Options for Increasing the Rate of Bioleaching of Arsenic Containing Copper Concentrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flotation Concentrate
2.2. Microbial Population
2.3. Alkaline Sulfide Leaching
2.4. Experimental Setup and Biooxidation
2.5. Microbial Population Analysis
2.6. Sampling and Analysis
2.7. Data Processing
3. Results
3.1. Alkaline Sulfide Leaching
3.2. Bioleaching
3.3. Microbial Population Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.; Zhao, H.; Abashina, T.; Vainshtein, M. Review on arsenic removal from sulfide minerals: An emphasis on enargite and arsenopyrite. Min. Eng. 2021, 172, 107133. [Google Scholar] [CrossRef]
- Silva, R.A.; Park, I.; Ilyas, S.; Borja, D.; Zhao, H.; Urík, M.; Rastegar, S.O.; Kim, H. Biodegradation mechanism of arsenopyrite mine tailing with Acidithiobacillus ferrooxidans and influence of ferric supplements. Int. Biodeterior. Biodegrad. 2020, 153, 105042. [Google Scholar] [CrossRef]
- Seitkamal, K.N.; Zhappar, N.K.; Shaikhutdinov, V.M.; Shibayeva, A.K.; Ilyas, S.; Korolkov, I.V.; Kim, H. Bioleaching for the Removal of Arsenic from Mine Tailings by Psychrotolerant and Mesophilic Microbes at Markedly Continental Climate Temperatures. Minerals 2020, 10, 972. [Google Scholar] [CrossRef]
- Filippou, D.; St-Germain, P.; Grammatikopoulos, T. Recovery of metal values from copper—Arsenic minerals and other related resources. Miner. Process Extr. Metall. Rev. 2007, 28, 247–298. [Google Scholar] [CrossRef]
- Diaz, J.A.; Serrano, J.; Leiva, E. Bioleaching of Arsenic-Bearing Copper Ores. Minerals 2018, 8, 215. [Google Scholar] [CrossRef] [Green Version]
- Yagudin, R.A.; Yagudina, Y.R.; Zimin, A.V.; Nemchinova, L.A.; Yurlova, N.A. Improvement of quality of copper concentrate at “Uchalinsky Mining and Concentrating Plant”. Gorn. Zhurnal. 2010, 10, 52–56. [Google Scholar]
- Johnson, D.B. Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Curr. Opin. Biotechnol. 2014, 30, 24–31. [Google Scholar] [CrossRef]
- Gericke, M.; Neale, J.W.; van Staden, P.J. A Mintek perspective of the past 25 years in minerals bioleaching. J. South. Afr. Inst. Min. Metall. 2009, 109, 567–585. [Google Scholar]
- Morin, D.H.R.; d’Hugues, P. Bioleaching of a cobalt containing pyrite in stirred reactors: A case study from laboratory scale to industrial application. In Biomining; Rawlings, D.E., Johnson, B.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 35–55. [Google Scholar]
- Neale, J.; Seppälä, J.; Laukka, A.; van Aswegen, P.; Barnett, S.; Gericke, M. The MONDO Minerals Nickel Sulfide Bioleach Project: From Test Work to Early Plant Operation. Solid State Phenom. 2017, 262, 28–32. [Google Scholar] [CrossRef]
- Johnson, D.B. The Evolution, Current Status, and Future Prospects of Using Biotechnologies in the Mineral Extraction and Metal Recovery Sectors. Minerals 2018, 8, 343. [Google Scholar] [CrossRef] [Green Version]
- Rawlings, D.E.; Coram, N.J.; Gardner, M.N.; Deane, S.M. Thiobacillus caldus and Leptospirillum ferrooxidans are widely distributed in continuous flow biooxidation tanks used to treat a variety of metal containing ores and concentrates. Process Metall. 1999, 9, 777–786. [Google Scholar]
- Okibe, N.; Gericke, M.; Hallberg, K.B.; Johnson, D.B. Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred tank bioleaching operation. Appl. Environ. Microbiol. 2003, 69, 1936–1943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dopson, M.; Lindstrom, E.B. Analysis of community composition during moderately thermophilic bioleaching of pyrite, arsenical pyrite, and chalcopyrite. Microb. Ecol. 2004, 48, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Bulaev, A.; Melamud, V.; Boduen, A. Bioleaching of non-ferrous metals from arsenic-bearing sulfide concentrate. Solid State Phenom. 2020, 299, 1064–1068. [Google Scholar] [CrossRef]
- Vakylabad, A.B. A comparison of bioleaching ability of mesophilic and moderately thermophilic culture on copper bioleaching from flotation concentrate and smelter dust. Int. J. Miner. Process. 2011, 101, 94–99. [Google Scholar] [CrossRef]
