Isolation and Optimization of Culture Conditions of a Bioflocculant-Producing Fungi from Kombucha Tea SCOBY
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Bioflocculant-Producing Fungi
2.2. Isolates Fermentation Activation
2.3. Screening for Bioflocculant Production
2.4. Determination of the Flocculating Activity
2.5. Identification and Purification of Fungi
2.6. Optimization of Culture Conditions for Bioflocculant Production
2.6.1. Effect of Inoculum Size on Bioflocculant Production
2.6.2. Effect of Carbon and Nitrogen Sources on Bioflocculant Production
2.6.3. The Effect of Agitation on the Production of a Bioflocculant
2.6.4. Effect of Initial pH on Bioflocculant Production
2.6.5. Effect of Cations on Flocculating Activity
2.6.6. Effect of Cultivation Temperature on Bioflocculant Production
2.6.7. Time Course
2.7. Extraction and Purification of a Bioflocculant
2.8. Bioflocculant Surface Morphology Analysis
2.9. Chemical Analysis of the Purified Bioflocculant
2.9.1. Fourier Transform Infrared Spectrophotometer (FT-IT) Analysis
2.9.2. X-ray Diffraction Analysis of the Bioflocculant
2.10. Flocculation of a Purified Bioflocculant
2.10.1. Effect of Dosage Concentration on Flocculating Activity
2.10.2. Effect of Heat on Flocculating Activity
2.10.3. Effect of pH on Flocculating Activity
2.10.4. Effect of NaCl Concentration on Flocculating Activity
2.11. Statistical Analysis
3. Results and Discussion
3.1. Isolation and Identification of Fungi with Bioflocculant-Producing Potential
3.2. Optimization of Culture Conditions for Bioflocculant Production
3.2.1. Effect of Inoculum Size on Bioflocculant Production
3.2.2. Effect of Carbon Source on the Production of a Bioflocculant
3.2.3. Effect of Nitrogen Source on Bioflocculant Production
3.2.4. Effect of Agitation on the Bioflocculant Production
3.2.5. Effect of Cultivation Temperature on Bioflocculant Production
3.2.6. Effect of Cations on Bioflocculant Production
3.2.7. Effect of Initial pH on Bioflocculant Production
3.2.8. Time Course on Production for Bioflocculant
3.3. Extraction and Purification of the Bioflocculant
3.4. Characterization of the Purified Bioflocculant
3.4.1. Functional Groups of the Bioflocculant
3.4.2. Crystallinity of the Bioflocculant
3.4.3. Surface Morphology of the Bioflocculant
3.5. Flocculation Properties of the Purified Bioflocculant
3.5.1. Dosage Size Effect on Flocculating Activity
3.5.2. Effect of Temperature on the Bioflocculant
3.5.3. Effect of pH on Flocculating Activity on the Bioflocculant
3.5.4. Effect of Salinity on Flocculating Activity of the Bioflocculant
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, F.; Duan, S.; Kong, X.; Chen, X.; Yang, J.; Wang, A. Present status and development trend of studies on microbial flocculants. China Water Wastewater 2012, 28, 14–17. [Google Scholar]
- Abraham, J.; Singh, N.; Janapal, Y.; Kumar, N.U. Optimized bioflocculant production from Fungi using response surface methodology. Int. J. Pharm. Tech. Res. 2015, 8, 230–235. [Google Scholar]
