Salmonella spp. in Chicken: Prevalence, Antimicrobial Resistance, and Detection Methods
Abstract
:1. Introduction
2. Prevalence of Salmonella spp. in Chicken
3. Antimicrobial Resistance in Salmonella spp.
4. Antimicrobial Resistance of Salmonella spp. in Chicken and Poultry Products
5. Detection Methods for Salmonella spp. in Chicken and Poultry Products
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ehuwa, O.; Jaiswal, A.K.; Jaiswal, S. Salmonella, Food Safety and Food Handling Practices. Foods 2022, 10, 907. [Google Scholar] [CrossRef]
- Rortana, C.; Nguyen-Viet, H.; Tum, S.; Unger, F.; Boqvist, S.; Dang-Xuan, S.; Koam, S.; Grace, D.; Osbjer, K.; Heng, T.; et al. Prevalence of Salmonella spp. and Staphylococcus aureus in Chicken Meat and Pork from Cambodian Markets. Pathogens 2021, 10, 556. [Google Scholar] [CrossRef]
- Sun, T.; Liu, Y.; Qin, X.; Aspridou, Z.; Zheng, J.; Wang, X.; Li, Z.; Dong, Q. The Prevalence and Epidemiology of Salmonella in Retail Raw Poultry Meat in China: A Systematic Review and Meta-analysis. Foods 2021, 10, 2757. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority); ECDC (European Centre for Disease Prevention and Control). The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2015. EFSA J. 2017, 15, 4694. [Google Scholar]
- Antunes, P.; Mourao, J.; Campos, J.; Peixe, L. Salmonellosis: The Role of Poultry Meat. Clin. Microbiol. Infect. 2016, 22, 110–121. [Google Scholar] [CrossRef]
- Lanier, W.A.; Hale, K.R.; Geissler, A.L.; Dewey-Mattia, D. Chicken Liver-Associated Outbreaks of Campylobacteriosis and Salmonellosis, United States, 2000-2016: Identifying Opportunities for Prevention. Foodborne Pathog. Dis. 2018, 15, 726–733. [Google Scholar] [CrossRef]
- Lee, K.-M.; Runyon, M.; Herrman, T.J.; Phillips, R.; Hsieh, J. Review of Salmonella detection and identification methods: Aspects of rapid emergency response and food safety. Food Control 2015, 47, 264–276. [Google Scholar] [CrossRef]
- Raji, M.A.; Kazeem, H.M.; Magyigbe, K.A.; Ahmed, A.O.; Lawal, D.N.; Raufu, I.A. Salmonella Serovars, Antibiotic Resistance, and Virulence Factors Isolated from Intestinal Content of Slaughtered Chickens and Ready-To-Eat Chicken Gizzards in the Ilorin Metropolis, Kwara State, Nigeria. Int. J. Food Sci. 2021, 2021, 8872137. [Google Scholar] [CrossRef]
- Ricke, S.C.; Calo, J.R. Antibiotic Resistance in Pathogenic Salmonella. In Antimicrobial Resistance and Food Safety; Chen, C.Y., Yan, X., Jackson, C.R., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 37–53. ISBN 978-0-12-801214-7. [Google Scholar]
- Zhuang, L.; Gong, J.; Li, Q.; Zhu, C.; Yu, Y.; Dou, X.; Liu, X.; Xu, B.; Wang, C. Detection of Salmonella spp. by a Loop-Mediated Isothermal Amplification (LAMP) Method Targeting bcfD Gene. Lett. Appl. Microbiol. 2014, 59, 658–664. [Google Scholar] [CrossRef]
- Paniel, N.; Noguer, T. Detection of Salmonella in food matrices, from conventional methods to recent aptamer-sensing technologies. Foods 2019, 8, 371. [Google Scholar] [CrossRef]
- Yasmine, P. Nutrient Composition of Chicken Meat. Rural Industries Research and Development Corporation; Rural Industries Research and Development Corporation: Kingston, Australia, 2009; p. 75. ISBN 1741517990. [Google Scholar]
