Isolation of a Marine Bacterium and Application of Its Bioflocculant in Wastewater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Culture Media
2.2. Sample Collection
2.3. Isolation of Target Bacteria
2.4. Determination of the Flocculating Activity
2.5. Molecular Identification of the Bioflocculant-Producing Bacterium
2.6. Optimization of the Medium Composition and Culture Conditions
2.7. Extraction and Purification of the Bioflocculant
2.8. Effect of Dosage Size and Cations on Flocculating Activity
2.9. Characterization of the Bioflocculant
2.10. Cytotoxic Effect of the Bioflocculant
2.11. Flocculation Mechanism of the Bioflocculant
2.12. Removal Efficiencies of the Bioflocculants on Wastewater
2.13. Software and Statistical Analysis
3. Results
3.1. Physicochemical Parameters of Water
3.2. Selection of the Bacterial Strain for Bioflocculant Production
3.3. Optimization of the Culture Conditions of B. subtilis CSM5
3.3.1. Effect of Inoculum Size
3.3.2. Effect of Carbon and Nitrogen Sources on Bioflocculant Production
3.3.3. Effect of pH on Bioflocculant Production
3.3.4. Effect of Temperature on Bioflocculant Production
3.3.5. Effect of Time on Bioflocculant Production
3.4. Bioflocculant Yield and the Effect of Dosage Size on Flocculation
3.5. Effect of Cations on Flocculating Activity of the Bioflocculant
3.6. Elemental Composition of the Bioflocculant
3.7. Functional Groups of the Bioflocculant from B. subtilis CSM5
3.8. Pyrolysis Profile of the Bioflocculant
3.9. Cytotoxic Effect of the Bioflocculant
3.10. Proposed Flocculation Mechanism of the Bioflocculant
3.11. Wastewater Treatment by the Bioflocculant in Comparison to the Conventional Flocculants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emaminejad, S.A.; Avval, S.S.; Bonakdarpour, B. Gaining deeper insights into the bioflocculation process occurring in a high loaded membrane bioreactor used for the treatment of synthetic greywater. Chemosphere 2019, 230, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Bisht, V.; Lal, B. Exploration of performance kinetics and mechanism of action of a potential novel bioflocculant BF-VB2 on clay and dye wastewater flocculation. Front. Microbiol. 2019, 10, 1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, O.; Lu, C.; Liu, A.; Zhu, L.; Wang, P.-M.; Qian, C.-D.; Jiang, X.-H.; Wu, X.-C. Optimization and characterization of polysaccharide-based bioflocculant produced by Paenibacillus elgii B69 and its application in wastewater treatment. Bioresour. Technol. 2013, 134, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Alias, J.; Hasan, H.A.; Abdullah, S.R.S.; Othman, A.R. Properties of bioflocculant-producing bacteria for high flocculating activity efficiency. Environ. Technol. Innov. 2022, 27, 102529. [Google Scholar] [CrossRef]
- Manetu, W.M.; Karanja, A.M. Waterborne disease risk factors and intervention practices: A review. Open Access Libr. J. 2021, 8, 1–11. [Google Scholar] [CrossRef]
- Rizal, A.; Apriliani, I.M. Analysis of several water environment parameters affecting the accumulation of heavy metal lead in the body of blood shells in the coastal waters of Muara Gembong sub-district. World Sci. News 2021, 153, 65–79. [Google Scholar]
