Antibiotic-Resistant Bacteria in Environmental Water Sources from Southern Chile: A Potential Threat to Human Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Bacterial Isolation and Preservation
2.3. Identification of GNB
2.4. Antibiotic Susceptibility Testing
2.5. Molecular Detection of Antibiotic-Resistance Genes (ARGs)
3. Results
3.1. Distribution and Prevalence of GNB from Environmental Surface Waters
3.2. Resistance Profile of Environmental GNB
3.3. Colistin and β-Lactam Resistance Genes in Environmental GNB
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Despotovic, M.; De Nies, L.; Busi, S.B.; Wilmes, P. Reservoirs of antimicrobial resistance in the context of One Health. Curr. Opin. Microbiol. 2023, 73, 102291. [Google Scholar] [CrossRef] [PubMed]
- Fursova, N.K.; Kislichkina, A.A.; Khokhlova, O.E. Plasmids Carrying Antimicrobial Resistance Genes in Gram-Negative Bacteria. Microorganisms 2022, 10, 1678. [Google Scholar] [CrossRef] [PubMed]
- WHO, World Health Organization. Thirteenth General Programme of Work. 2019. Available online: www.iniscommunication.com (accessed on 5 June 2023).
- Von Wintersdorff, C.J.; Penders, J.; Van Niekerk, J.M.; Mills, N.D.; Majumder, S.; Van Alphen, L.B.; Savelkoul, P.H.M.; Wolffs, P.F.G. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Front. Microbiol. 2016, 7, 173. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Thomsen, L.E.; Olsen, J.E. Antimicrobial-induced horizontal transfer of antimicrobial resistance genes in bacteria: A mini-review. J. Antimicrob. Chemother. 2022, 77, 556–567. [Google Scholar] [CrossRef]
- Kelly, A.M.; Mathema, B.; Larson, E.L. Carbapenem-resistant Enterobacteriaceae in the community: A scoping review. Int. J. Antimicrob. Agents 2017, 50, 127–134. [Google Scholar] [CrossRef]
- Olaitan, A.O.; Morand, S.; Rolain, J.M. Mechanisms of polymyxin resistance: Acquired and intrinsic resistance in bacteria. Front. Microbiol. 2014, 5, 1–18. [Google Scholar] [CrossRef]
- Gutiérrez, C.; Zenis, J.; Legarraga, P.; Cabrera-Pardo, J.R.; García, P.; Bello-Toledo, H.; Opazo-Capurro, A.; González-Rocha, G. Genetic analysis of the first mcr-1 positive Escherichia coli isolate collected from an outpatient in Chile. Braz. J. Infect. Dis. 2019, 23, 203–206. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Wang, J.; Yassin, A.K.; Butaye, P.; Kelly, P.; Gong, J.; Guo, W.; Li, J.; Li, M.; et al. Molecular detection of colistin resistance genes (mcr-1, mcr-2 and mcr-3) in nasal/oropharyngeal and anal/cloacal swabs from pigs and poultry. Sci. Rep. 2018, 8, 3705. [Google Scholar] [CrossRef]
- Hernando-Amado, S.; Coque, T.M.; Baquero, F.; Martínez, J.L. Defining and combating antibiotic resistance from one health and global health perspectives. Nat. Microbiol. 2019, 4, 1432–1442. [Google Scholar] [CrossRef]
