Impact of Temperature on the Bioactive Compound Content of Aqueous Extracts of Humulus lupulus L. with Different Alpha and Beta Acid Content: A New Potential Antifungal Alternative
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microorganism
2.3. Aqueous Extract of H. lupulus L.
2.4. Aqueous Extract of H. lupulus L. at Different Temperatures
2.5. Antifungal Activity of Aqueous Extracts In Vitro
2.6. Determination of Total Phenols
2.7. Determination of Total Flavonoids
2.8. Fourier Transform Infrared (FTIR)
2.9. Statistical Analysis
Optimization Experimental Design
3. Results
3.1. Effect of Temperature on the Antifungal Activity of Hop Extracts
3.2. Effect of Temperature on Bioactive Compounds
3.3. Fourier Transform Infrared (FTIR)
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meena, M.; Swapnil, P.; Zehra, A.; Dubey, M.K.; Upadhyay, R.S. Antagonistic assessment of Trichoderma spp. by producing volatile and non-volatile compounds against different fungal pathogens. Arch. Phytopathol. Plant Prot. 2017, 50, 629–648. [Google Scholar] [CrossRef]
- Naseri, B.; Younesi, H. Beneficial microbes in biocontrol of root rots in bean crops: A meta-analysis (1990–2020). Physiol. Mol. Plant Pathol. 2021, 116, 101712. [Google Scholar] [CrossRef]
- Kheyri, F.; Taheri, P. The role of biological and chemical inducers in activating bean defense responses against Rhizoctonia solani. Physiol. Mol. Plant Pathol. 2021, 116, 101718. [Google Scholar] [CrossRef]
- Kabbage, M.; Yarden, O.; Dickman, M.B. Pathogenic attributes of Sclerotinia sclerotiorum: Switching from a biotrophic to necrotrophic lifestyle. Plant Sci. 2015, 233, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Tralamazza, S.M.; Piacentini, K.C.; Iwase, C.H.T.; de Oliveira Rocha, L. Toxigenic Alternaria species: Impact in cereals world-wide. Curr. Opin. Food Sci. 2018, 23, 57–63. [Google Scholar] [CrossRef]
- Zuriegat, Q.; Zheng, Y.; Liu, H.; Wang, Z.; Yun, Y. Current progress on pathogenicity-related transcription factors in Fusarium oxysporum. Mol. Plant Pathol. 2021, 22, 882–895. [Google Scholar] [CrossRef]
- Peters, R.; Drake, K.; Gudmestad, N.; Pasche, J.; Shinners-Carnelley, T. First report of reduced sensitivity to a QoI fungicide in isolates of Alternaria solani causing early blight of potato in Canada. Plant Dis. 2008, 92, 1707. [Google Scholar] [CrossRef]
- Jackson-Davis, A.; White, S.; Kassama, L.; Coleman, S.; Shaw, A.; Mendonca, A.; Cooper, B.; Thomas-Popo, E.; Gordon, K.; London, L. A Review of Regulatory Standards and Advances in Essential Oils as Antimicrobials in Foods. J. Food Prot. 2023, 86, 100025. [Google Scholar] [CrossRef]
- Da Silva, R.F.; Carneiro, C.N.; de Sousa, C.B.D.C.; Gomez, F.J.; Espino, M.; Boiteux, J.; Fernández, M.D.L.; Silva, M.F.; Dias, F.D.S. Sustainable extraction bioactive compounds procedures in medicinal Plants based on the principles of Green Analytical Chemistry: A review. Microchem. J. 2022, 175, 107184. [Google Scholar] [CrossRef]
- González-Salitre, L.; González-Olivares, L.G.; Basilio-Cortes, U.A. Humulus lupulus L. a potential precursor to human health: High hops craft beer. Food Chem. 2023, 405, 134959. [Google Scholar] [CrossRef]
- El Khetabi, A.; Lahlali, R.; Ezrari, S.; Radouane, N.; Nadia, L.; Banani, H.; Askarned, L.; Tahiria, A.; El Ghadraouib, L.; Belmalha, S.; et al. Role of plant extracts and essential oils in fighting against postharvest fruit pathogens and extending fruit shelf life: A review. Trends Food Sci. Technol. 2022, 120, 402–417. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Verni, M.; Bordignon, S.; Gramaglia, V.; Gobbetti, M. Hydrolysate from a mixture of legume flours with anti-fungal activity as an ingredient for prolonging the shelf-life of wheat bread. Food Microbiol. 