- Mozdziak, P. Species of Meat Animals: Poultry; Reference Module in Food Science: Amsterdam, The Netherlands, 2019; pp. 1–6. [Google Scholar]
- Barbut, S. Poultry Products Processing: An Industry Guide; CRC Press: Boca Raton, FL, USA, 2016; p. 560. ISBN 1420031740. [Google Scholar]
- Park, M.; Britton, D.; Daley, W.; McMurray, G.; Navaei, M.; Samoylov, A.; Usher, C.; Xu, J. Atificial Intelligence, Sensors, Robots, and Transportation Systems Drive an Innovative Future for Poultry Broiler and Breeder Management. Anim Front. 2022, 12, 40–48. [Google Scholar] [CrossRef]
- Yang, X.; Huang, J.; Zhang, Y.; Liu, S.; Chen, L.; Xiao, C.; Zeng, H.; Wei, X.; Gu, Q.; Li, Y.; et al. Prevalence, Abundance, Serovars and Antimicrobial Resistance of Salmonella Isolated from Retail Raw Poultry Meat in China. Sci Total Environ. 2020, 713, 136385. [Google Scholar] [CrossRef]
- Ferrari, R.G.; Rosario, D.K.A.; Cunha-Neto, A.; Mano, S.B.; Figueiredo, E.E.S.; Conte-Junior, C.A. Worldwide Epidemiology of Salmonella Serovars in Animal-Based Foods: A Meta-Analysis. Appl. Environ. Microbiol. 2019, 85, e00591-19. [Google Scholar] [CrossRef]
- Hald, T. Pathogen Update: Salmonella. In Woodhead Publishing Series in Food Science, Technology and Nutrition, Advances in Microbial Food Safety; Sofos, J., Ed.; Woodhead Publishing: Sawston, UK, 2013; pp. 25–46. ISBN 9780857094384. [Google Scholar]
- Eng, S.-K.; Pusparajah, P.; Ab Mutalib, N.-S.; Ser, H.-L.; Chan, K.-G.; Lee, L.H. Salmonella: A Review on Pathogenesis, Epidemiology and Antibiotic Resistance. Front. Life Sci. 2015, 8, 284–293. [Google Scholar] [CrossRef]
- World Health Organization (WHO). WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015. World Health Organization. 2015. Available online: https://apps.who.int/iris/handle/10665/199350 (accessed on 20 July 2022).
- Yang, X.; Wu, Q.; Zhang, J.; Huang, J.; Chen, L.; Wu, S.; Zeng, H.; Wang, J.; Chen, M.; Wu, H.; et al. Prevalence, Bacterial Load, and Antimicrobial Resistance of Salmonella serovars Isolated from Retail Meat and Meat Products in China. Front. Microbiol. 2019, 10, 2121. [Google Scholar] [CrossRef] [PubMed]
- Trongjit, S.; Angkititrakul, S.; Tuttle, R.E.; Poungseree, J.; Padungtod, P.; Chuanchuen, R. Prevalence and Antimicrobial Resistance in Salmonella enterica Isolated from Broiler Chickens, Pigs and Meat Products in Thailand-Cambodia Border Provinces. Microbiol. Immunol. 2017, 61, 23–33. [Google Scholar] [CrossRef]
- Yang, B.; Xi, M.; Wang, X.; Cui, S.; Yue, T.; Hao, H.; Wang, Y.; Cui, Y.; Alali, W.Q.; Meng, J.; et al. Prevalence of Salmonella on Raw Poultry at Retail Markets in China. J. Food Prot. 2011, 74, 1724–1728. [Google Scholar] [CrossRef] [PubMed]
- Sodagari, H.R.; Mashak, Z.; Ghadimianazar, A. Prevalence and Antimicrobial Resistance of Salmonella serotypes isolated from Retail Chicken Meat and Giblets in Iran. J. Infect. Dev. Ctries. 2015, 9, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Iwabuchi, E.; Yamamoto, S.; Endo, Y.; Ochiai, T.; Hirai, K. Prevalence of Salmonella Isolates and Antimicrobial Resistance Patterns in Chicken Meat Throughout Japan. J. Food Prot. 2011, 74, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Abatcha, M.G.; Effarizah, M.E.; Rusul, G. Prevalence, Antimicrobial Resistance, Resistance Genes and Class 1 Integrons of Salmonella Serovars in Leafy Vegetables, Chicken Carcasses and Related Processing Environments in Malaysian Fresh Food Markets. Food Control 2018, 91, 170–180. [Google Scholar] [CrossRef]