- Aljuboori, A.H.R.; Idris, A.; Abdullah, N.; Mohamad, R. Production and characterization of a bioflocculant produced by Aspergillus flavus. Bioresour. Technol. 2013, 127, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Bao, H.-Y.; Xin, M.-X.; Liu, Y.-X.; Li, Q.; Zhang, Y.-F. Characterization of a bioflocculant from a newly isolated Vagococcus sp. W31. J. Zhejiang Univ. Sci. B 2006, 7, 186–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sam, S.; Kucukasik, F.; Yenigun, O.; Nicolaus, B.; Oner, E.T.; Yukselen, M.A. Flocculating performances of exopolysaccharides produced by a halophilic bacterial strain cultivated on agro-industrial waste. Bioresour. Technol. 2011, 102, 1788–1794. [Google Scholar] [CrossRef]
- Pu, L.; Zeng, Y.-J.; Xu, P.; Li, F.-Z.; Zong, M.-H.; Yang, J.-G.; Lou, W.-Y. Using a novel polysaccharide BM2 produced by Bacillus megaterium strain PL8 as an efficient bioflocculant for wastewater treatment. Int. J. Biol. Macromol. 2020, 162, 374–384. [Google Scholar] [CrossRef]
- Patil, S.V.; Patil, C.D.; Salunke, B.K.; Salunkhe, R.B.; Bathe, G.; Patil, D.M. Studies on characterization of bioflocculant exopolysaccharide of Azotobacter indicus and its potential for wastewater treatment. Appl. Biochem. Biotechnol. 2011, 163, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Pathak, M.; Sarma, H.K.; Bhattacharyya, K.G.; Subudhi, S.; Bisht, V.; Lal, B.; Devi, A. Characterization of a novel polymeric bioflocculant produced from bacterial utilization of n-hexadecane and its application in removal of heavy metals. Front. Microbiol. 2017, 8, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wauer, G.; Teien, H.-C. Risk of acute toxicity for fish during aluminium application to hardwater lakes. Sci. Total Environ. 2010, 408, 4020–4025. [Google Scholar] [CrossRef]
- Peleg, M.; Corradini, M.G. Microbial growth curves: What the models tell us and what they cannot. Crit. Rev. Food Sci. Nutr. 2011, 51, 917–945. [Google Scholar] [CrossRef]
- Zhang, Z.-Q.; Bo, L.; Xia, S.-Q.; Wang, X.-J.; Yang, A.-M. Production and application of a novel bioflocculant by multiple-microorganism consortia using brewery wastewater as carbon source. J. Environ. Sci. 2007, 19, 667–673. [Google Scholar] [CrossRef]
- Ben Rebah, F.; Mnif, W.; M Siddeeg, S. Microbial flocculants as an alternative to synthetic polymers for wastewater treatment: A review. Symmetry 2018, 10, 556. [Google Scholar] [CrossRef] [Green Version]
- Tlou, N.S. Characterization of Selected Microbial Species for Bioflocculant Producing Potential and Comparison with Traditional Flocculants in Industrial Waste Water Treatment; University of Zululand: Richards Bay, South Africa, 2017. [Google Scholar]
- Sánchez-Porro, C.; Martin, S.; Mellado, E.; Ventosa, A. Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J. Appl. Microbiol. 2003, 94, 295–300. [Google Scholar] [CrossRef] [PubMed]
- La Torre, C.; Fazio, A.; Caputo, P.; Plastina, P.; Caroleo, M.C.; Cannataro, R.; Cione, E. Effects of Long-Term Storage on Radical Scavenging Properties and Phenolic Content of Kombucha from Black Tea. Molecules 2021, 26, 5474. [Google Scholar] [CrossRef] [PubMed]
- Watawana, M.I.; Jayawardena, N.; Gunawardhana, C.B.; Waisundara, V.Y. Health, wellness, and safety aspects of the consumption of kombucha. J. Chem. 2015, 2015, 591869. [Google Scholar] [CrossRef] [Green Version]