- Liu, H.; Xia, J.; Nie, Z.; Liu, L.; Wang, L.; Ma, C.; Zheng, L.; Zhao, Y.; Wen, W. Comparative study of S, Fe and Cu speciation transformation during chalcopyrite bioleaching by mixed mesophiles and mixed thermophiles. Miner. Eng. 2017, 106, 22–32. [Google Scholar] [CrossRef]
- Elkina, Y.A.; Bulaev, A.G.; Melnikova, E.A.; Melamud, V.S. Bioleaching of enargite and tennantite by moderately thermophilic acidophilic microorganisms. Microbiology 2020, 89, 413–424. [Google Scholar] [CrossRef]
- Munoz, J.A.; Blazquez, M.L.; Gonzalez, F.; Ballester, A.; Acevedo, F.; Gentina, J.C.; Gonzalez, P. Electrochemical study of enargite bioleaching by mesophilic and thermophilic microorganisms. Hydrometallurgy 2006, 84, 175–186. [Google Scholar] [CrossRef]
- Bulaev, A.; Nechaeva, A.; Elkina, Y.; Melamud, V. Effect of carbon sources on pyrite-arsenopyrite concentrate bio-oxidation and growth of microbial population in stirred tank reactors. Microorganisms 2021, 9, 2350. [Google Scholar] [CrossRef]
- Watling, H.R. The bioleaching of sulphide minerals with emphasis on copper sulphides—A review. Hydrometallurgy 2006, 84, 81–108. [Google Scholar] [CrossRef]
- You, J.; Solongo, S.K.; Gomez-Flores, A.; Choi, S.; Zhao, H.; Urík, M.; Ilyas, S.; Kim, H. Intensified bioleaching of chalcopyrite concentrate using adapted mesophilic culture in continuous stirred tank reactors. Bioresour. Technol. 2020, 307, 123181. [Google Scholar] [CrossRef] [PubMed]
- Baba, A.A.; Ayinla, K.I.; Adekola, F.A.; Ghosh, M.K.; Ayanda, O.S.; Bale, R.B.; Sheik, A.R.; Pradhan, S.R. A Review on Novel Techniques for Chalcopyrite Ore Processing. Int. J. Min. Eng. Miner. Process. 2012, 1, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Pietrzyk, S.; Tora, B. Trends in global copper mining—A review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 427, 012002. [Google Scholar] [CrossRef]
- Conner, K.; Anderson, C. Enargite treatments and pressure oxidation of concentrates. J. Met. Eng. 2013, 10, 115–123. [Google Scholar]
- Salomon-De-Friedberg, H.; Robinson, T.; Lossin, A.; Omaynikova, V. Developing copper arsenic resources with CESL technology. In Proceedings of the COM 2014, 53rd Annual Conference of Metallurgists, Vancouver, BC, Canada, 28 September–1 October 2014. [Google Scholar]
- Tongamp, W.; Takasaki, Y.; Shibayama, A. Arsenic removal from copper ores and concentrates through alkaline leaching in NaHS media. Hydrometallurgy 2009, 98, 213–218. [Google Scholar] [CrossRef]
- Curreli, L.; Garbarino, C.; Ghiani, M.; Orru, G. Arsenic leaching from a gold bearing enargite flotation concentrate. Hydrometallurgy 2009, 96, 258–263. [Google Scholar] [CrossRef]
- Awe, S.A.; Sandstrom, A. Selective leaching of arsenic and antimony from a tetrahedrite rich complex sulphide concentrate using alkaline sulphide solution. Miner. Eng. 2010, 23, 1227–1236. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.; Zhang, B.; Zhang, J.; Qin, W. Selective leaching of arsenic from enargite concentrate using alkaline leaching in the presence of pyrite. Hydrometallurgy 2018, 181, 143–147. [Google Scholar] [CrossRef]
- Safarzadeh, M.S.; Moats, M.S.; Miller, J.D. Recent Trends in the Processing of Enargite Concentrates. Miner. Process. Extr. Met. Rev. Int. J. 2014, 35, 283–367. [Google Scholar] [CrossRef]
- Fountain, C. The whys and wherefores of penalty elements in copper concentrates. In Proceedings of the MetPlant 2013, Australasian Institute of Mining and Metallurgy, Perth, WA, Australia, 15–17 July 2013. [Google Scholar]
- Elkina, Y.A.; Melamud, V.S.; Bulaev, A.G. Bioleaching of a Copper-Zinc Concentrate with High Arsenic Content. Microbiology 2021, 90, 78–86. [Google Scholar] [CrossRef]
- Bulaev, A.; Elkina, Y.; Melamud, V. Copper and zinc bioleaching from arsenic-containing polymetallic concentrate. In Proceedings of the 19th International Multidisciplinary Scientific GeoConference (SGEM 2019), Vienna, Austria, 9–11 December 2019. [Google Scholar] [CrossRef]
- Elkina, Y.; Nechaeva, A.; Artykova, A.; Kolosoff, A.; Bugubaeva, A.; Melamud, V.; Mardanov, A.; Bulaev, A. Continuous bioleaching of arsenic-containing copper-zinc concentrate and shift of microbial population under various conditions. Minerals 2022, 12, 592. [Google Scholar] [CrossRef]