- Shafini, A.; Son, R.; Mahyudin, N.; Rukayadi, Y.; Zainazor, T.T. Prevalence of Salmonella spp. in Chicken and Beef from Retail Outlets in Malaysia. Int. Food Res. J. 2017, 24, 437–449. [Google Scholar]
- Moe, A.Z.; Paulsen, P.; Pichpol, D.; Fries, R.; Irsigler, H.; Baumann, M.P.O.; Oo, K.N. Prevalence and Antimicrobial Resistance of Salmonella isolates from Chicken Carcasses in Retail Markets in Yangon, Myanmar. J. Food Prot. 2017, 80, 947–951. [Google Scholar] [CrossRef]
- Zwe, Y.H.; Tang, V.C.Y.; Aung, K.T.; Gutiérrez, R.A.; Ng, L.C.; Yuk, H.-G. Prevalence, Sequence Types, Antibiotic Resistance and, gyrA Mutations of Salmonella Isolated from Retail Fresh Chicken Meat in Singapore. Food Control 2018, 90, 233–240. [Google Scholar] [CrossRef]
- Kim, M.S.; Lim, T.H.; Jang, J.H.; Lee, D.H.; Kim, B.Y.; Kwon, J.H.; Choi, S.W.; Noh, J.Y.; Hong, Y.H.; Lee, S.B.; et al. Prevalence and Antimicrobial Resistance of Salmonella Species Isolated from Chicken Meats Produced by Different Integrated Broiler Operations in Korea. Poult. Sci. 2012, 91, 2370–2375. [Google Scholar] [CrossRef]
- Lee, S.K.; Choi, D.; Kim, H.S.; Kim, D.H.; Seo, K.H. Prevalence, Seasonal Occurrence, and Antimicrobial Resistance of Salmonella spp. Isolates Recovered from Chicken Carcasses Sampled at Major Poultry Processing Plants of South Korea. Foodborne Pathog. Dis. 2016, 13, 544–550. [Google Scholar] [CrossRef]
- Ta, Y.T.; Nguyen, T.T.; To, P.B.; Pham da, X.; Le, H.T.; Alali, W.Q.; Walls, I.; Lo Fo Wong, D.M.; Doyle, M.P. Prevalence of Salmonella on Chicken Carcasses from Retail Markets in Vietnam. J. Food Prot. 2012, 75, 1851–1854. [Google Scholar] [CrossRef]
- Zdragas, A.; Mazaraki, K.; Vafeas, G.; Giantzi, V.; Papadopoulos, T.; Ekateriniadou, L. Prevalence, Seasonal Occurrence and Antimicrobial Resistance of Salmonella in Poultry Retail Products in Greece. Lett. Appl. Microbiol. 2012, 55, 308–313. [Google Scholar] [CrossRef]
- Abd-Elghany, S.M.; Sallam, K.I.; Abd-Elkhalek, A.; Tamura, T. Occurrence, Genetic Characterization and Antimicrobial Resistance of Salmonella Isolated from Chicken Meat and Giblets. Epidemiol. Infect. 2015, 143, 997–1003. [Google Scholar] [CrossRef]
- Vindigni, S.M.; Srijan, A.; Wongstitwilairoong, B.; Marcus, R.; Meek, J.; Riley, P.L.; Mason, C. Prevalence of Foodborne Microorganisms in Retail Foods in Thailand. Foodborne Pathog. Dis. 2007, 4, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Mąka, Ł.; Maćkiw, E.; Ścieżyńska, H.; Pawłowska, K.; Popowska, M. Antimicrobial Susceptibility of Salmonella Strains Isolated from Retail Meat Products in Poland Between 2008 and 2012. Food Control 2014, 36, 199–204. [Google Scholar] [CrossRef]
- Ramya, P.; Madhavarao, T.; Rao, L.V. Study on the Incidence of Salmonella Enteritidis in Poultry and Meat Samples by Cultural and PCR methods. Vet. World 2012, 5, 541–545. [Google Scholar] [CrossRef]
- Singh, Y.; Saxena, A.; Kumar, R.; Saxena, M.K. Virulence System of Salmonella with Special Reference to Salmonella enterica; IntechOpen Limited: London, UK, 2018; pp. 41–53. [Google Scholar]