2017, 64, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Oroian, M.; Ursachi, F.; Dranca, F. Influence of ultrasonic amplitude, temperature, time and solvent concentration on bioactive compounds extraction from propolis. Ultrason. Sonochem. 2020, 64, 105021. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, A.A.; Đorđević, V.B.; Zdunić, G.M.; Pljevljakušić, D.S.; Šavikin, K.P.; Gođevac, D.M.; Bugarski, B.M. Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat-and ultrasound-assisted techniques. Sep. Purif. Technol. 2017, 179, 369–380. [Google Scholar] [CrossRef]
- Jakubiec-Krzesniak, K.; Rajnisz-Mateusiak, A.; Guspiel, A.; Ziemska, J.; Solecka, J. Secondary metabolites of actinomycetes and their antibacterial, antifungal and antiviral properties. Pol. J. Microbiol. 2018, 67, 259. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; He, D.; Wang, L. Advances in Fusarium drug resistance research. J. Global Antimicrob. Resist. 2021, 24, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Oladokun, O.; Tarrega, A.; James, S.; Smart, K.; Hort, J.; Cook, D. The impact of hop bitter acid and polyphenol profiles on the perceived bitterness of beer. Food Chem. 2016, 205, 212–220. [Google Scholar] [CrossRef]
- Arruda, T.R.; Pinheiro, P.F.; Silva, P.I.; Bernardes, P.C. A new perspective of a well-recognized raw material: Phenolic content, antioxidant and antimicrobial activities and α-and β-acids profile of Brazilian hop (Humulus lupulus L.) extracts. LWT 2021, 141, 110905. [Google Scholar] [CrossRef]
- Bogdanova, K.; Röderova, M.; Kolar, M.; Langova, K.; Dusek, M.; Jost, P.; Kubelkova, K.; Bostik, P.; Olsovska, J. Antibiofilm activity of bioactive hop compounds humulone, lupulone and xanthohumol toward susceptible and resistant staphylococci. Res. Microbiol. 2018, 169, 127–134. [Google Scholar] [CrossRef]
- Bocquet, L.; Rivière, C.; Dermont, C.; Samaillie, J.; Hilbert, J.L.; Halama, P.; Siah, A.; Sahpaz, S. Antifungal activity of hop extracts and compounds against the wheat pathogen Zymoseptoria tritici. Ind. Crops Prod. 2018, 22, 290–297. [Google Scholar] [CrossRef]
- Nionelli, L.; Pontonio, E.; Gobbetti, M.; Rizzello, C.G. Use of hop extract as antifungal ingredient for bread making and selection of autochthonous resistant starters for sourdough fermentation. Int. J. Food Microbiol. 2018, 266, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.R.; Maciel, M.V.O.B.; Machado, M.H.; Bazzo, G.C.; Armas, R.D.; Vitorino, V.B.; Vitali, L.; Block, J.M.; Manique, P.L. Bioactive compounds and antioxidant activities of Brazilian hop (Humulus lupulus L.) extracts. Int. J. Food Sci. Technol. 2020, 55, 340–347. [Google Scholar] [CrossRef]
- Masek, A.; Chrzescijanska, E.; Kosmalska, A.; Zaborski, M. Characteristics of compounds in hops using cyclic voltammetry, UV–VIS, FTIR and GC–MS analysis. Food Chem. 2014, 156, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Česlová, L.; Holčapek, M.; Fidler, M.; Drštičková, J.; Lísa, M. Characterization of prenylflavonoids and hop bitter acids in various classes of Czech beers and hop extracts using high-performance liquid chromatography–mass spectrometry. J. Chromatogr. A. 2009, 1216, 7249–7257. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H.; Baranska, M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 2007, 43, 13–25. [Google Scholar] [CrossRef]
- Li, N.; Alfiky, A.; Wang, W.; Islam, M.; Nourollahi, K.; Liu, X.; Kang, S. Volatile compound-mediated recognition and inhibi-tion between Trichoderma biocontrol agents and Fusarium oxysporum. Front. Microbiol. 2018, 9, 2614. [Google Scholar] [CrossRef] [PubMed]
- de Rodríguez, D.J.; Hernández-Castillo, D.; Angulo-Sánchez, J.L.; Rodríguez-García, R.; Villarreal Quintanilla, J.A.; Li-ra-Saldivar, R.H. Antifungal activity in vitro of Flourensia spp. extracts on Alternaria sp., Rhizoctonia solani, and Fusarium ox-ysporum. Ind. Crops Prod. 2017, 25, 111–116. [Google Scholar] [CrossRef]