- Surleac, M.; Czobor Barbu, I.; Paraschiv, S.; Popa, L.I.; Gheorghe, I.; Marutescu, L.; Popa, M.; Sarbu, I.; Talapan, D.; Nita, M.; et al. Whole genome sequencing snapshot of multi-drug resistant Klebsiella pneumoniae strains from hospitals and receiving wastewater treatment plants in Southern Romania. PLoS ONE 2020, 15, e0228079. [Google Scholar] [CrossRef] [PubMed]
- Mulchandani, R.; Wang, Y.; Gilbert, M.; Van Boeckel, T.P. Global trends in antimicrobial use in food-producing animals: 2020 to 2030. PLoS Glob. Public Health 2023, 3, e0001305. [Google Scholar] [CrossRef] [PubMed]
- Fresia, P.; Antelo, V.; Salazar, C.; Giménez, M.; D’Alessandro, B.; Afshinnekoo, E.; Mason, C.; Gonnet, G.H.; Iraola, G. Urban metagenomics uncover antibiotic resistance reservoirs in coastal beach and sewage waters. Microbiome 2019, 7, 35. [Google Scholar] [CrossRef]
- Bueno, I.; Verdugo, C.; Jimenez-Lopez, O.; Alvarez, P.P.; Gonzalez-Rocha, G.; Lima, C.A.; Travis, D.A.; Wass, B.; Zhang, Q.; Ishii, S.; et al. Role of wastewater treatment plants on environmental abundance of Antimicrobial Resistance Genes in Chilean rivers. Int. J. Hyg. Environ. Health 2020, 223, 56–64. [Google Scholar] [CrossRef]
- Amos, G.C.; Zhang, L.; Hawkey, P.M.; Gaze, W.H.; Wellington, E.M. Functional metagenomic analysis reveals rivers are a reservoir for diverse antibiotic resistance genes. Vet. Microbiol. 2014, 171, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Gavidia, C.; Barría, C.; Rivas, L.; García, P.; Alvarez, F.P.; González-Rocha, G.; Opazo-Capurro, A.; Araos, R.; Munita, J.M.; Cortes, S.; et al. Isolation of Ciprofloxacin and Ceftazidime Resistant Enterobacterales from Vegetables and River Water Is Strongly Associated with the Season and the Sample Type. Front. Microbiol. 2021, 12, 604567. [Google Scholar] [CrossRef]
- CLSI, Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022. [Google Scholar]
- Jofré, M.; Barrera, B.; Silva, F.; Berrocal, L. Evaluation of sensidiscs elution for the determination of susceptibility to colistin in multi-resistant gram-negative bacilli. Rev. Chil. Infectol. 2020, 37, 87–88. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Rebelo, A.R.; Bortolaia, V.; Kjelgaard, J.; Pedersen, S.; Leekitcharoenphon, P.; Hansen, I.M.; Guerra, B.; Malorny, B.; Borowiak, M.; Hammerl, J.A.; et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Euro Surveill. 2018, 23, 1560–7917. [Google Scholar] [CrossRef]
- Salgado-Caxito, M.; Benavides, J.A.; Munita, J.M.; Rivas, L.; García, P.; Listoni, F.J.; Moreno-Switt, A.I.; Paes, A.C. Risk factors associated with faecal carriage of extended-spectrum cephalosporin-resistant Escherichia coli among dogs in Southeast Brazil. Prev. Vet. Med. 2021, 190, 105316. [Google Scholar] [CrossRef]
- Poirel, L.; Berçot, B.; Millemann, Y.; Bonnin, R.A.; Pannaux, G.; Nordmann, P. Carbapenemase-producing Acinetobacter spp. in cattle, France. Emerg. Infect. Dis. 2012, 18, 523–525. [Google Scholar] [CrossRef]
- Shin, H.; Kim, Y.; Han, S.; Hur, H.G. Resistome Study in Aquatic Environments. J. Microbiol. Biotechnol. 2023, 33, 277–287. [Google Scholar] [CrossRef]