- Sinir, G.Ö.; Tamer, C.E.; Suna, S. Kombucha tea: A promising fermented functional beverage. In Fermented Beverages; Elsevier: Amsterdam, The Netherlands, 2019; pp. 401–432. [Google Scholar]
- Goh, C.H.; Heng, P.W.S.; Chan, L.W. Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr. Polym. 2012, 88, 1–12. [Google Scholar] [CrossRef]
- Četojević-Simin, D.D.; Velićanski, A.S.; Cvetković, D.D.; Markov, S.L.; Mrđanović, J.Ž.; Bogdanović, V.V.; Šolajić, S.V. Bioactivity of lemon balm kombucha. Food Bioprocess Technol. 2012, 5, 1756–1765. [Google Scholar] [CrossRef]
- Luo, Z.; Chen, L.; Chen, C.; Zhang, W.; Liu, M.; Han, Y.; Zhou, J. Production and characteristics of a bioflocculant by Klebsiella pneumoniae YZ-6 isolated from human saliva. Appl. Biochem. Biotechnol. 2014, 172, 1282–1292. [Google Scholar] [CrossRef]
- Pryce, T.; Palladino, S.; Kay, I.; Coombs, G. Rapid identification of fungi by sequencing the ITS1 and ITS2 regions using an automated capillary electrophoresis system. Med. Mycol. 2003, 41, 369–381. [Google Scholar] [CrossRef]
- Ray, A.; Banerjee, S.; Das, D. Microalgal bio-flocculation: Present scenario and prospects for commercialization. Environ. Sci. Pollut. Res. 2021, 28, 1–19. [Google Scholar] [CrossRef]
- Maliehe, T.; Simonis, J.; Basson, A.; Reve, M.; Ngema, S.; Xaba, P. Production, characterisation and flocculation mechanism of bioflocculant TMT-1 from marine Bacillus pumilus JX860616. Afr. J. Biotechnol. 2016, 15, 2352–2367. [Google Scholar]
- Salehizadeh, H.; Yan, N.; Farnood, R. Recent advances in polysaccharide bio-based flocculants. Biotechnol. Adv. 2018, 36, 92–119. [Google Scholar] [CrossRef] [PubMed]
- Nie, M.; Yin, X.; Jia, J.; Wang, Y.; Liu, S.; Shen, Q.; Li, P.; Wang, Z. Production of a novel bioflocculant MNXY1 by Klebsiella pneumoniae strain NY1 and application in precipitation of cyanobacteria and municipal wastewater treatment. J. Appl. Microbiol. 2011, 111, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Zhang, Z.; Wang, X.; Yang, A.; Chen, L.; Zhao, J.; Leonard, D.; Jaffrezic-Renault, N. Production and characterization of a bioflocculant by Proteus mirabilis TJ-1. Bioresour. Technol. 2008, 99, 6520–6527. [Google Scholar] [CrossRef] [PubMed]
- Okaiyeto, K.; Nwodo, U.U.; Mabinya, L.V.; Okoh, A.I. Characterization of a bioflocculant produced by a consortium of Halomonas sp. Okoh and Micrococcus sp. Leo. Int. J. Environ. Res. Public Health 2013, 10, 5097–5110. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhong, C.; Berkhouse, H.; Zhang, Y.; Lv, Y.; Lu, W.; Yang, Y.; Zhou, J. Removal of cadmium by bioflocculant produced by Stenotrophomonas maltophilia using phenol-containing wastewater. Chemosphere 2016, 155, 163–169. [Google Scholar] [CrossRef]
- Ntsaluba, L. Studies on Bioflocculant Production by a Consortium of Two Bacterial Species Belonging to the Methylobacterium and Actinobacterium Genera. Master’s Thesis, University of Fort Hare, Faculty of Science & Agriculture, Alice, South Africa, 2012. [Google Scholar]
- Makapela, B. Evaluation of Bioflocculant-Producing Potential of Bacillus Pumilus Strain Isolated from Tyume River in the Eastern Cape Province of South Africa. Master’s Thesis, University of Fort Hare, Alice, South Africa, 2015. [Google Scholar]