- Al-Anzi, B.S.; Naik, M.-u.-d.; Ahmad, M. The imperative need of metal salt for the treatment of industrial wastewater via the synergic coagulation-flocculation method. Polymers 2022, 14, 165. [Google Scholar] [CrossRef]
- Ben Rebah, F.; Mnif, W.; M Siddeeg, S. Microbial flocculants as an alternative to synthetic polymers for wastewater treatment: A review. Symmetry 2018, 10, 55. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Sun, D.; Liu, J.; Zhu, J.; Liu, W. Recent advances and perspectives in efforts to reduce the production and application cost of microbial flocculants. Bioresour. Bioprocess. 2021, 8, 51. [Google Scholar] [CrossRef]
- Maliehe, T.S.; Basson, A.K.; Dlamini, N.G. Removal of pollutants in mine wastewater by a non-cytotoxic polymeric bioflocculant from Alcaligenes faecalis HCB2. Int. J. Environ. Res. Public Health 2019, 16, 4001. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Yu, J.; Xin, X.; Zou, C.; Cheng, Q.; Yang, H.; Nengzi, L. Characterization and flocculation mechanism of a bioflocculant from hydrolyzate of rice stover. Bioresour. Technol. 2015, 177, 393–397. [Google Scholar] [CrossRef]
- Salehizadeh, H.; Yan, N. Recent advances in extracellular biopolymer flocculants. Biotechnol. Adv. 2014, 32, 1506–1522. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, H.; Seki, H. Evaluation of flocculation performance of polysaccharide-protamine complex flocculant by flocculation model. Biochem. Eng. J. 2022, 180, 108356. [Google Scholar] [CrossRef]
- Ding, G.; Li, X.; Lin, W.; Kimochi, Y.; Sudo, R. Enhanced flocculation of two bioflocculation-producing bacteria by secretion of Philodina erythrophthalma. Water Res. 2017, 112, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, G.; Alam, M.A.; Mofijur, M.; Jahirul, M.; Lv, Y.; Xiong, W.; Ong, H.C.; Xu, J. Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass. Renew. Sustain. Energy Rev. 2021, 135, 110209. [Google Scholar] [CrossRef]
- Igwegbe, C.A.; Onukwuli, O.D.; Ighalo, J.O.; Menkiti, M.C. Bio-coagulation-flocculation (BCF) of municipal solid waste leachate using Picralima nitida extract: RSM and ANN modelling. Curr. Res. Green Sustain. Chem. 2021, 4, 100078. [Google Scholar] [CrossRef]
- Lai, H.; Fang, H.; Huang, L.; He, G.; Reible, D. A review on sediment bioflocculation: Dynamics, influencing factors and modeling. Sci. Total Environ. 2018, 642, 1184–1200. [Google Scholar] [CrossRef]
- Nouha, K.; Kumar, R.S.; Balasubramanian, S.; Tyagi, R.D. Critical review of EPS production, synthesis and composition for sludge flocculation. J. Environ. Sci. 2018, 66, 225–245. [Google Scholar] [CrossRef] [Green Version]
- Okaiyeto, K.; Nwodo, U.U.; Mabinya, L.V.; Okoh, A.I. Characterization of a bioflocculant produced by a consortium of Halomonas sp. Okoh and Micrococcus sp. Leo. Int. J. Environ. Res. Public Health 2013, 10, 5097–5110. [Google Scholar] [CrossRef] [Green Version]
- Ogunlaja, A.; Ibidunni, B.; Oyende, K.; Ogunlaja, O. Optimization of bioflocculant production by bacteria isolated from oil-polluted soil and fermented maize effluent. Ife J. Sci. 2020, 22, 201–210. [Google Scholar] [CrossRef]
- Awolusi, O.O.; Ademakinwa, A.N.; Ojo, A.; Erasmus, M.; Bux, F.; Agunbiade, M.O. Marine actinobacteria bioflocculant: A storehouse of unique biotechnological resources for wastewater treatment and other applications. Appl. Sci. 2020, 10, 7671. [Google Scholar] [CrossRef]
