The Respiratory Way without Microbial Growth of Paracoccus denitrificans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture Media
2.2. Quantification of Succinate, NO3−, NO2−
2.3. Quantification of N2
3. Results
Effect of Different Ratio C/N
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bueno, E.; Mesa, S.; Bedmar, E.J.; Richardson, D.J.; Delgado, M.J. Bacterial adaptation of respiration from toxic to micro oxic and anoxic conditions: Redox control. Antioxid. Redox Signal. 2012, 16, 819–852. [Google Scholar] [CrossRef] [PubMed]
- Braakman, R.; Smith, E. The compositional and evolutionary logic of metabolism. Phys. Biol. 2012, 10, 011001. [Google Scholar] [CrossRef] [PubMed]
- Jurtshuk, P., Jr. Chapter 4: Bacterial metabolism. In Medical Microbiology; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996; Volume 4, pp. 37–46. [Google Scholar]
- Pepper, I.L.; Gentry, T.J. Chapter 4: Earth Enviroments. In Enviromental Microbiology; Pepper, I.L., Gerba, C.P., Gentry, T.J., Eds.; Academic Press: Cambridge, MA, USA, 2015; Volume 3, pp. 59–88. [Google Scholar]
- Schoepp-Cothenet, B.; van Lis, R.; Atteia, A.; Baymann, F.; Capowiez, L.; Ducluzeau, A.-L.; Duval, S.; Brink, F.T.; Russell, M.J.; Nitschke, W. On the universal core of bioenergetics. Biochim. Biophys. Acta 2013, 1827, 79–93. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, B.B. Bacteria and Marine Biogeochemistry. In Marine Geochemistry; Schulz, H.D., Zabel, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1, pp. 173–207. [Google Scholar]
- Schlesinger, W.H.; Cole, J.J.; Finzi, A.C.; A Holland, E. Introduction to coupled biogeochemical cycles. Front. Ecol. Environ. 2011, 9, 5–8. [Google Scholar] [CrossRef]
- Borch, T.; Kretzschmar, R.; Kappler, A.; Van Cappellen, P.; Ginder-Vogel, M.; Voegelin, A.; Campbell, K. Biogeochemical Redox Processes and their Impact on Contaminant Dynamics. Environ. Sci. Technol. 2009, 44, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Davidson, E.A.; Seitzinger, S. The enigma of progress in denitrification research. Ecol. Appl. 2006, 16, 2057–2063. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, S.J. Denitrification and its control. Antonie Leeuwenhoek 1994, 66, 89–110. [Google Scholar] [CrossRef] [PubMed]
- I Hochstein, L.; A Tomlinson, G. The enzymes associated with denitrification. Annu. Rev. Microbiol. 1988, 42, 231–261. [Google Scholar] [CrossRef]
- Bergaust, L.; Mao, Y.; Bakken, L.R.; Frostegård, A. Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrogen oxide reductase in Paracoccus denitrificans. Appl. Environ. Microbiol. 2010, 76, 6387–6396. [Google Scholar] [CrossRef]
- Bergaust, L.; Shapleigh, J.; Frostegård, Å.; Bakken, L. Transcription and activities of NOx reductases in Agrobacterium tumefaciens: The influence of nitrate, nitrite and oxygen availability. Environ. Microbiol. 2008, 10, 3070–3081. [Google Scholar] [CrossRef]
- Jia, Y.; Zhou, M.; Chen, Y.; Luo, J.; Hu, Y. Carbon selection for nitrogen degradation pathway by Stenotrophomonas maltophilia: Based on the balances of nitrogen, carbon and electron. Bioresour. Technol. 2019, 294, 122114. [Google Scholar] [CrossRef] [PubMed]
- Sobieszuk, P.; Szewczyk, K.W. Estimation of (C/N) ratio for microbial denitrification. Environ. Technol. 2006, 27, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Irvin, S. The roles of nitrogen dissimilation and assimilation in biological nitrogen removal treating low, mid, and high strength wastewater. J. Environ. Eng. Sci. 2007, 6, 483–490. [Google Scholar] [CrossRef]
- Zheng, L.; Dong, Y.; Li, B.; Yin, T.; Liu, C.; Lin, H. Simultaneous removal of high concentrations of ammonia nitrogen and calcium by the novel strain Paracoccus denitrificans AC-3 with good environmental adaptability. Bioresour. Technol. 2022, 359, 127457. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Lu, W.; Liu, Y.; Wang, J.; Zhou, S.; Mao, Y.; Li, G.; Deng, Y. Efficient total nitrogen removal from wastewater by Paracoccus. denitrificans DYTN-1. Lett. Appl. Microbiol. 2019, 70, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Medhi, K.; Gupta, A.; Thakur, I.S. Biological nitrogen removal from wastewater by Paracoccus denitrificans ISTOD1: Optimization of process parameters using response surface methodology. J. Energy Environ. Sustain. 2018, 5, 41–48. [Google Scholar] [CrossRef]
