Medicinal Plant Feed Additives Enhanced Survivability and Growth Performance of Clarias gariepinus (African Catfish) against Bacterial Infection
Abstract
:1. Introduction
2. Material and Methods
2.1. Feed Ingredients and Milling
2.2. Experimental Procedure
2.3. Disease Challenge
2.4. Data Analysis
2.5. Ethical Approval
3. Result
3.1. Water Quality
3.2. Growth Performance
3.3. Disease Resistance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement:
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Phillip, H.K.; Shoemaker, A.C.; Evans, J.J. Vaccination: A health management practice for preventing diseases caused by Streptococcus in Tilapia and other cultured fish. In Tilapia Aquaculture in the 21st Century, Proceedings of the Fifth International Symposium on Tilapia Aquaculture, Rio de Janeiro, Brazil, 3–7 September 2000; Panorama da Aquicultura: Rio de Janeiro, Brazil, 2000; Volume 2, pp. 558–564. [Google Scholar]
- Rahman, M.H.; Suzuki, S.; Kawai, K. The effect of temperature on Aeromonas hydrophila infection in goldfish, Carassius auratus. J. Appl. Ichthyol. 2001, 17, 282–285. [Google Scholar] [CrossRef]
- Li, A.; Yang, W.; Hu, J.; Wang, W.; Cai, T.; Wang, J. Optimization by orthogonal array design and humoral immunity of the bivalent vaccine against Aeromonas hydrophila and Vibrio fuvialis infection in crucian carp (Carassius auratus L.). Aquac. Res. 2006, 37, 813–820. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Abdel-Rahman, A.M.; Ismael, N.E.M. Evaluation of commercial live bakers’ yeast, Saccharomyces cerevisiae as a growth and immunity promoter for fry Nile tilapia, Oreochromis niloticus (L.) challenged in situ with Aeromonas hydrophila. Aquaculture 2008, 280, 185–189. [Google Scholar] [CrossRef]
- Rahman, T.; Akanda, M.M.R.; Rahman, M.M.; Chowdhury, M.B.R. Evaluation of the efficacies of selected artibities and medicinal plants on common bacterials fish pathogens. J. Bangladesh Agric. Univ. 2009, 7, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Roberts, R.J. Fish Pathology, 3rd ed.; Bailliere Tindall: London, UK, 2001. [Google Scholar]
- Abdullahi, R.; Lihan, S.; Carlos, B.S.; Bilung, M.L.; Mikal, M.K.; Collick, F. Detection of oprL gene and antibiotic resistance of Pseudomonas aeruginosa from aquaculture environment. Eur. J. Exp. Biol. 2013, 3, 148–152. [Google Scholar]
- Somsiri, T.; Soontornvit, S. Bacterial diseases of cultured tiger frog (Rana tigerina). In Diseases in Asian Aquaculture IV, Proceedings of the Fourth Symposium on Diseases in Asian Aquaculture, Cebu City, Philippines, 22–26 November 1999; Lavilla-Pitogo, C.R., Cruz-Lacierda, E.R., Eds.; Fish Health Section, Asian Fisheries Society: Manila, Philippines, 2002. [Google Scholar]
- Mesalhy, S.A. A review of fish Diseases in The Egyptian Aquaculture. 2013. Available online: https://hdl.handle.net/10568/34870 (accessed on 23 September 2021).
- Wakabayashi, H.; Egusa, S. Characteristics of a Pseudomonas sp. from an epizootic of pond-cultured eels (Anguilla japonica). Bull. Jpn. Soc. Sci. Fish. 1972, 38, 577–587. [Google Scholar] [CrossRef]
- Sakai, M. Current research status of fish immunostimulants. Aquaculture 1999, 172, 63–92. [Google Scholar] [CrossRef]
- Stephen, S.; Kumar, J.; Anantharaja, K. Herbal Health Care in Aquaculture—The Indian Experience. FAO. Food and Agriculture Organization of the United Nations. Antimicrobial Resistance (AMR) in Aquaculture. 2006. Available online: http://www.fao.org/cofi/aq/90408/en/ (accessed on 25 October 2017).