- Kusunoki, K.; Jin, M.; Iwaya, M.; Ishikami, T.; Morimoto, K.; Saito, K.; Yamada, S. Salmonella contamination in domestic raw chikens in Tama, Tokyo, and serovar or drug-resistance of isolates (1992–1999). Jpn. J. Food Microbiol. 2000, 17, 207–212. [Google Scholar] [CrossRef]
- Le Hello, S.; Harrois, D.; Bouchrif, B.; Sontag, L.; Elhani, D.; Guibert, V.; Zerouali, K.; Weill, F.-X. Highly Drug-Resistant Salmonella enterica serotype Kentucky ST198-X1: A Microbiological Study. Lancet Infect. Dis. 2013, 13, 672–679. [Google Scholar] [CrossRef]
- Amajoud, N.; Bouchrif, B.; El Maadoudi, M.; Skalli Senhaji, N.; Karraouan, B.; El Harsal, A.; El Abrini, J. Prevalence, Serotype Distribution, and Antimicrobial Resistance of Salmonella Isolated from Food Products in Morocco. J. Infect. Dev. Ctries 2017, 11, 136–142. [Google Scholar] [CrossRef]
- Murakami, K.; Maeda-Mitani, E.; Onozuka, D.; Noda, T.; Sera, N.; Kimura, H.; Fujimoto, S.; Murakami, S. Simultaneous Oral Administration of Salmonella Infantis and S. Typhimurium in Chicks. Ir. Vet. J. 2017, 70, 27. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.P.; Chen, Y.T.; Wang, Y.W.; Chen, B.H.; Teng, R.H.; Chen, Y.S.; Chiou, C.S. Integrative and Conjugative Element-Mediated Azithromycin Resistance in Multidrug-Resistant Salmonella enterica serovar Albany. Antimicrob. Agents Chemother. 2021, 65, e02634-20. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Zhou, J.; Ye, J. Adoption of HACCP System inthe Chinese Food Industry: A Comparative Analysis. Food Control 2008, 19, 823–828. [Google Scholar] [CrossRef]
- Lam, H.-M.; Remais, J.; Fung, M.-C.; Xu, L.; Sun, S.S.-M. Food Supply and Food Safety Issues in China. Lancet 2013, 381, 2044–2053. [Google Scholar] [CrossRef]
- Graziani, C.; Losasso, C.; Luzzi, I.; Ricci, A.; Scavia, G.; Pasquali, P. Salmonella. In Foodborne Diseases, 3rd ed.; Dodd, C.E.R., Aldsworth, T., Stein, R.A., Cliver, D.O., Riemann, H.P., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 133–169. ISBN 9780123850072. [Google Scholar]
- Zakaria, Z.; Hassan, L.; Sharif, Z.; Ahmad, N.; Mohd Ali, R.; Amir Husin, S.; Mohamed Sohaimi, N.; Abu Bakar, S.; Garba, B. Virulence Gene Profile, Antimicrobial Resistance and Multilocus Sequence Typing of Salmonella enterica subsp. enterica serovar Enteritidis from Chickens and Chicken Products. Animals 2022, 12, 97. [Google Scholar] [CrossRef]
- Thung, T.Y.; Mahyudin, N.A.; Basri, D.F.; Wan Mohamed Radzi, C.W.; Nakaguchi, Y.; Nishibuchi, M.; Radu, S. Prevalence and Antibiotic Resistance of Salmonella Enteritidis and Salmonella Typhimurium in Raw Chicken Meat at Retail Markets in Malaysia. Poult. Sci. 2016, 95, 1888–1893. [Google Scholar] [CrossRef]
- Wall, B.; Mateus, A.; Marshall, L.; Pfeiffer, D.; Lubroth, J.; Ormel, H.; Otto, P.; Patriarchi, A. Drivers, Dynamics and Epidemiology of Antimicrobial Resistance in Animal Production; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016; p. 68. ISBN 978-92-5-109441-9. [Google Scholar]
- Foley, S.L.; Johnson, T.J.; Ricke, S.C.; Nayak, R.; Danzeisen, J. Salmonella Pathogenicity and Host Adaptation in Chicken-Associated Serovars. Microbiol. Mol. Biol. Rev. 2013, 77, 582–607. [Google Scholar] [CrossRef] [PubMed]