- Mathlouthi, N.; Al-Bayssari, C.; Bakour, S.; Rolain, J.M.; Chouchani, C. Prevalence and emergence of carbapenemases-producing Gram-negative bacteria in Mediterranean basin. Crit. Rev. Microbiol. 2017, 43, 43–61. [Google Scholar] [CrossRef] [PubMed]
- Lupo, A.; Haenni, M.; Madec, J.Y. Antimicrobial Resistance in Acinetobacter spp. and Pseudomonas spp. Microbiol. Spectr. 2018, 6, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Brooke, J.S. Advances in the Microbiology of Stenotrophomonas maltophilia. Clin. Microbiol. Rev. 2021, 34, e0003019. [Google Scholar] [CrossRef] [PubMed]
- Breidenstein, E.B.; De la Fuente-Núñez, C.; Hancock, R.E. Pseudomonas aeruginosa: All roads lead to resistance. Trends Microbiol. 2011, 19, 419–426. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, Z.; Li, J.; Lei, L.; Yin, W.; Li, M.; Wu, C.; Walsh, T.R.; Wang, Y.; Wang, S.; et al. Presence of VIM-positive Pseudomonas species in chickens and their surrounding environment. Antimicrob. Agents Chemother. 2017, 61, e00167-17. [Google Scholar] [CrossRef]
- Fariñas, M.C.; Martínez-Martínez, L. Multiresistant Gram-negative bacterial infections: Enterobacteria, Pseudomonas aeruginosa, Acinetobacter baumannii and other non-fermenting Gram-negative bacilli. Enferm. Infecc. Microbiol. Clin. 2013, 31, 402–409. [Google Scholar] [CrossRef]
- Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas aeruginosa: Pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct. Target. Ther. 2022, 7, 199. [Google Scholar] [CrossRef]
- Remuzgo-Martínez, S.; Lázaro-Díez, M.; Mayer, C.; Aranzamendi-Zaldumbide, M.; Padilla, D.; Calvo, J.; Marco, F.; Martínez-Martínez, L.; Icardo, J.M.; Otero, A.; et al. Biofilm Formation and Quorum-Sensing-Molecule Production by Clinical Isolates of Serratia liquefaciens. Appl. Environ. Microbiol. 2015, 81, 3306–3315. [Google Scholar] [CrossRef]
- Koczura, R.; Mokracka, J.; Makowska, N. Environmental Isolate of Rahnella aquatilis Harbors Class 1 Integron. Curr. Microbiol. 2016, 72, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Song, Y.; Park, S.Y.; Kim, M.J. Bacteremia due to Rahnella aquatilis in a Patient with a Chemoport. Infect. Chemother. 2019, 51, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Guevarra, R.B.; Magez, S.; Peeters, E.; Chung, M.S.; Kim, K.H.; Radwanska, M. Comprehensive genomic analysis reveals virulence factors and antibiotic resistance genes in Pantoea agglomerans KM1, a potential opportunistic pathogen. PLoS ONE 2021, 16, e0239792. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira DM, P.; Forde, B.M.; Kidd, T.J.; Harris PN, A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef] [PubMed]
- Ruppé, É.; Woerther, P.L.; Barbier, F. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann. Intensive Care 2015, 5, 61. [Google Scholar] [CrossRef]
- Stachurová, T.; Piková, H.; Bartas, M.; Semerád, J.; Svobodová, K.; Malachová, K. Beta-lactam resistance development during the treatment processes of municipal wastewater treatment plants. Chemosphere 2021, 280, 130749. [Google Scholar] [CrossRef]