- FAO. Livestock: Intensification and its risks. In World Agriculture: Towards 2015/2030; Summary report; FAO: Rome, Italy, 2002; pp. 58–63, 99. [Google Scholar]
- FAO. Sustainability in Action; The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Harikrishnan, R.; Balasundaram, C. In Vitro and In Vivo studies of the use of some medicinal herbals against the pathogen Aeromonas hydrophila in goldfish. J. Aquat. Anim. Health 2011, 20, 165–176. [Google Scholar] [CrossRef]
- Clark, J.S.; Poller, B.; Morillo, R.L. The use of Romet 30 in the control of Streptococcal out breaks in Tilapia cage culture in the Philippines. In Tilapia Aquaculture in the 21st Century, Proceeding of the Fifth International Symposium on Tilapia Aquaculture, Rio de Janeiro, Brazil, 3–7 September 2000; Panorama da Aquicultura: Rio de Janeiro, Brazil, 2000; Volume 2, pp. 552–557. [Google Scholar]
- Kumar, S.; Sahu, N.P.; Pal, A.K.; Choudhury, D.; Yengkokpam, S.; Mukherjee, S.C. Effect of dietary carbohydrate on haematology, respiratory burst activity and histological changes in L. rohita juveniles. Fish Shellfish Immunol. 2005, 19, 331–344. [Google Scholar] [CrossRef]
- Iruthayam, V.K.; Gurusamy, C.; Thangapandi, V.; Syed, H.P.; Mohanraj, J. Medicinal plants as immunostimulants for health management in Indian cat fish. J. Coast. Life Med. 2014, 2, 426–430. [Google Scholar] [CrossRef]
- Kumari, J.; Sahoo, P.K. Effects of cyclophosphamide on the immune system and disease resistance of Asian catfish (Clariasbatrachus). Fish Shellfish Immunol. 2006, 19, 307–316. [Google Scholar] [CrossRef]
- Ardo, L.; Yin, G.; Xu, P.; Váradi, L.; Szigeti, G.; Jeney, Z.; Jeney, G. Chinese herbs (Astragalus membranaceus and Lonicera japonica) and boron enhance the non-specific immune response of Nile tilapia (Oreochromis niloticus) and resistance against Aeromonas hydrophila. Aquaculture 2008, 275, 26–33. [Google Scholar] [CrossRef]
- Irianto, A.; Austin, B. Probiotics in aquaculture. J. Fish Dis. 2002, 25, 633–642. [Google Scholar] [CrossRef]
- Anderson, D.P. Immunostimulants, adjuvants, and vaccine carriers in fish: Applications to aquaculture. Annu. Rev. Fish Dis. 1992, 2, 281–307. [Google Scholar] [CrossRef]
- Harikrishnan, R.; Balasundaramb, C.; Heo, M.S. Herbal supplementation diets on hematology and innate immunity in goldfish against Aeromonas hydrophila. Fish Shellfish Immunol. 2010, 28, 354–361. [Google Scholar] [CrossRef]
- Heo, G.J.; Kim, J.H.; Jeon, B.G.; Park, K.Y.; Ra, J.C. Effects of FST-Chitosan mixture on cultured rockfish (Sebastes schlegeli) and olive flounder (Paralichthys olivaceus). Korean J. Vet. Public Health 2004, 25, 141–149. [Google Scholar]
- Chakrabarty, R.; De, B.; Devanna, N.; Sen, S. North east India an ethnic Storehouse of unexplored medicinal plants. J. Nat. Prod. Plant Resour. 2012, 2, 143–152. [Google Scholar]
- Citarasu, T.; Venkatramalingam, K.; Babu, M.; Sekar, R.R.; Petermarian, M. Influence of the antibacterial herbs, Solamum trilobatum, Androgra phispaniculata and Psoralea corylifolia on the survival, growth and bacterial load of Penaeus monodon post larvae. Aquac. Int. 2003, 11, 581–595. [Google Scholar] [CrossRef]