- Su, X.; Yin, Y. Aroma characterization of regional Cascade and Chinook hops (Humulus lupulus L.). Food Chem. 2021, 364, 130410. [Google Scholar] [CrossRef]
- Olsovska, J.; Bostikova, V.; Dusek, M.; Jandovska, V.; Bogdanova, K.; Cermak, P.; Bostik, P.; Mikyska, A.; Kolar, M. Humulus lupulus L.(hops)—A valu-able source of compounds with bioactive effects for future therapies. Mil. Med. Sci. Lett. 2016, 85, 19–30. [Google Scholar] [CrossRef]
- Zhang, D.; Yu, S.; Yang, Y.; Zhang, J.; Zhao, D.; Pan, Y.; Fan, S.; Yang, Z.; Zhu, J. Antifungal effects of volatiles produced by Bacillus subtilis against Alternaria solani in potato. Front. Microbiol. 2020, 11, 1196. [Google Scholar] [CrossRef]
- Liu, C.; Yin, X.; Wang, Q.; Peng, Y.; Ma, Y.; Liu, P.; Shi, J. Antagonistic activities of volatiles produced by two Bacillus strains against Monilinia fructicola in peach fruit. J. Sci. Food Agric. 2018, 98, 5756–5763. [Google Scholar] [CrossRef] [PubMed]
- Raza, W.; Yuan, J.; Ling, N.; Huang, Q.; Shen, Q. Production of volatile organic compounds by an antagonistic strain Paeni-bacillus polymyxa WR-2 in the presence of root exudates and organic fertilizer and their antifungal activity against Fusarium oxysporum f. sp. niveum. Biol. Control 2015, 80, 89–95. [Google Scholar] [CrossRef]
- Wu, Y.; Yuan, J.E.Y.; Raza, W.; Shen, Q.; Huang, Q. Effects of volatile organic compounds from Streptomyces albulus NJZJSA2 on growth of two fungal pathogens. J. Basic Microbiol. 2015, 55, 1104–1117. [Google Scholar] [CrossRef] [PubMed]
- Inui, T.; Okumura, K.; Matsui, H.; Hosoya, T.; Kumazawa, S. Effect of harvest time on some in vitro functional properties of hop polyphenols. Food Chem. 2017, 225, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Abram, V.; Čeh, B.; Vidmar, M.; Hercezi, M.; Lazić, N.; Bucik, V.; Možina, S.S.; Košir, I.J.; Kač, M.; Demšar, L.; et al. A comparison of antioxidant and antimicrobial activity between hop leaves and hop cones. Ind. Crops Prod. 2015, 64, 124–134. [Google Scholar] [CrossRef]
- Santarelli, V.; Neri, L.; Carbone, K.; Macchioni, V.; Pittia, P. Use of Conventional and Innovative Technologies for the Produc-tion of Food Grade Hop Extracts: Focus on Bioactive Compounds and Antioxidant Activity. Plants 2022, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Ghafoor, K.; Ahmed, I.A.M.; Özcan, M.M.; Al-Juhaimi, F.Y.; Babiker, E.E.; Azmi, I.U. An evaluation of bioactive compounds, fatty acid composition and oil quality of chia (Salvia hispanica L.) seed roasted at different temperatures. Food Chem. 2020, 333, 127531. [Google Scholar] [CrossRef]
- Mahayothee, B.; Thamsala, T.; Khuwijitjaru, P.; Janjai, S. Effect of drying temperature and drying method on drying rate and bioactive compounds in cassumunar ginger (Zingiber montanum). J. Appl. Res. Med. Aromat. Plants 2020, 18, 100262. [Google Scholar] [CrossRef]
- Pimentel-González, D.J.; Basilio-Cortes, U.A.; Hernández-Fuentes, A.D.; Figueira, A.C.; Quintero-Lira, A.; Campos-Montiel, R.G. Effect of thermal processing on antibacterial activity of multifloral honeys. J. Food Process Eng. 2017, 40, e12279. [Google Scholar] [CrossRef]
- Hahn, C.D.; Lafontaine, S.R.; Pereira, C.B.; Shellhammer, T.H. Evaluation of nonvolatile chemistry affecting sensory bitterness intensity of highly hopped beers. J. Agric. Food Chem. 2018, 66, 3505–3513. [Google Scholar] [CrossRef]
- Bartmańska, A.; Wałecka-Zacharska, E.; Tronina, T.; Popłoński, J.; Sordon, S.; Brzezowska, E.; Bania, J.; Huszcza, E. Antimicrobial properties of spent hops extracts, flavonoids isolated therefrom, and their derivatives. Molecules 2018, 23, 2059. [Google Scholar] [CrossRef] [PubMed]