- Manheim, D.; Nelson, Y. Settling and bioflocculation of two species of algae used in wastewater treatment and algae biomass production. Environ. Prog. Sustain. Energy 2013, 32, 946–954. [Google Scholar] [CrossRef]
- David, O.; Oluwole, O.; Ayodele, O.; Lasisi, T. Characterisation of fungal bioflocculants and its application in water treatment. Curr. J. Appl. Sci. Technol. 2019, 34, 1–9. [Google Scholar] [CrossRef]
- Patiala, I. Studies on Polymeric Bioflocculant Producing Microorganisms. Master’s Thesis, Thapar Institute of Engineering and Technology, Patiala, India, 2005. [Google Scholar]
- Muthudineshkumar, R.; Anand, R. Anaerobic digestion of various feedstocks for second-generation biofuel production. In Advances in Eco-Fuels for a Sustainable Environment; Elsevier: Amsterdam, The Netherlands, 2019; pp. 157–185. [Google Scholar]
- Alonso-del-Real, J.; Pérez-Torrado, R.; Querol, A.; Barrio, E. Dominance of wine Saccharomyces cerevisiae strains over S. kudriavzevii in industrial fermentation competitions is related to an acceleration of nutrient uptake and utilization. Environ. Microbiol. 2019, 21, 1627–1644. [Google Scholar] [CrossRef] [Green Version]
- Dlamini, N.G. Biosynthesis of Copper Nanoparticles Using a Bioflocculant from Alcaligenis Faecalis, Characterization and Its Application. Master’s Thesis, University of Zululand, Richards Bay, South Africa, 2017. [Google Scholar]
- Dhaliwal, S.S.; Oberoi, H.S.; Sandhu, S.K.; Nanda, D.; Kumar, D.; Uppal, S.K. Enhanced ethanol production from sugarcane juice by galactose adaptation of a newly isolated thermotolerant strain of Pichia kudriavzevii. Bioresour. Technol. 2011, 102, 5968–5975. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Yu, G.; Ting, Y.P. Production of a bioflocculant by Aspergillus parasiticus and its application in dye removal. Colloids Surf. B Biointerfaces 2005, 44, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Xie, J.; Wang, A.; Wang, W.; Ma, D.; Liu, P. Effects of annealing temperature on the interfacial microstructure and bonding strength of Cu/Al clad sheets produced by twin-roll casting and rolling. J. Mater. Process. Technol. 2020, 285, 116804. [Google Scholar] [CrossRef]
- López-López, C.; Martín-Pascual, J.; Leyva-Díaz, J.C.; Martínez-Toledo, M.V.; Muñío, M.M.; Poyatos, J.M. Combined treatment of textile wastewater by coagulation–flocculation and advanced oxidation processes. Desalination Water Treat. 2016, 57, 13987–13994. [Google Scholar] [CrossRef]
- Nontembiso, P.; Sekelwa, C.; Leonard, M.V.; Anthony, O.I. Assessment of bioflocculant production by Bacillus sp. Gilbert, a marine bacterium isolated from the bottom sediment of Algoa Bay. Mar. Drugs 2011, 9, 1232–1242. [Google Scholar] [CrossRef]
- Rosu, C.M.; Avadanei, M.; Gherghel, D.; Mihasan, M.; Mihai, C.; Trifan, A.; Miron, A.; Vochita, G. Biodegradation and detoxification efficiency of azo-dye reactive orange 16 by Pichia kudriavzevii CR-Y103. Water Air Soil Pollut. 2018, 229, 1–18. [Google Scholar] [CrossRef]
- Mohammed, J.N.; Dagang, W.R.Z.W. Role of cationization in bioflocculant efficiency: A review. Environ. Process. 2019, 6, 355–376. [Google Scholar] [CrossRef]