- Poli, A.; Finore, I.; Romano, I.; Gioiello, A.; Lama, L.; Nicolaus, B. Microbial diversity in extreme marine habitats and their biomolecules. Microorganisms 2017, 5, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stabnikova, O.; Stabnikov, V.; Marinin, A.; Klavins, M.; Vaseashta, A. The role of microplastics biofilm in accumulation of trace metals in aquatic environments. World J. Microbiol. Biotechnol. 2022, 38, 117. [Google Scholar] [CrossRef] [PubMed]
- Finore, I.; Di Donato, P.; Mastascusa, V.; Nicolaus, B.; Poli, A. Fermentation technologies for the optimization of marine microbial exopolysaccharide production. Mar. Drugs 2014, 12, 3005–3024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nkosi, N.C.; Basson, A.K.; Ntombela, Z.G.; Maliehe, T.S.; Pullabhotla, R.V.S.R. Isolation, identification and characterization of bioflocculant-producing bacteria from activated sludge of Vulindlela Wastewater Treatment Plant. Appl. Microbiol. 2021, 1, 586–606. [Google Scholar] [CrossRef]
- More, T.T.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Biopolymers production by mixed culture and their applications in water and wastewater treatment. Water Environ. Res. 2015, 87, 533–546. [Google Scholar] [CrossRef]
- Pillay, S.; Amoako, D.G.; Abia, A.L.K.; Somboro, A.M.; Shobo, C.O.; Perrett, K.; Bester, L.A.; Essack, S.Y. Characterisation of Campylobacter spp. isolated from poultry in KwaZulu-Natal, South Africa. Antibiotics 2020, 9, 42. [Google Scholar] [CrossRef] [Green Version]
- Tsilo, P.H.; Basson, A.K.; Ntombela, Z.G.; Maliehe, T.S.; Pullabhotla, R.V. Isolation and optimization of culture conditions of a bioflocculant-producing fungi from Kombucha tea SCOBY. Microbiol. Res. 2021, 12, 950–966. [Google Scholar] [CrossRef]
- Ngema, S.; Basson, A.; Maliehe, T. Synthesis, characterization and application of polyacrylamide grafted bioflocculant. Phys. Chem. Earth Parts A/B/C 2020, 115, 102821. [Google Scholar] [CrossRef]
- Maliehe, T.; Simonis, J.; Basson, A.; Reve, M.; Ngema, S.; Xaba, P. Production, characterisation and flocculation mechanism of bioflocculant TMT-1 from marine Bacillus pumilus JX860616. Afr. J. Biotechnol. 2016, 15, 2352–2367. [Google Scholar]
- Makapela, B.; Okaiyeto, K.; Ntozonke, N.; Nwodo, U.U.; Green, E.; Mabinya, L.V.; Okoh, A.I. Assessment of Bacillus pumilus isolated from fresh water milieu for bioflocculant production. Appl. Sci. 2016, 6, 211. [Google Scholar] [CrossRef] [Green Version]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Aljuboori, A.H.R.; Idris, A.; Al-Joubory, H.H.R.; Uemura, Y.; Abubakar, B.I. Flocculation behavior and mechanism of bioflocculant produced by Aspergillus flavus. J. Environ. Manag. 2015, 150, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Ugbenyen, A.M.; Simonis, J.J.; Basson, A.K. Screening for bioflocculant-producing bacteria from the marine environment of Sodwana Bay, South Africa. Ann. Sci. Technol. 2018, 3, 16–20. [Google Scholar] [CrossRef] [Green Version]