- Ravikumar, S.; Palani, S.; Anitha, A.G.N. Antimicrobial activity of medicinal plants along Kanyakumari coast, Tamil Nadu, India. Afr. J. Basic Appl. Sci. 2010, 2, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Pandey, G.; Madhuri, S. Significance of fruits and vegetables in malnutrition cancer. Plant Arch. 2010, 10, 517–522. [Google Scholar]
- Christybapita, D.; Divyagnaneswari, M.; Michael, R.D. Oral administration of Eclipta alba leaf aqueous extract enhances the non-specific immune responses and disease resistance of Oreochromis mossambicus. Fish Shellfish Immunol. 2007, 23, 840–852. [Google Scholar] [CrossRef]
- Kim, K.H.; Hwang, Y.J.; Bai, S.C. Resistance to Vibrio alginolyticus in juvenile rockfish (Sebastes schlegeli) fed diets containing different doses of aloe. Aquaculture 1999, 180, 13–21. [Google Scholar] [CrossRef]
- Ahilan, B.; Nithiyapriyatharshini, A.; Ravaneshwaran, K. Influence of certain herbal additives on the growth, survival and disease resistance of goldfish, Carassius auratus (Linnaeus). Tamilnadu J. Vet. Ani. Sci. 2010, 6, 5–11. [Google Scholar]
- Logambal, S.M.; Michael, R.D. Immunostimulatory effect of Azadirachtin in Oreochromis mossambicus (Peters). Indian J. Exp. Biol. 2000, 38, 1092–1096. [Google Scholar] [PubMed]
- Dugenci, S.K.; Arda, N.; Candan, A. Some medicinal plants as immunostimulant for fish. J. Ethnopharmacol. 2003, 88, 99–106. [Google Scholar] [CrossRef]
- Yin, G.; Jeney, G.; Racz, T.; Xu, P.; Jun, X.; Jeney, Z. Effect of two Chinese herbs (Astragalusradix and Scutellaria radix) on non specificimmune response of tilapia, Oreochromis niloticus. Aquaculture 2006, 253, 39–47. [Google Scholar] [CrossRef]
- Sivagurunathan, A.; Amila, M.K.; Xavier, I.B. Investigation of immunostimulant potential of Zingiber officinale and Curcuma longa in Cirrhinus mrigala exposed to P. aeruginosa—Haematological assessment. Int. J. Res. Ayurveda Pharm. 2011, 2, 899–904. [Google Scholar]
- Divyagnaneswari, M.; Christybapita, D.; Michael, R.D. Enhancement of nonspecific immunity and disease resistance in Oreochromis mossambicus by Solanum trilobatum leaf fractions. Fish Shellfish Immunol. 2007, 23, 249–259. [Google Scholar] [CrossRef]
- Vasudeva, R.Y.; Chakrabarti, R. Dietary incorporation of Achyranthes aspera seed influences the immunity of common carp Cyprinus carpio. Indian J. Anim. Sci. 2005, 75, 1097–1102. [Google Scholar]
- Nya, E.J.; Austin, B. Development of immunity in rainbow trout (Oncorhynchus mykiss, Walbaum) to Aeromonas hydrophila after the dietary application of garlic. Fish Shellfish Immunol. 2011, 30, 845–850. [Google Scholar] [CrossRef]
- Govind, P.; Madhuri, S.; Sahn, Y.P. Herbal feed supplement as drugs and growth promoter to fishes. Int. Res. J. Pharm. 2012, 3, 30–33. [Google Scholar]
- AOAC International. Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Ruangroupan, L.; Kitao, T.; Yoshida, T. Protective efficacy of Aeromonas hydrophila vaccines in Nile tilapia. Vet. Immunol. Immunopathol. 1986, 12, 345–350. [Google Scholar] [CrossRef]