- More, T.; Yadav, J.S.S.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Extracellular polymeric substances of bacteria and their potential environmental applications. J. Environ. Manag. 2014, 144, 1–25. [Google Scholar] [CrossRef]
- Nakata, K.; Kurane, R. Production of an extracellular polysaccharide bioflocculant by Klebsiella pneumoniae. Biosci. Biotechnol. Biochem. 1999, 63, 2064–2068. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.T.; Phan, T.H.M.; Tran, T.N.; Velmurugan, B.K.; Kiefer, R. Production of novel bio-flocculants from Klebsiella variicola BF1 using cassava starch wastewater and its application. Curr. Sci. 2019, 117, 00113891. [Google Scholar] [CrossRef]
- Ogunsade, O.O.; Bakare, M.K.; Adewale, I.O. Purification and characterization of bioflocculant produced by Bacillus amyloliquefaciens ABL 19 isolated from Adeti Stream, Ilesa, Osun State, Nigeria. Nat. Sci. 2015, 13, 54–64. [Google Scholar]
- Lian, B.; Chen, Y.; Zhao, J.; Teng, H.H.; Zhu, L.; Yuan, S. Microbial flocculation by Bacillus mucilaginosus: Applications and mechanisms. Bioresour. Technol. 2008, 99, 4825–4831. [Google Scholar] [CrossRef]
- Ntsangani, N.; Okaiyeto, K.; Uchechukwu, N.U.; Olaniran, A.O.; Mabinya, L.V.; Okoh, A.I. Bioflocculation potentials of a uronic acid-containing glycoprotein produced by Bacillus sp. AEMREG4 isolated from Tyhume River, South Africa. 3 Biotech 2017, 7, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngulube, T.; Gumbo, J.R.; Masindi, V.; Maity, A. An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review. J. Environ. Manag. 2017, 191, 35–57. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhong, S.; Lei, H.-y.; Chen, R.-w.; Yu, Q.; Li, H.-L. Production of a novel bioflocculant by Bacillus licheniformis X14 and its application to low temperature drinking water treatment. Bioresour. Technol. 2009, 100, 3650–3656. [Google Scholar] [CrossRef]
- Campos, V.; Fernandes, A.R.; Medeiros, T.A.; Andrade, E.L. Physicochemical characterization and evaluation of PGA bioflocculant in coagulation-flocculation and sedimentation processes. J. Environ. Chem. Eng. 2016, 4, 3753–3760. [Google Scholar] [CrossRef] [Green Version]
- Fang, D.; Shi, C. Characterization and flocculability of a novel proteoglycan produced by Talaromyces trachyspermus OU5. J. Biosci. Bioeng. 2016, 121, 52–56. [Google Scholar] [CrossRef]
- Li, N.-J.; Lan, Q.; Wu, J.-H.; Liu, J.; Zhang, X.-H.; Zhang, F.; Yu, H.-Q. Soluble microbial products from the white-rot fungus Phanerochaete chrysosporium as the bioflocculant for municipal wastewater treatment. Sci. Total Environ. 2021, 780, 146662. [Google Scholar] [CrossRef]
- Ndejiko, J.M.; Dagang, W.R.Z.W. Flocculation Behaviour of Bioflocculant Produced from Chicken Viscera; E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2019; p. 01013. [Google Scholar]
- Pan, Y.; Shi, B.; Zhang, Y. Research on flocculation property of bioflocculant PG. a21 Ca. Mod. Appl. Sci. 2009, 3, 106–112. [Google Scholar] [CrossRef]
- Sarkar, B.; Chakrabarti, P.; Vijaykumar, A.; Kale, V. Wastewater treatment in dairy industries—possibility of reuse. Desalination 2006, 195, 141–152. [Google Scholar] [CrossRef]