- Mengistu, G.; Dejenu, G.; Tesema, C.; Arega, B.; Awoke, T.; Alemu, K.; Moges, F. Epidemiology of Streptomycin Resistant Salmonella from Humans and Animals in Ethiopia: A Systematic Review and Meta-Analysis. PLoS ONE 2020, 15, e0244057. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.L.; Jarvis, K.G.; Ottesen, A.R.; McFarland, M.A.; Brown, E.W. Recent and Emerging Innovations in Salmonella Detection: A Food and Environmental Perspective. Microb. Biotechnol. 2016, 9, 279–292. [Google Scholar] [CrossRef]
- Mthembu, T.P.; Zishiri, O.T.; El Zowalaty, M.E. Detection and Molecular Identification of Salmonella Virulence Genes in Livestock Production Systems in South Africa. Pathogens 2019, 8, 124. [Google Scholar] [CrossRef] [PubMed]
- Siala, M.; Barbana, A.; Smaoui, S.; Hachicha, S.; Marouane, C.; Kammoun, S.; Gdoura, R.; Messadi, F. Screening and Detecting Salmonella in Different Food Matrices in Southern Tunisia Using a Combined Enrichment/Real-Time PCR Method: Correlation with Conventional Culture Method. Front. Microbiol. 2017, 8, 2416. [Google Scholar] [CrossRef] [PubMed]
- Hyeon, J.Y.; Deng, X. Rapid Detection of Salmonella in Raw Chicken Breast Using Real-Time PCR Combined with ImmunoMagnetic Separation and Whole Genome Amplification. Food Microbiol. 2017, 63, 111–116. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, K.; Yin, H.; Li, Q.; Wang, L.; Liu, Z. Detection of Salmonella and Several Common Salmonella serotypes in Food by Loop-Mediated Isothermal Amplification Method. Food Sci. Hum. Wellness 2015, 4, 75–79. [Google Scholar] [CrossRef]
- Jia, F.; Duan, N.; Wu, S.; Dai, R.; Wang, Z.; Li, X. Impedimetric Salmonella Aptasensor Using a Glassy Carbon Electrode Modified with an Electrodeposited Composite Consisting of Reduced Graphene Oxide and Carbon Nanotubes. Microchim. Acta 2016, 183, 337–344. [Google Scholar] [CrossRef]
- Bayrac, C.; Eyidogan, F.; Oktem, H.A. DNA Aptamer-Based Calorimetric Detection Platform for Salmonella Enteritidis. Biosens. Bioelectron. 2017, 98, 22–28. [Google Scholar] [CrossRef]
- Kim, G.; Moon, J.H.; Moh, C.Y.; Lim, J.G. A Microfluidic Nano-Biosensor for the Detection of Pathogenic Salmonella. Biosens. Bioelectron. 2015, 67, 243–247. [Google Scholar] [CrossRef]
- Duan, N.; Chang, B.; Zhang, H.; Wang, Z.; Wu, S. Salmonella Typhimurium Detection using a Surface-Enhanced Raman Scattering-Based Aptasensor. Int. J. Food Microbiol. 2016, 218, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Awang, M.S.; Bustami, Y.; Hamzah, H.H.; Zambry, N.S.; Najib, M.A.; Khalid, M.F.; Aziah, I.; Manaf, S.A. Advancement in Salmonella Detection Methods: From Conventional to Electrochemical-Based Sensing Detection. Biosensors 2021, 11, 346. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, R.J.; Thomas, C.A.; Halliwell, J.; Gwenin, C.D. Rapid Detection of Botulinum Neurotoxins-A Review. Toxins 2019, 11, 418. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Aydin, M.; Khatiwara, A.; Dolan, M.C.; Gilmore, D.F.; Bouldin, J.L.; Ahn, S.; Ricke, S.C. Current and Emerging Technologies for Rapid Detection and Characterization of Salmonella in Poultry and Poultry products. Food Microbiol. 2014, 38, 250–262. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.; Vázquez-Villegas, P.; Rito-Palomares, M.; Martinez-Chapa, S.O. Advantages, Disadvantages and Modifications of Conventional ELISA. In Enzyme-Llinked Immunosorbent Assay (ELISA); SpringerBrief in Applied Sciences and Technology; Springer: Singapore, 2018; pp. 67–115. ISBN 978-981-10-6765-5. [Google Scholar]