- Karabín, M.; Hudcová, T.; Jelínek, L.; Dostálek, P. Biologically active compounds from hops and prospects for their use. Compr. Rev. Food Sci. Food Saf. 2016, 15, 542–567. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.F.; Wu, T.L.; Du, S.S.; Wu, Z.R.; Hu, Y.M.; Zhang, Z.J.; Zhao, W.-B.; Yang, C.-J.; Liu, Y.Q. The Antifungal Mechanism of Isoxanthohumol from Humulus lupulus Linn. Int. J. Mol. Sci. 2021, 22, 10853. [Google Scholar] [CrossRef] [PubMed]
Compounds | Hop Sample | |
---|---|---|
SummitMT | Huell Melon GermanyMT | |
α ácidos | 17.50% | 6.10% |
β ácidos | 6.50% | 9.90% |
Aceites totales | 3.0 mL/100 g | 1.1 mL/100 g |
B-pinene | 0.80% | 0.30% |
Myrcene | 45% | 20% |
Linalool | 0.40% | 0.20% |
Caryophyllene | 14% | 2% |
Farnesene | 1% | 8% |
Humulene | 22% | 1% |
Geraniol | 0.60% | 0.20% |
Others | 38.20% | 57.60% |
Independent Variables | Coded Values | ||
---|---|---|---|
−1 | 0 | +1 | |
Temperature °C—X1 | 25 | 50 | 90 |
Concentration mg/mL—X2 | 125 | 500 | 1000 |
Run | Extract Obtained at Different Temperature (°C) | Extract Concentration (mg/mL) |
---|---|---|
1 | 41.25 | 562.5 |
2 | 25 | 1000 |
3 | 57.5 | 562.5 |
4 | 25 | 125 |
5 | 73.75 | 562.5 |
6 | 57.5 | 562.5 |
7 | 90 | 1000 |
8 | 90 | 125 |
9 | 57.5 | 781.25 |
10 | 57.5 | 343.75 |
11 | 57.5 | 562.5 |
Total Phenols (mg GAE/g) | Total Flavonoids (mg QE/g) | |||
---|---|---|---|---|
Temperature (°C) | SummitMT | Hull Melon GermanyMT | SummitMT | Hull Melon GermanyMT |
25 | 33.09 ± 0.34 a | 4.54 ± 0.74 a | 12.95 ± 0.12 a | 6.21 ± 0.12 a |
41.25 | 35.75 ± 0.21 b | 5.95 ± 0.29 b | 13.14 ± 0.12 b | 7.86 ± 0.09 b |
57.5 | 38.42 ± 0.71 c | 6.24 ± 0.41 c | 13.84 ± 0.12 b | 8.12 ± 0.18 c |
73.5 | 31.03 ± 0.09 d | 3.49 ± 0.84 d | 11.21 ± 0.12 c | 5.22 ± 0.14 d |
90 | 28.62 ± 0.47 e | 3.21 ± 0.35 d | 9.84 ± 0.12 d | 4.41 ± 0.31 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basilio-Cortes, U.A.; Tzintzun-Camacho, O.; Grimaldo-Juárez, O.; Durán-Hernández, D.; Suarez-Vargas, A.; Durán, C.C.; Salazar-Navarro, A.; González-Anguiano, L.A.; González-Mendoza, D. Impact of Temperature on the Bioactive Compound Content of Aqueous Extracts of Humulus lupulus L. with Different Alpha and Beta Acid Content: A New Potential Antifungal Alternative. Microbiol. Res. 2023, 14, 205-217. https://doi.org/10.3390/microbiolres14010017
Basilio-Cortes UA, Tzintzun-Camacho O, Grimaldo-Juárez O, Durán-Hernández D, Suarez-Vargas A, Durán CC, Salazar-Navarro A, González-Anguiano LA, González-Mendoza D. Impact of Temperature on the Bioactive Compound Content of Aqueous Extracts of Humulus lupulus L. with Different Alpha and Beta Acid Content: A New Potential Antifungal Alternative. Microbiology Research. 2023; 14(1):205-217. https://doi.org/10.3390/microbiolres14010017
Chicago/Turabian StyleBasilio-Cortes, Ulin A., Olivia Tzintzun-Camacho, Onecimo Grimaldo-Juárez, Dagoberto Durán-Hernández, Adabella Suarez-Vargas, Carlos Ceceña Durán, Alexis Salazar-Navarro, Luis A. González-Anguiano, and Daniel González-Mendoza. 2023. "Impact of Temperature on the Bioactive Compound Content of Aqueous Extracts of Humulus lupulus L. with Different Alpha and Beta Acid Content: A New Potential Antifungal Alternative" Microbiology Research 14, no. 1: 205-217. https://doi.org/10.3390/microbiolres14010017
APA StyleBasilio-Cortes, U. A., Tzintzun-Camacho, O., Grimaldo-Juárez, O., Durán-Hernández, D., Suarez-Vargas, A., Durán, C. C., Salazar-Navarro, A., González-Anguiano, L. A., & González-Mendoza, D. (2023). Impact of Temperature on the Bioactive Compound Content of Aqueous Extracts of Humulus lupulus L. with Different Alpha and Beta Acid Content: A New Potential Antifungal Alternative. Microbiology Research, 14(1), 205-217. https://doi.org/10.3390/microbiolres14010017