- Wang, L.; Ma, F.; Qu, Y.; Sun, D.; Li, A.; Guo, J.; Yu, B. Characterization of a compound bioflocculant produced by mixed culture of Rhizobium radiobacter F2 and Bacillus sphaeicus F6. World J. Microbiol. Biotechnol. 2011, 27, 2559–2565. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, Y.; Yu, Y.; Li, Q.; Wang, H.; Chen, R.; He, N. Production and characterization of a novel bioflocculant from Bacillus licheniformis. Appl. Environ. Microbiol. 2010, 76, 2778–2782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waites, M.J.; Morgan, N.L.; Rockey, J.S.; Higton, G. Industrial Microbiology: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Li, C.; Zhang, X.; Guo, Y.; Seidi, F.; Shi, X.; Xiao, H. Naturally Occurring Exopolysaccharide Nanoparticles: Formation Process and Their Application in Glutathione Detection. ACS Appl. Mater. Interfaces 2021, 13, 19756–19767. [Google Scholar] [CrossRef] [PubMed]
- Dlamini, N.G.; Basson, A.K.; Pullabhotla, V. Biosynthesis and characterization of copper nanoparticles using a bioflocculant extracted from alcaligenis faecalis HCB2. Adv. Sci. Eng. Med. 2019, 11, 1064–1070. [Google Scholar] [CrossRef]
- Kavita, K.; Singh, V.K.; Mishra, A.; Jha, B. Characterisation and anti-biofilm activity of extracellular polymeric substances from Oceanobacillus iheyensis. Carbohydr. Polym. 2014, 101, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Ugbenyen, A.; Cosa, S.; Mabinya, L.; Okoh, A. Bioflocculant production by Bacillus sp. Gilbert isolated from a marine environment in South Africa. Appl. Biochem. Microbiol. 2014, 50, 49–54. [Google Scholar] [CrossRef]
- Richardson, P.F.; Connelly, L.J. Industrial coagulants and flocculants. In Reagents in Mineral Technology; Routledge: London, UK, 2018; pp. 519–558. [Google Scholar]
- Pu, S.; Ma, H.; Deng, D.; Xue, S.; Zhu, R.; Zhou, Y.; Xiong, X. Isolation, identification, and characterization of an Aspergillus niger bioflocculant-producing strain using potato starch wastewater as nutrilite and its application. PLoS ONE 2018, 13, e0190236. [Google Scholar] [CrossRef]
- Pu, S.-Y.; Qin, L.-L.; Che, J.-P.; Zhang, B.-R.; Xu, M. Preparation and application of a novel bioflocculant by two strains of Rhizopus sp. using potato starch wastewater as nutrilite. Bioresour. Technol. 2014, 162, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, Y.; Liu, L.; Jiang, X.; Zhang, K.; Zheng, T.; Wang, H. First evidence of bioflocculant from Shinella albus with flocculation activity on harvesting of Chlorella vulgaris biomass. Bioresour. Technol. 2016, 218, 807–815. [Google Scholar] [CrossRef]
- Satyanarayana, K.; Guimarães, J.; Wypych, F. Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1694–1709. [Google Scholar] [CrossRef]
Carbon Source | FA (%) ± SD | Nitrogen Source | FA (%) ± SD | Speed (rpm) | FA (%) ± SD | Temperature (°C) | FA (%) ± SD | Cations | FA (%) ± SD | pH | FA (%) ± SD |
---|---|---|---|---|---|---|---|---|---|---|---|
Sucrose | 79.3 ± 1.79 a | Casein | 78 ± 0.41 a | 60 | 67.3 ± 0.94 a | 20 | 69.3 ± 0.47 a | MnCl2+ | 78.3 ±10.27 a | 3 | 53.4 ± 0.04 a |
Lactose | 81.4 ± 0.49 a | (NH4)2SO4 | 80 ± 0.49 a | 80 | 71.3 ± 2.62 a | 25 | 71.7 ± 3.09 a | AlCl3+ | 74.3 ± 1.25 a | 4 | 56.4 ± 0.05 a |
Maltose | 87.3 ± 4.58 a | Peptone | 94 ± 0.31 b | 100 | 71.7 ± 4.50 a | 30 | 86 ± 12.96 a | FeCl3+ | 73.0 ± 2.49 a | 5 | 56.7 ± 0.17 a |