- Wijedoru, L.; Mallett, S.; Parry, C.M. Rapid Diagnostic Tests for Typhoid and Paratyphoid (Enteric) Fever. Cochrane Database Syst. Rev. 2017, 5, CD008892. [Google Scholar] [CrossRef] [PubMed]
- Khalid, T.; Hdaifeh, A.; Federighi, M.; Cummins, E.; Boue, G.; Guillou, S.; Tesson, V. Review of Quantitative Microbial Risk Assessment in Poultry Meat: The Central Position of Consumer Behavior. Foods 2020, 9, 1661. [Google Scholar] [CrossRef] [PubMed]
- Salama, R.I.; Said, N.M. A Comparative Study of the Typhidot (dot-eia) Versus Widal Test in Diagnosis of Typhoid Fever among Egyptian Patients. Open J. Gastroenterol. 2019, 09, 91–98. [Google Scholar] [CrossRef]
- Kokkinos, P.A.; Ziros, P.G.; Bellou, M.; Vantarakis, A. Loop-Mediated Isothermal Amplification (LAMP) for the Detection of Salmonella in Food. Food Anal. Methods 2013, 7, 512–526. [Google Scholar] [CrossRef]
- Sharma, V.K.; Carlson, S.A. Simultaneous Detection of Salmonella strains and Escherichia coli O157: H7 with Fluorogenic PCR and Single-Enrichment-Broth Culture. Appl. Environ. Microbiol. 2000, 66, 5472–5476. [Google Scholar] [CrossRef]
- Yang, Q.; Domesle, K.J.; Ge, B. Loop-Mediated Isothermal Amplification for Salmonella Detection in Food and Feed: Current Applications and Future Directions. Foodborne Pathog. Dis. 2018, 15, 309–331. [Google Scholar] [CrossRef]
- Notomi, T.; Mori, Y.; Tomita, N.; Kanda, H. Loop-Mediated Isothermal Amplification (LAMP): Principle, Features, and Future Prospects. J. Microbiol. 2015, 53, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.P.; Othman, S.; Lau, Y.L.; Radu, S.; Chee, H.Y. Loop-Mediated Isothermal Amplification (LAMP): A Versatile Technique for Detection of Microorganisms. J. Appl. Microbiol. 2018, 124, 626–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Zhang, Y.; Tian, F.; Liu, X.; Du, S.; Ren, G. Overview of Rapid Detection Methods for Salmonella in Foods: Progress and challenges. Foods 2021, 10, 2402. [Google Scholar] [CrossRef] [PubMed]
Region | Number of Samples | Number of Salmonella-Positive Samples | Percentage of Salmonella-Positive Samples | References |
---|---|---|---|---|
Cambodia | 187 | 78 | 41.7 | [22] |
China | 1152 | 601 | 52.2 | [23] |
Iran | 452 | 111 | 24.6 | [24] |
Japan | 821 | 164 | 20.0 | [25] |
Malaysia | 191 | 79 | 41.4 | [26,27] |
Myanmar | 141 | 138 | 97.9 | [28] |
Singapore | 270 | 52 | 18.1 | [29] |
South Korea | 330 | 65 | 19.7 | [30,31] |
Thailand | 195 | 79 | 40.5 | [22] |
Vietnam | 1000 | 459 | 45.9 | [32] |
Region | Sample Type | Salmonella serotypes (No. of Samples) | References |
---|---|---|---|
Iran | |||
Mansoura | Chicken meat | S. Thompson (35), S. Enteritidis (12), S. Typhimurium (3), S. Hadar (6), UN (2) | [24] |
Liver | S. Thompson (8), S. Enteritidis (7), S. Typhimurium (7), S. Newport (3), UN (1) | ||
Heart | S. Thompson (6), S. Enteritidis (4), S. Typhimurium (2), S. Newport (5) | ||
Gizzards | S. Thompson (5), S. Enteritidis (2), S. Typhimurium (2), UN (1) | ||
Japan | |||