- Ntozonke, N.; Okaiyeto, K.; Okoli, A.S.; Olaniran, A.O.; Nwodo, U.U.; Okoh, A.I. A marine bacterium, Bacillus sp. isolated from the sediment samples of Algoa Bay in South Africa Produces a Polysaccharide-Bioflocculant. Int. J. Environ. Res. Public Health 2017, 14, 1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ugbenyen, A.; Cosa, S.; Mabinya, L.; Babalola, O.O.; Aghdasi, F.; Okoh, A. Thermostable bacterial bioflocculant produced by Cobetia spp. isolated from Algoa Bay (South Africa). Int. J. Environ. Res. Public Health 2012, 9, 2108–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouveia, J.G.; Silva, A.L.d.S.; dos Santos, E.C.; Martins, E.S.; López, A.M. Optimization of bioflocculant production by Bacillus spp. from sugarcane crop soil or from sludge of the agroindustrial effluent. Braz. J. Chem. Eng. 2019, 36, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Vimala, R. Production and flocculating performance of bioflocculant by bacterial strain and its application for municipal wastewater treatment. J. Pure Appl. Microbiol. 2019, 13, 1673–1682. [Google Scholar] [CrossRef] [Green Version]
- Ugbenyen, A.; Cosa, S.; Mabinya, L.; Okoh, A. Bioflocculant production by Bacillus sp. Gilbert isolated from a marine environment in South Africa. Appl. Biochem. Microbiol. 2014, 50, 49–54. [Google Scholar] [CrossRef]
- Diao, H.; Li, L.M.; Liang, J.; Ding, X. Screening of High-performance Flocculant-producing Bacteria and Optimization of the Conditions for Flocculation of Wheat Distillery Wastewater. BioResources 2018, 13, 7738–7757. [Google Scholar] [CrossRef]
- Salehizadeh, H.; Shojaosadati, S. Extracellular biopolymeric flocculants: Recent trends and biotechnological importance. Biotechnol. Adv. 2001, 19, 371–385. [Google Scholar] [CrossRef]
- Zhang, Z.-Q.; Bo, L.; Xia, S.-Q.; Wang, X.-J.; YANG, A.-M. Production and application of a novel bioflocculant by multiple-microorganism consortia using brewery wastewater as carbon source. J. Environ. Sci. 2007, 19, 667–673. [Google Scholar] [CrossRef]
- Arafa, R.A.; El-Rouby, M.N.; Abass, H.A.; El-Khier, Z. Bioflocculants produced by bacterial isolates from Egyptian soil 1-characterization and application of extracellular bioflocculants and nanoparticles for treatment of river Nile water. J. Pharm. Biol. Sci. 2014, 9, 103–114. [Google Scholar] [CrossRef]
- Lin, J.; Harichund, C. Isolation and characterization of heavy metal removing bacterial bioflocculants. Afr. J. Microbiol. Res. 2011, 5, 599–607. [Google Scholar]
- Guo, J.; Yu, J. Sorption characteristics and mechanisms of Pb (II) from aqueous solution by using bioflocculant MBFR10543. Appl. Microbiol. Biotechnol. 2014, 98, 6431–6441. [Google Scholar] [CrossRef] [PubMed]
- Cosa, S.; Okoh, A. Bioflocculant production by a consortium of two bacterial species and its potential application in industrial wastewater and river water treatment. Pol. J. Environ. Stud. 2014, 23, 689–696. [Google Scholar]
- He, J.; Zou, J.; Shao, Z.; Zhang, J.; Liu, Z.; Yu, Z. Characteristics and flocculating mechanism of a novel bioflocculant HBF-3 produced by deep-sea bacterium mutant Halomonas sp. V3a’. World J. Microbiol. Biotechnol. 2010, 26, 1135–1141. [Google Scholar] [CrossRef]
- Hu, Y.; Gu, Z.; He, J.; Li, Q. Novel strategy for controlling colloidal instability during the flocculation pretreatment of landfill leachate. Chemosphere 2022, 287, 132051. [Google Scholar] [CrossRef]