Glucose | 92.2 ± 1.85 ab | NH4NO3 | 72 ± 0.54 ab | 120 | 95.3 ± 2.87 b | 35 | 97 ± 0.82 a | K+ | 73.3 ± 0.94 a | 6 | 69.2 ± 0.15 a |
Starch | 82.3 ± 2.36 ab | Yeast extract | 87 ± 0.31 abc | 140 | 96.0 ± 2.05 b | 40 | 86.7 ± 0.47 a | Li+ | 73.3 ± 3.30 a | 7 | 91.1 ± 0.13 ab |
Xylose | 75.3 ± 2.49 a | Urea | 72 ± 0.54 ab | 160 | 95.3 ± 2.87 b | 45 | 82.7 ± 11.59 a | Ba2+ | 84.0 ± 2.05 a | 8 | 89.2± 0.17 ab |
Galactose | 81 ± 2.16 ab | 180 | 76.3 ± 3.09 a | 50 | 78 ± 14.97 a | Na+ | 95.0 ± 2.5 ab | 9 | 91.3 ± 1.9 ab | ||
Control | 36 ± 2.73 c | 10 | 69.0 ± 0.4 a | ||||||||
11 | 77.2 ± 0.3 ab | ||||||||||
12 | 68.2 ± 0.17 a |
Dosage Size (mg/mL) | FA (%) ± SD | Temperature (°C) | FA (%) ± SD | pH | FA (%) ± SD | Salinity (g/L) | FA (%) |
---|---|---|---|---|---|---|---|
0.2 | 54.4 ± 2.79 a | 50 | 79.9 ± 2.60 a | 3 | 48.0 ± 7.30 a | 5 | 81.2 ± 3.13 a |
0.4 | 80.2 ± 2.81 b | 60 | 76.8 ± 3.57 a | 4 | 48.0 ± 4.01 a | 10 | 75.0 ± 1.24 a |
0.6 | 59.4 ± 3.04 a | 70 | 71.3 ± 3.71 a | 5 | 36.4 ± 4.38 a | 15 | 61.1 ± 3.54 ab |
0.8 | 50.8 ± 0.65 a | 80 | 68.3 ± 2.05 a | 6 | 57.3 ± 3.0 ab | 20 | 57.0 ± 2.86 b |
1.0 | 28.4 ± 3.89 ab | 90 | 65.5 ± 2.48 a | 7 | 67 ± 3.37 b | 25 | 50.3 ± 5.85 b |
100 | 67.57 ± 1.82 a | 8 | 69.1 ± 1.06 b | 30 | 40.4 ± 5.59 ab | ||
121 | 64.5 ± 0.41 a | 9 | 65.0 ± 3.23 ab | ||||
10 | 58.0 ± 5.57 a | ||||||
11 | 53.3 ± 1.74 a | ||||||
12 | 49.1 ± 2.39 a |
Bioflocculant Producers | Dosage | FA (%) | pH | FA (%) | Temperature | FA (%) | Citation |
---|---|---|---|---|---|---|---|
P. kudriavzevii MH545928.1 | 0.4 mg/mL | 80.2% | 8 | 80.2% | 50 °C | 79.9% | Present study |
Aspergillus flavus | 0.2 mg/mL | 7 | 35 °C | David et al. [32] | |||
Aspergillus niger | 0.4 mg/mL | 7 | 79.0% | 40 °C | 68.4% | Richards and Connelly [65] | |
Asperillus oryzae | 3.2 g/L | 91.1% | 5 | 91.1% | 60 °C | Nie et al. [25] | |
Aspergillus niger (A18) | 5 mL/L | 90.1% | 6 | 90.1% | 100 °C | 83% | Pu et al. [66] |
Zryzopus sp. | 0.1 mg/mL | 85% | 5 | 83% | 30 °C | 95% | Pu et al. [67] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsilo, P.H.; Basson, A.K.; Ntombela, Z.G.; Maliehe, T.S.; Pullabhotla, R.V.S.R. Isolation and Optimization of Culture Conditions of a Bioflocculant-Producing Fungi from Kombucha Tea SCOBY. Microbiol. Res. 2021, 12, 950-966. https://doi.org/10.3390/microbiolres12040070
Tsilo PH, Basson AK, Ntombela ZG, Maliehe TS, Pullabhotla RVSR. Isolation and Optimization of Culture Conditions of a Bioflocculant-Producing Fungi from Kombucha Tea SCOBY. Microbiology Research. 2021; 12(4):950-966. https://doi.org/10.3390/microbiolres12040070
Chicago/Turabian StyleTsilo, Phakamani H., Albertus K. Basson, Zuzingcebo G. Ntombela, Tsolanku S. Maliehe, and Rajasekhar V. S. R. Pullabhotla. 2021. "Isolation and Optimization of Culture Conditions of a Bioflocculant-Producing Fungi from Kombucha Tea SCOBY" Microbiology Research 12, no. 4: 950-966. https://doi.org/10.3390/microbiolres12040070
APA StyleTsilo, P. H., Basson, A. K., Ntombela, Z. G., Maliehe, T. S., & Pullabhotla, R. V. S. R. (2021). Isolation and Optimization of Culture Conditions of a Bioflocculant-Producing Fungi from Kombucha Tea SCOBY. Microbiology Research, 12(4), 950-966. https://doi.org/10.3390/microbiolres12040070