Hokkaido | Chicken meat | S. Infantis (39), S. Nigeria (26), S. Wien (24), S. Limete (10), S. Uppsala (10), S. Canada (9), S. Adime (5), S. Abony (4), S. Brezany (4), S. Lomita (4), S, Rissen (4), S. Reading (3), S. Derby (3), S. Tripoli (3), S. Eko (2), S. Montevideo (2), S. Stanley (2), UN (16) | [25] |
Aichi, Gifu, Mie | S. Infantis (42), S. Kalamu (35), S. Manhattan (25), S. Uppsala (24), S. Canada (13), S. Schwarzengrund (11), S. Stanleyville (11), S. Eko (6), S. Finaghy (5), S. Brezany (2) | ||
Miyazaki, Oita, Saga | S. Schwarzengrund (32), S. Stanleyville (26), S. Kalamu (21), S. Manhattan (8), S. Canada (6), S. Uppsala (5), S. Brezany (4), S. Eko (4), S. Finaghy (2) | ||
Malaysia | |||
Selangor, Negeri Sembilan | Raw chicken | S. Enteritidis (20), S. Hadar (14), S. Gallinarum (6), S. Dublin (5), S. Stanley (4), S. Anatum (1), S. Choleraesuis (1), S. Typhimurium (1) | [27] |
Minced chicken | S. Enteritidis (4), S. Hadar (1), S. Dublin (1), S. Stanley (1) | ||
Processed products | S. Enteritidis (1), S. Stanley (1), S. Anatum (1) | ||
Myanmar | |||
Yangon | Chicken meat | S. Albany (53), S. Kentucky (15), S. Braenderup (14), S. Indiana (11), S. Virchow (5), S. Brunei (5), S. Weltevreden (4), S. Derby (3), S. Typhimurium (3), S. Enteritidis (3), S. Wagenia (3), S. Diogoye (2), S. Bareilly (2), S. Lexington (2), S. Stanley (2), S. Agona (2), S. Hindmarsh (2), S. Cerro (1), S. Yoruba (1), S. Mbandaka (1), S. Newport (1), S. Stuttgart (1), S. Paris (1), S. Apeyeme (1) | [28] |
Singapore | Fresh, chilled chicken meat | S. Saintpaul (17), S. Brancaster (11), S. Albany (6), S. Stanley (5), S. Agona (4), S. Typhimurium (3), S. Gaminara (2), S. Bovismorbificans (1), S. Give (1), S. Newport (1), S. Weltevreden (1) | [29] |
South Korea | |||
Jeonla, Chungcheong, Gyeongsang, Gyeonggi | Whole chicken carcasses | S. Typhimurium (12), S. Hadar (2), S. Rissen (2), S. Virchow (1), S. Bareilly (1) | [31] |
Region | No. of Isolates (Animal Hosts) | Testing Methods | Antimicrobial Resistance (n, %) | Reference |
---|---|---|---|---|
Iran | 111 (retailed chicken meat and giblets) | Mueller-Hinton agar disk diffusion method | AMC (6, 5.4%); AMP (13, 11.7%); CHL (4, 3.6%); KAN (41, 36.9%); NA (103, 92.8%); STR (63, 56.8%); TET (90, 81.1%); TMP (76, 68.5%); SXT (68, 61.3%) * Multiple antimicrobial resistance pattern present | [24] |
Japan | 452 (chicken meat) | Agar dilution method | AMP (81, 17.9%); BCM (222, 49.1%); CFZ (26, 5.8%); CTF (9, 2.0%); CST (13, 2.9%); DSM (313, 69.2%); GEN (2, 0.4%); KAN (180, 39.8%), NA (72, 15.9%); OXY (72.6%); TMP (217, 48.0%) * Multiple antimicrobial resistance pattern present | [25] |
Malaysia | 11 (chicken meat) | Disk diffusion method | AMX (3, 27.3%); AMP (8, 72.7%); CFP (3, 27.3%); CIP (3, 27.3%); ERY (11, 100.0%); NA (1, 19.1%), PEN (11, 100.0%); STR (1, 9.1%), VAN (1, 9.1%) * Multiple antimicrobial resistance pattern present | [48] |
Myanmar | 138 (raw chicken carcasses) | Disk diffusion method | AMC (24, 17.4%); AMP (65, 47.1%); CRO (5, 9.6%); CHL (32, 61.5%); CIP (13, 9.4%); GEN (11, 8.0%); LIS (8, 5.8%); NOR (1, 0.7%); STR (68, 49.3%); TET (75, 54.3%); TOB (12, 8.7%); SXT (97, 70.3) * Multiple antimicrobial resistance pattern present | [28] |
Singapore | 52 (chicken meat sample) | Disk diffusion method | AMC (8, 15.4%); AMP (41, 78.8%); CRO (5, 9.6%); CHL (32, 61.5%); CIP (2, 3.8%), GEN (12, 23.1%); NA (16, 30.8%); TET (32, 61.5%); SXT (29, 55.8%) * Multiple antimicrobial resistance pattern present | [29] |