- Gong, W.-X.; Wang, S.-G.; Sun, X.-F.; Liu, X.-W.; Yue, Q.-Y.; Gao, B.-Y. Bioflocculant production by culture of Serratia ficaria and its application in wastewater treatment. Bioresour. Technol. 2008, 99, 4668–4674. [Google Scholar] [CrossRef]
- Sekelwa, C.; Anthony, U.M.; Vuyani, M.L.; Anthony, O.I. Characterization of a thermostable polysaccharide bioflocculant produced by Virgibacillus species isolated from Algoa bay. Afr. J. Microbiol. Res. 2013, 7, 2925–2938. [Google Scholar]
- Okaiyeto, K.; Nwodo, U.U.; Mabinya, L.V.; Okoli, A.S.; Okoh, A.I. Characterization of a bioflocculant (MBF-UFH) produced by Bacillus sp. AEMREG7. Int. J. Mol. Sci. 2015, 16, 12986–13003. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Wang, Y.; Yu, Y.; Li, Q.; Wang, H.; Chen, R.; He, N. Production and characterization of a novel bioflocculant from Bacillus licheniformis. Appl. Environ. Microbiol. 2010, 76, 2778–2782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd-El-Haleem, D.A.; Al-Thani, R.F.; Al-Mokemy, T.; Al-Marii, S.; Hassan, F. Isolation and characterization of extracellular bioflocculants produced by bacteria isolated from Qatari ecosystems. Pol. J. Microbiol. 2008, 57, 231–239. [Google Scholar] [PubMed]
- Tang, W.; Song, L.; Li, D.; Qiao, J.; Zhao, T.; Zhao, H. Production, characterization, and flocculation mechanism of cation independent, pH tolerant, and thermally stable bioflocculant from Enterobacter sp. ETH-2. PLoS ONE 2014, 9, e114591. [Google Scholar] [CrossRef] [Green Version]
- Agunbiade, M.O.; Van Heerden, E.; Pohl, C.H.; Ashafa, A.T. Flocculating performance of a bioflocculant produced by Arthrobacter humicola in sewage waste water treatment. BMC Biotechnol. 2017, 17, 51. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Kaur, T.; Bridle, H.; Ghosh, M. Antimicrobial efficacy and safety of mucoadhesive exopolymer produced by Acinetobacter haemolyticus. Int. J. Biol. Macromol. 2017, 94, 187–193. [Google Scholar] [CrossRef]
- Li, H.; Wu, S.; Du, C.; Zhong, Y.; Yang, C. Preparation, performances, and mechanisms of microbial flocculants for wastewater treatment. Int. J. Environ. Res. Public Health 2020, 17, 1360. [Google Scholar] [CrossRef] [Green Version]
- Cruz, D.; Pimentel, M.; Russo, A.; Cabral, W. Charge neutralization mechanism efficiency in water with high color turbidity ratio using aluminium sulfate and flocculation index. Water 2020, 12, 572. [Google Scholar] [CrossRef] [Green Version]
- Kamaruddin, M.A.; Yusoff, M.S.; Aziz, H.A.; Basri, N.K. Removal of COD, ammoniacal nitrogen and colour from stabilized landfill leachate by anaerobic organism. Appl. Water Sci. 2013, 3, 359–366. [Google Scholar] [CrossRef] [Green Version]
- Agunbiade, M.; Oladipo, B.; Ademakinwa, A.N.; Awolusi, O.; Adesiyan, I.M.; Oyekola, O.; Ololade, O.; Ojo, A. Bioflocculant produced by Bacillus velezensis and its potential application in brewery wastewater treatment. Sci. Rep. 2022, 12, 1–12. [Google Scholar] [CrossRef]
- Pathak, M.; Devi, A.; Bhattacharyya, K.; Sarma, H.; Subudhi, S.; Lal, B. Production of a non-cytotoxic bioflocculant by a bacterium utilizing a petroleum hydrocarbon source and its application in heavy metal removal. RSC Adv. 2015, 5, 66037–66046. [Google Scholar] [CrossRef]
