | No |
Lymphostin | Moderate | 0.56 | High | 70.90 | No |
Neolymphostinol B | Moderate | 0.55 | High | 67.96 | No |
Rifamycin B | Moderate | 0.11 | Low | 30.47 | No |
Salinaphthoquinone B | Moderate | 0.55 | High | 70.84 | No |
Salinaphthoquinone E | Soluble | 0.55 | High | 63.11 | No |
Salinipostin A | Poor | 0.56 | Low | 81.09 | No |
Salinipostin C | Poor | 0.56 | Low | 81.09 | No |
Saliniquinone F | Poor | 0.55 | High | 72.84 | No |
Salinosporamide C | Soluble | 0.55 | High | 89.12 | Yes |
Salinosporamide I | Soluble | 0.55 | High | 82.90 | No |
Salinilactam | Soluble | 0.55 | High | 71.04 | No |
Sporolide A | Soluble | 0.11 | Low | 45.26 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokharkar, O.; Zyryanov, G.V.; Tsurkan, M.V. Natural Products from Marine Actinomycete Genus Salinispora Might Inhibit 3CLpro and PLpro Proteins of SARS-CoV-2: An In Silico Evidence. Microbiol. Res. 2023, 14, 1907-1941. https://doi.org/10.3390/microbiolres14040130
Pokharkar O, Zyryanov GV, Tsurkan MV. Natural Products from Marine Actinomycete Genus Salinispora Might Inhibit 3CLpro and PLpro Proteins of SARS-CoV-2: An In Silico Evidence. Microbiology Research. 2023; 14(4):1907-1941. https://doi.org/10.3390/microbiolres14040130
Chicago/Turabian StylePokharkar, Omkar, Grigory V. Zyryanov, and Mikhail V. Tsurkan. 2023. "Natural Products from Marine Actinomycete Genus Salinispora Might Inhibit 3CLpro and PLpro Proteins of SARS-CoV-2: An In Silico Evidence" Microbiology Research 14, no. 4: 1907-1941. https://doi.org/10.3390/microbiolres14040130
APA StylePokharkar, O., Zyryanov, G. V., & Tsurkan, M. V. (2023). Natural Products from Marine Actinomycete Genus Salinispora Might Inhibit 3CLpro and PLpro Proteins of SARS-CoV-2: An In Silico Evidence. Microbiology Research, 14(4), 1907-1941. https://doi.org/10.3390/microbiolres14040130