- Covian, R.; Edwards, L.; He, Y.; Kim, G.; Houghton, C.; Levine, R.L.; Balaban, R.S. Energy homeostasis is a conserved process: Evidence from Paracoccus denitrificans’ response to acute changes in energy demand. PLoS ONE 2021, 16, e0259636. [Google Scholar] [CrossRef] [PubMed]
- Olaya-Abril, A.; Hidalgo-Carrillo, J.; Luque-Almagro, V.M.; Fuentes-Almagro, C.; Urbano, F.J.; Moreno-Vivián, C.; Richardson, D.J.; Roldán, M.D. Exploring the denitrification proteome of Paracoccus denitrificans PD1222. Front. Microbiol. 2018, 9, 1137. [Google Scholar] [CrossRef]
- John, P.; Whatley, F.R. Paracoccus denitrificans and the evolutionary origin of the mitochondrion. Nature 1975, 254, 495–498. [Google Scholar] [CrossRef]
- Sousa, F.L.; Thiergart, T.; Landan, G.; Nelson-Sathi, S.; Pereira, I.A.; Allen, J.F.; Lane, N.; Martin, W.F. Early bioenergetic evolution. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130088. [Google Scholar] [CrossRef]
- Olaya-Abril, A.; Luque-Almagro, V.M.; Manso, I.; Gates, A.J.; Moreno-Vivián, C.; Richardson, D.J.; Roldán, M.D. Poly(3-hydroxybutyrate) hyperproduction by a global nitrogen regulator NtrB mutant strain of Paracoccus denitrificans PD1222. FEMS Microbiol. Lett. 2017, 365, fnx251. [Google Scholar] [CrossRef] [PubMed]
- Spohn, M. Microbial respiration per unit microbial biomass depends on litter layer carbon-to-nitrogen ratio. Biogeosciences 2015, 12, 817–823. [Google Scholar] [CrossRef]
- Gupta, R.; Gupta, N. Alternate tricarboxylic acid cycle. In Fundamentals of Bacterial Physiology and Metabolism; Springer Science and Business Media LLC: Dordrecht, The Netherlands, 2021; ISBN 9789811607226. [Google Scholar]
- Sparacino-Watkins, C.; Stolz, J.F.; Basu, P. Nitrate and periplasmic nitrate reductases. Chem. Soc. Rev. 2013, 43, 676–706. [Google Scholar] [CrossRef] [PubMed]
- Kucera, I.; Dadak, V.; Dobry, R. The distribution of redox equivalents in the anaerobic respiratory chain of Paracoccus denitrificans. JBIC J. Biol. Inorg. Chem. 1983, 130, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Van Spanning, R.J.M.; de Boer, A.P.N.; Reijnders, W.N.M.; De Gier, J.-W.L.; Delorme, C.O.; Stouthamer, A.H.; Westerhoff, H.V.; Harms, N.; van der Oost, J. Regulation of oxidative phosphorylation: The flexible respiratory network of Paracoccus denitrificans. J. Bioenerg. Biomembr. 1995, 27, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Stouthamer, A.H.; Boogerd, F.C.; van Verseveld, H.W. The bioenergetics of denitrification. Antonie Leeuwenhoek 1983, 48, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Kucera, I.; Lampardová, L.; Dadák, V. Control of respiration rate in non-growing cells of Paracoccus. denitrificans. Biochem. J. 1987, 246, 779–782. [Google Scholar] [CrossRef]
Modification at C/N of 1.34 |
---|
C4H4Na2O4·6 H2O (50 mg Succ-C/L) |
NaNO3 (37.12 mg NO3-N/L) |
CaCl2 (6.8 mM) |
Na2MoO4·2H2O (12 µM) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-Vargas, M.; Portillo-Torres, L.A.; Mercado-Flores, Y.; Ramírez-Vargas, M.d.R.; Cadena-Ramírez, A. The Respiratory Way without Microbial Growth of Paracoccus denitrificans. Microbiol. Res. 2023, 14, 1834-1842. https://doi.org/10.3390/microbiolres14040125
Alonso-Vargas M, Portillo-Torres LA, Mercado-Flores Y, Ramírez-Vargas MdR, Cadena-Ramírez A. The Respiratory Way without Microbial Growth of Paracoccus denitrificans. Microbiology Research. 2023; 14(4):1834-1842. https://doi.org/10.3390/microbiolres14040125
Chicago/Turabian StyleAlonso-Vargas, Monserrat, Lizbeth Anahí Portillo-Torres, Yuridia Mercado-Flores, María del Rocío Ramírez-Vargas, and Arturo Cadena-Ramírez. 2023. "The Respiratory Way without Microbial Growth of Paracoccus denitrificans" Microbiology Research 14, no. 4: 1834-1842. https://doi.org/10.3390/microbiolres14040125
APA StyleAlonso-Vargas, M., Portillo-Torres, L. A., Mercado-Flores, Y., Ramírez-Vargas, M. d. R., & Cadena-Ramírez, A. (2023). The Respiratory Way without Microbial Growth of Paracoccus denitrificans. Microbiology Research, 14(4), 1834-1842. https://doi.org/10.3390/microbiolres14040125