Bacterial Strain Code | FA (%) ± SD (%) | Molecular Identification |
---|---|---|
SDM3 | 67.5 ± 0.7 | – |
SDN6 | 64.2 ± 0.6 | – |
SDM7 | 64.8 ± 2.1 | – |
SDN9 | 80.3 ± 0.8 | Bacillus subtilis CSM5 |
SDM11 | 72.2 ± 0.3 | – |
SDN10 | 74.2 ± 2.2 | – |
SDM4 | 60.4 ± 0.1 | – |
SDN8 | 65 ± 0.5 | – |
SDN2 | 67 ± 1.0 | – |
Inoculum Size (%) | FA (%) ± SD | Carbon Source | FA (%) ± SD | Nitrogen Source | FA (%) ± SD | pH | FA (%) ± SD | Temperature (°C) | FA (%) ± SD | Time (Hours) | FA (%) ± SD |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 75.3 ± 1 a | Glucose | 73.8 ± 4 c,d | Casein | 31.7 ± 1 b | 3 | 57 ± 3 a | 20 | 71 ± 1 a,c | 12 | 60 ± 4 a |
2 | 66.3 ± 1 a | Starch | 77.1 ± 4 b,c | Yeast extract | 48.4 ± 2 b | 4 | 78 ± 2 b,c | 25 | 80 ± 4 a,b | 24 | 61 ± 1 a,c |
3 | 69.4 ± 3 a | Sucrose | 86.3 ± 2 a,b,c | (NH4)2SO4 | 77.0 ± 1 a | 5 | 81 ± 0 b,c | 30 | 83 ± 0 b | 36 | 61 ± 0 a,c |
4 | 66.2 ± 0 a | Lactose | 89.3 ± 5 a,b,c | Urea | 91.1 ± 5 a | 6 | 72 ± 1 a,b | 35 | 78 ± 1 a,b | 48 | 79 ± 1 b |
Maltose | 92.4 ± 2 a,b | Peptone | 85.3 ± 3 a | 7 | 83 ± 1 b,c | 40 | 63 ± 3 c | 60 | 83 ± 2 b | ||
Fructose | 94.1 ± 1 a | 8 | 84 ± 5 b,c | 72 | 92 ± 1 c | ||||||
9 | 91 ± 0 c | 84 | 90 ± 0 a,c | ||||||||
10 | 92 ± 1 c | 96 | 89 ± 3 a,c | ||||||||
11 | 85 ± 3 b,c | ||||||||||
12 | 80 ± 1 b,c |
Dosage Size (mg/mL) | FA (%) ± SD | Cations | FA (%) ± SD |
---|---|---|---|
0.2 | 80.1 ± 0.5 a | Na+ | 67.8 ± 2.2 a |
0.4 | 82.4 ± 1.0 a | K+ | 70.2 ± 0.4 a |
0.6 | 86 ± 1.0 b | Li+ | 71.6 ± 1.5 a |
0.8 | 84.5 ± 1.4 a,b | Ca2+ | 77.4 ± 0.6 d |
1 | 82.6 ± 1.5 a | Mn2+ | 83.7 ± 1.4 c |
Ba2+ | 85.8 ± 1 c | ||
Fe3+ | 44.8 ± 2.21 b | ||
Control (Without cation) | 51.3 ± 2.1 b |
Samples | Zeta Potential Values (mV) |
---|---|
Bioflocculant | −16.5 ± 1.1 |
Kaolin particles | −6.59 ± 3.0 |
Mixture of kaolin with Ba2+ | −7.01 ± 1.0 |
Mixture of kaolin particles flocculated by the bioflocculant in the presence of Ba2+ | −5.5 ± 2.1 |
Flocculants | BOD Reduction (%) | COD Reduction (%) |
---|---|---|
Bioflocculant | 59 ± 3.1 a | 75 ± 0.4 a |
Aluminium sulphate | 65 ± 0.5 b | 62 ± 1.0 b |
FeCl3 | 63 ± 2.8 b | 73 ± 0.5 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maliehe, T.S.; Moganedi, K.; Masoko, P.; Selepe, T.N. Isolation of a Marine Bacterium and Application of Its Bioflocculant in Wastewater Treatment. Microbiol. Res. 2022, 13, 584-597. https://doi.org/10.3390/microbiolres13030041
Maliehe TS, Moganedi K, Masoko P, Selepe TN. Isolation of a Marine Bacterium and Application of Its Bioflocculant in Wastewater Treatment. Microbiology Research. 2022; 13(3):584-597. https://doi.org/10.3390/microbiolres13030041
Chicago/Turabian StyleMaliehe, Tsolanku Sidney, Kgabo Moganedi, Peter Masoko, and Tlou Nelson Selepe. 2022. "Isolation of a Marine Bacterium and Application of Its Bioflocculant in Wastewater Treatment" Microbiology Research 13, no. 3: 584-597. https://doi.org/10.3390/microbiolres13030041
APA StyleMaliehe, T. S., Moganedi, K., Masoko, P., & Selepe, T. N. (2022). Isolation of a Marine Bacterium and Application of Its Bioflocculant in Wastewater Treatment. Microbiology Research, 13(3), 584-597. https://doi.org/10.3390/microbiolres13030041