- Laborda, P.; Hernando-Amado, S.; Martínez, J.L.; Sanz-García, F. Antibiotic Resistance in Pseudomonas. Adv. Exp. Med. Biol. 2022, 1386, 117–143. [Google Scholar] [CrossRef]
- Said, B.L.; Jouini, A.; Klibi, N.; Dziri, R.; Alonso, C.A.; Boudabous, A.; Ben Slama, K.; Torres, C. Detection of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in vegetables, soil and water of the farm environment in Tunisia. Int. J. Food Microbiol. 2015, 203, 86–92. [Google Scholar] [CrossRef]
- Caltagirone, M.; Nucleo, E.; Spalla, M.; Zara, F.; Novazzi, F.; Marchetti, V.M.; Piazza, A.; Bitar, I.; De Cicco, M.; Paolucci, S.; et al. Occurrence of extended spectrum β-lactamases, KPC-type, and MCR-1.2-producing Enterobacteriaceae from wells, river water, and wastewater treatment plants in Oltrepò Pavese area, northern Italy. Front. Microbiol. 2017, 8, 2232. [Google Scholar] [CrossRef]
- Marcelino, V.R.; Wille, M.; Hurt, A.C.; González-Acuña, D.; Klaassen, M.; Schlub, T.E.; Eden, J.-S.; Shi, M.; Iredell, J.R.; Sorrell, T.C.; et al. Meta-transcriptomics reveals a diverse antibiotic resistance gene pool in avian microbiomes. BMC Biol. 2019, 17, 31. [Google Scholar] [CrossRef]
- Benavides, J.A.; Salgado-Caxito, M.; Opazo-Capurro, A.; González Muñoz, P.; Piñeiro, A.; Otto Medina, M.; Rivas, L.; Munita, J.; Millán, J. ESBL-producing Escherichia coli carrying CTX-M genes circulating among livestock, dogs, and wild mammals in small-scale farms of Central Chile. Antibiotics 2021, 10, 510. [Google Scholar] [CrossRef] [PubMed]
- Cevidanes, A.; Esperón, F.; Cataldo SDi Neves, E.; Sallaberry-Pincheira, N.; Millán, J. Antimicrobial resistance genes in Andean foxes inhabiting anthropized landscapes in Central Chile. Sci. Total Environ. 2020, 724, 138247. [Google Scholar] [CrossRef] [PubMed]
- Sacristán, I.; Esperón, F.; Acuña, F.; Aguilar, E.; García, S.; López, M.J.; Cevidanes, A.; Neves, E.; Cabello, J.; Hidalgo-Hermoso, E.; et al. Antibiotic resistance genes as landscape anthropization indicators: Using a wild felid as sentinel in Chile. Sci. Total Environ. 2020, 703, 134900. [Google Scholar] [CrossRef]
- Raphael, E.; Riley, L.W. Infections Caused by Antimicrobial Drug-Resistant Saprophytic Gram-Negative Bacteria in the Environment. Front. Med. 2017, 4, 183. [Google Scholar] [CrossRef] [PubMed]
- Nappier, S.P.; Liguori, K.; Ichida, A.M.; Stewart, J.R.; Jones, K.R. Antibiotic Resistance in Recreational Waters: State of the Science. Int. J. Environ. Res. Public. Health 2020, 17, 8034. [Google Scholar] [CrossRef]
- Delgado-Gardea, M.C.; Tamez-Guerra, P.; Gomez-Flores, R.; Zavala-Díaz de la Serna, F.J.; Eroza-de la Vega, G.; Nevárez-Moorillón, G.V.; Pérez-Recoder, M.C.; Sánchez-Ramírez, B.; González-Horta, M.D.C.; Infante-Ramírez, R. Multidrug-Resistant Bacteria Isolated from Surface Water in Bassaseachic Falls National Park, Mexico. Int. J. Environ. Res. Public. Health 2016, 13, 597. [Google Scholar] [CrossRef]