- Artykova, A.V.; Melamud, V.S.; Boduen, A.Y.; Bulaev, A.G. Two-stage leaching of copper-zinc concentrate containing tennantite. IOP Conf. Ser. Earth Environ. Sci. 2020, 548, 062042. [Google Scholar] [CrossRef]
- Artykova, A.V.; Melamud, V.S.; Boduen, A.Y.; Bulaev, A.G. Possibility of environment-friendly hydrometallurgical treatment of copper-zinc concentrate containing arsenic. IOP Conf. Ser. Earth Environ. Sci. 2021, 666, 032062. [Google Scholar] [CrossRef]
- Boduen, A.Y.; Petrov, G.V.; Kobylyansky, A.A.; Bulaev, A.G. Sulfide leaching of high-grade arsenic copper concentrates. Obogashchenie Rudthis 2022, 1, 14–20. [Google Scholar] [CrossRef]
- Lane, D.J.; Cook, N.J.; Grano, S.R.; Ehrig, K. Selective leaching of penalty elements from copper concentrates: A review. Min. Eng. 2016, 98, 110–121. [Google Scholar] [CrossRef]
- Filippova, N.A. Fazovyi Analiz Rud i Produktov ikh Pererabotki (Phase Analysis of Ores and Products of Their Processing); Khimiya: Moscow, Russia, 1975; 280p. (In Russian) [Google Scholar]
- Reznikov, A.A.; Mulikovskaya, E.P.; Sokolov, I.Y. Metody Analiza Prirodnykh Vod (Methods for Analysis of Natural Waters); Nedra: Moscow, Russia, 1970; 140p. (In Russian) [Google Scholar]
- Rodriguez, Y.; Ballester, B.; Blazquez, M.L.; Gonzalez, F.; Munoz, J.A. New information on the chalcopyrite bioleaching mechanism at low and high temperature. Hydrometallurgy 2003, 71, 47–56. [Google Scholar] [CrossRef]
- Jyothi, N.; Sudha, K.N.; Natarajan, K.A. Electrochemical aspects of selective bioleaching of sphalerite and chalcopyrite from mixed sulphides. Int. J. Min. Process. 1989, 27, 189–203. [Google Scholar] [CrossRef]
- Schippers, A.; Sand, W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl. Environ. Microbiol. 1999, 65, 319–321. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, A.; Cezac, P.; Hoadley, A.F.A.; Contaminea, F.; D’Hugues, P. A review of sulfide minerals microbially assisted leaching in stirred tank reactors. Int. Biodeterior. Biodegrad. 2017, 119, 118–146. [Google Scholar] [CrossRef]
- Melamud, V.S.; Pivovarova, T.A.; Kondrat’eva, T.F.; Karavaiko, G.I. Study of oxidation by bacteria of a difficult-to-dress gold-containing pyrite-arsenopyrite concentrate under moderately thermophilic conditions. Appl. Biochem. Microbiol. 1999, 35, 161–167. [Google Scholar]
Content, % | |||||||
---|---|---|---|---|---|---|---|
As | Fe | Cu | Zn | Stotal | Ssulfate | S0 | Ssulfide |
1.7 | 27.9 | 5.82 | 7.95 | 35.8 | 3.1 | 0.6 | 32.1 |
Content, % | |||||||
---|---|---|---|---|---|---|---|
As | Fe | Cu | Zn | Stotal | Ssulfate | S0 | Ssulfide |
0.185 | 28.9 | 6.05 | 7.97 | 35.9 | 1.3 | 3.1 | 31.5 |
Product | pH | Eh, mV | Concentration, g/L | |||
---|---|---|---|---|---|---|
Fe3+ | Fe2+ | Cu2+ | Zn2+ | |||
Concentrate | 1.07 ± 0.09 | 849 ± 15 | 17.50 ± 1.07 | 0.02 ± 0.05 | 1.52 ± 0.14 | 5.67 ± 0.19 |
ASL residue | 1.12 ± 0.05 | 854 ± 23 | 18.33 ± 2.1 | 0.04 ± 0.10 | 3.64 ± 0.14 | 3.96 ± 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Artykova, A.; Elkina, Y.; Nechaeva, A.; Melamud, V.; Boduen, A.; Bulaev, A. Options for Increasing the Rate of Bioleaching of Arsenic Containing Copper Concentrate. Microbiol. Res. 2022, 13, 466-479. https://doi.org/10.3390/microbiolres13030032
Artykova A, Elkina Y, Nechaeva A, Melamud V, Boduen A, Bulaev A. Options for Increasing the Rate of Bioleaching of Arsenic Containing Copper Concentrate. Microbiology Research. 2022; 13(3):466-479. https://doi.org/10.3390/microbiolres13030032
Chicago/Turabian StyleArtykova, Alena, Yuliya Elkina, Aleksandra Nechaeva, Vitaliy Melamud, Anna Boduen, and Aleksandr Bulaev. 2022. "Options for Increasing the Rate of Bioleaching of Arsenic Containing Copper Concentrate" Microbiology Research 13, no. 3: 466-479. https://doi.org/10.3390/microbiolres13030032
APA StyleArtykova, A., Elkina, Y., Nechaeva, A., Melamud, V., Boduen, A., & Bulaev, A. (2022). Options for Increasing the Rate of Bioleaching of Arsenic Containing Copper Concentrate. Microbiology Research, 13(3), 466-479. https://doi.org/10.3390/microbiolres13030032