South Korea | 18 (chicken carcasses) | Disk diffusion method | AMP (1, 5.6%); CFZ (1, 5.6%), CTX (1, 5.6%), CAZ (1, 5.6%); NA (7, 38.9%), STR (32, 61.5%), SXT (29, 55.8%) * Multiple antimicrobial resistance pattern present | [31] |
Detection Methods | * Advantages | * Disadvantages | Limit of Detection |
---|---|---|---|
Cultural-based Salmonella detection method (ISO 6579:2017, BAM) | Sensitive and selective with chromogenic media Low cost Ease of use | Laborious Time-consuming Results confirmation requires a minimum of 4–6 days Requires a sterile environment to avoid microbial contamination Requires pre-enrichment and selective enrichment Low sensitivity Presence of viable but non-culturable bacteria (VBNC) | 102–103 CFU/g [54] |
Immunological-based assays | Real-time detection Shorter time compared to cultural methods Results within 48 h | Low affinity and sensitivity Stability issue of the antibody Prone to cross-reactivity issues among Salmonella serovars Potential interference from contaminants | ELISA 104–105 CFU/mL [11] |
Molecular-based assays | High sensitivity and specificity Detection time within a few hours Detection of small amounts of target nucleic acid Can be applied in situ Real-time monitoring for detection in food | High operational cost for PCR Prone to cross-reactivity issues among Salmonella serovar Unable to differentiate between live and dead cells may cause false-positive or false-negative results Presence of food material may inhibit the amplification process May require enrichment step Requires expensive machines and trained personnel Complicated primer design | 10 CFU/g Real-time PCR [55] 10 CFU/mL Loop-mediated isothermal amplification (LAMP) [56] |
Biosensor | High affinity and specificity Detection within a few hours Sensitive and specific detection response Can be integrated into a biosensor device Possible on-site testing User-friendly | High early instrument cost Non-standardized sample preparation Lack of multiplex detection | 25 CFU/mL Electrochemical-based biosensor [57] 103 CFU/mL DNA aptamer-based calorimetric detection [58] 103 CFU/mL Microfluidic nano-biosensor [59] 15 CFU/mL Surface-enhanced Raman scattering-based aptasensor [60] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, S.J.; Nordin, S.; Esah, E.M.; Mahror, N. Salmonella spp. in Chicken: Prevalence, Antimicrobial Resistance, and Detection Methods. Microbiol. Res. 2022, 13, 691-705. https://doi.org/10.3390/microbiolres13040050
Tan SJ, Nordin S, Esah EM, Mahror N. Salmonella spp. in Chicken: Prevalence, Antimicrobial Resistance, and Detection Methods. Microbiology Research. 2022; 13(4):691-705. https://doi.org/10.3390/microbiolres13040050
Chicago/Turabian StyleTan, Si Jie, Syamilah Nordin, Effarizah Mohd Esah, and Norlia Mahror. 2022. "Salmonella spp. in Chicken: Prevalence, Antimicrobial Resistance, and Detection Methods" Microbiology Research 13, no. 4: 691-705. https://doi.org/10.3390/microbiolres13040050
APA StyleTan, S. J., Nordin, S., Esah, E. M., & Mahror, N. (2022). Salmonella spp. in Chicken: Prevalence, Antimicrobial Resistance, and Detection Methods. Microbiology Research, 13(4), 691-705. https://doi.org/10.3390/microbiolres13040050