- Franklin, A.M.; Brinkman, N.E.; Jahne, M.A.; Keely, S.P. Twenty-first century molecular methods for analyzing antimicrobial resistance in surface waters to support One Health assessments. J. Microbiol. Methods 2021, 184, 106174. [Google Scholar] [CrossRef]
- Hubeny, J.; Korzeniewska, E.; Ciesielski, S.; Płaza, G.; Harnisz, M. The Resistome of ESKAPEE Pathogens in Untreated and Treated Wastewater: A Polish Case Study. Biomolecules 2022, 12, 1160. [Google Scholar] [CrossRef]
N° Correlative Water Sample | Origin of Sample | Sampling Location | Region | Latitude | Longitude | Growth in Blood Agar | Growth in MacConkey Agar | Re-Isolated Strains Name |
---|---|---|---|---|---|---|---|---|
1 | Cachapoal river | Doñihue, Chile | 6th | −34.217.836 | −70.892.976 | yes | yes | 1.4–1.5 |
2 | Cachapoal river | Doñihue, Chile | 6th | −34.214.474 | −70.896.846 | yes | yes | 2.1–2.2 |
3 | Cachapoal river | Doñihue, Chile | 6th | −34.213.610 | −70.906.275 | yes | yes | 3.1–3.2 |
4 | Cachapoal river | Doñihue, Chile | 6th | −34.229.342 | −70.938.954 | yes | yes | 4.2 |
5 | Ñuble river | San Nicolás, Chile | 8th | −36.550.236 | −72.094.312 | yes | none | none |
6 | Cachapoal river | Doñihue, Chile | 6th | −34.211.686 | −70.873.574 | yes | yes | 6.2 |
7 | Cachapoal river | Doñihue, Chile | 6th | −34.209.675 | −70.861.052 | yes | yes | 7.1–7.2 |
8 | Bellavista waterfall | Pucón, Chile | 9th | −39.219.463 | −71.844.840 | none | none | none |
9 | Coñaripe watershed | Coñaripe, Chile | 14th | −39.582.347 | −72.025.156 | yes | yes | 9.1–9.2 |
10 | Calafquen lake | Licán Ray, Chile | 9th | −39.492.032 | −72.161.685 | yes | yes | 10.2 |
11 | Voipir river | Villarrica, Chile | 9th | −39.280.841 | −72.306.407 | yes | none | none |
12 | Bío-Bío river | San Carlos de Purén, Chile | 8th | −37.599.828 | −72.274.804 | yes | yes | 12.1 |
13 | Ñuble river | San Nicolás, Chile | 8th | −36.551.936 | −72.090.913 | yes | yes | 13.1–13.2 |
14 | Bío-Bío river | San Carlos de Purén, Chile | 8th | −37.603.116 | −72.268.453 | yes | yes | none |
15 | Ñuble river | San Nicolás, Chile | 8th | −36.548.835 | −72.096.363 | yes | yes | 15.1–15.2 |
16 | Mulchen-Bureo river | Mulchén, Chile | 8th | −37.719.543 | −72.260.213 | yes | yes | none |
17 | Caburgua lake | Caburgua, Chile | 9th | −39.193.653 | −71.796.384 | yes | yes | 17.1–17.2–17.3 |
18 | Calafquen lake | Coñaripe, Chile | 14th | −39.565.623 | −72.019.635 | yes | yes | 18.1–18.2 |
19 | Villarrica lake | Villarrica, Chile | 9th | −39.275.456 | −72.227.820 | yes | yes | 19.1–19.2–19.3 |
20 | Caburgua lagoon | Pucón, Chile | 9th | −39.240.204 | −71.831.649 | yes | none | none |
21 | Villarrica lake | Villarrica, Chile | 9th | −39.283.296 | −72.207.432 | yes | none | none |
Strain | Identification | Resistance Profile | BLEE Genes |
---|---|---|---|
1.4 | Pseudomonas aeruginosa/fluorescens/putida/mosselli | AMP–CFZ–FEP–COL | NF |
1.5 | Pseudomonas aeruginosa/fluorescens/putida/mosselli | AMP–CFZ–FEP–COL | NF |
2.1 | Pseudomonas aeruginosa/fluorescens/putida/mosselli | AMP–CFZ–COL | NF |
2.2 | Pseudomonas aeruginosa/fluorescens/putida/mosselli | AMP–CFZ–MEM–COL | NF |
3.1 | Comamonas aquatica | CIP | NF |
3.2 | Enterobacter cloacae | AMP–CFZ–CAZ–FEP–IPM–MEM–CIP | blaCTX–M–blaTEM |
4.2 | Pseudomonas aeruginosa/fluorescens/putida/mosselli | AMP–CFZ–COL | NF |
6.2 | Pseudomonas aeruginosa/fluorescens/putida/mosselli | AMP–CFZ | NF |
7.1 | Acinetobacter pittii/calcoaceticus/haemolyticus | AMP–CFZ–COL | NF |
7.2 | Acinetobacter pittii/calcoaceticus/haemolyticus | AMP–CFZ–COL | NF |
9.1 | Acinetobacter pittii/calcoaceticus/haemolyticus | AMP–CFZ–CAZ | blaTEM |
9.2 | Rahnella aquatilis | AMP–CFZ | NF |
10.2 | Pseudomonas aeruginosa/fluorescens/putida/mosselli | AMP–CFZ | NF |
12.1 | Stenotrophomonas maltophilia | AMP–CFZ–CAZ–FEP | NF |
13.1 | Pantoea agglomerans | AMP–CFZ–FEP | blaCTX–M |
13.2 | Pseudomonas aeruginosa/fluorescens/putida/mosselli | AMP–CFZ | NF |
15.1 | Stenotrophomonas maltophilia | AMP–CFZ | NF |
15.2 | Pseudomonas aeruginosa/fluorescens/putida/mosselli | AMP–CFZ | NF |
17.1 | Acinetobacter pittii/calcoaceticus/haemolyticus | AMP–CFZ–CAZ | NF |
17.2 | Stenotrophomonas maltophilia | AMP–CFZ–CAZ | NF |
17.3 | Acinetobacter pittii/calcoaceticus/haemolyticus | AMP–CFZ–FEP–COL | NF |
18.1 | Acinetobacter pittii/calcoaceticus/haemolyticus | AMP–CFZ–CAZ | NF |
18.2 | Acinetobacter pittii/calcoaceticus/haemolyticus | AMP–CFZ–MEM–COL | NF |
19.1 | Enterobacter cloacae | AMP–CFZ–CAZ–FEP–IPM–MEM–CIP | blaCTX–M–blaTEM |
19.2 | Rahnella aquatilis | AMP–CFZ–FEP | NF |
19.3 | Serratia marcescens | AMP–CFZ–FEP–COL | NF |
Resistance Phenotype | % (Frequency) |
---|---|
Ampicillin | 96.2% (25/26) |
Cefazoline | 96.2% (25/26) |
Ceftazidime | 26.9% (7/26) |
Cefepime | 34.6% (9/26) |
Imipenem | 7.7% (2/26) |
Meropenem | 15.4% (4/26) |
Ciprofloxacin | 11.5% (3/26) |
Colistin | 38.5% (10/26) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jofré Bartholin, M.; Barrera Vega, B.; Berrocal Silva, L. Antibiotic-Resistant Bacteria in Environmental Water Sources from Southern Chile: A Potential Threat to Human Health. Microbiol. Res. 2023, 14, 1764-1773. https://doi.org/10.3390/microbiolres14040121
Jofré Bartholin M, Barrera Vega B, Berrocal Silva L. Antibiotic-Resistant Bacteria in Environmental Water Sources from Southern Chile: A Potential Threat to Human Health. Microbiology Research. 2023; 14(4):1764-1773. https://doi.org/10.3390/microbiolres14040121
Chicago/Turabian StyleJofré Bartholin, Matías, Boris Barrera Vega, and Liliana Berrocal Silva. 2023. "Antibiotic-Resistant Bacteria in Environmental Water Sources from Southern Chile: A Potential Threat to Human Health" Microbiology Research 14, no. 4: 1764-1773. https://doi.org/10.3390/microbiolres14040121
APA StyleJofré Bartholin, M., Barrera Vega, B., & Berrocal Silva, L. (2023). Antibiotic-Resistant Bacteria in Environmental Water Sources from Southern Chile: A Potential Threat to Human Health. Microbiology Research, 14(4), 1764-1773. https://doi.org/10.3390/microbiolres14040121