- Boyd, C.E. Water Quality in Warm Water Fishponds; Auburn University Agriculture Experimental Station: Auburn, AL, USA, 1984. [Google Scholar]
- Pichavant, K.; Person-Le-Ruyet, J.; Le Bayou, N.; Severe, A.; Roux, A.L.; Boeuf, G. Comparative effects of long-term hypoxia on growth, feeding and oxygen consumption in juvenile turbot and European sea bass. J. Fish Biol. 2001, 59, 875–883. [Google Scholar] [CrossRef]
- Kumar, J.S.S.; Anantharaja, K. Herbal health care in aquaculture—The Indian experience. Aquac. Infofish Int. 2007, 1, 12–16. [Google Scholar]
- Aly, S.M.; Mohamed, M.F. Echinacea purpurea and Allium sativum as immunostimulants in fish culture using Nile tilapia (Oreochromis niloticus). J. Anim. Physiol. Anim. Nutr. 2010, 94, 31–39. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Ahmad, M.H.; Khattab, Y.A.; Shalaby, A.M. Effect of dietary protein level, initial body weight, and their interaction on the growth, feed utilization, and physiological alterations of Nile tilapia, Oreochromis niloticus (L.). Aquaculture 2010, 298, 267–274. [Google Scholar] [CrossRef]
- Amany Diab, M.; Saker, O.A.; Eldakroury, M.F.; Elseify, M.M. Effects of Garlic (Alluim sativum) and Curcumin (Turmeric, Curcuma longa Linn) on Nile Tilapia immunity. Vet. Med. J.-Giza 2014, 60, C1–C19. [Google Scholar]
- Sahu, S.; Das, B.K.; Mishra, B.K.; Pradhan, J.; Samal, S.K.; Sarangi, N. Effect of dietary Curcuma longa on enzymatic and immunological profiles of rohu, Labeo rohita (Ham.), infected with Aeromonas hydrophila. Aquac. Res. 2008, 39, 1720–1730. [Google Scholar] [CrossRef]
- Secombes, C.J.; Hardie, L.J.; Daniels, G. Cytokines in fish: An update. Fish Shellfish Immunol. 1996, 6, 291–304. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Majumdar, S.C. The effect of dietary immunomodulation upon Edwardsiella tarda vaccination in healthy and immunocompromised Indian major carp (Labeo rohita). Fish Shellfish Immunol. 2002, 12, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Smith, V.J.; Brown, J.H.; Hauton, C. Immunostimulation in crustaceans: Does it really protect against infection? Fish Shellfish Immunol. 2003, 15, 71–90. [Google Scholar] [CrossRef]
% | |
---|---|
Maize | 35 |
Soybean (44%) | 28.5 |
Fish meal (65%) | 17 |
Wheat bran | 9.5 |
Calcium Carbonate | 0.3 |
Ground lime stone | 0.7 |
Vegetable Oil | 6.5 |
Mineral mixture | 1.7 |
Vitamin mixture | 1 |
Nutrients composition | % |
Dry matter (DM) | 90.4 |
Crude protein (CP) | 30.65 |
Ether extract (EE) | 11.73 |
Ash | 2.7 |
Crude fiber | 10.11 |
Nitrogen-free extract (NFE) | 44.81 |
Gross energy (kcal/100 g DM) (GE) * | 467.77 |
Protein/energy (P/E) ratio (mg CP/kcal GE) * | 65.52 |
Diet Variants | Details |
---|---|
D1 | Basal Diet (BD) + 0 g/kg (as a control) |
D2 | Basal Diet (BD) + 5 g/kg A. sativum powder |
D3 | Basal Diet (BD) + 10 g/kg C. odorata powder |
D4 | Basal Diet (BD) + 10 g/kg) T. triangulare powder |
Groups | Initial Weight (g) | Final Weight (g) | Weight Gain (g) | Weight Gain (%) | Specific Growth Rate (%) |
---|---|---|---|---|---|
A (control) | 53.67 ± 0.10 a | 57.42 ± 0.28 a | 3.75 ± 0.34 a | 6.99 a | 0.07 ± 0.01 a |
B | 54.04 ± 0.46 a | 60.03 ± 0.11 c | 5.99 ± 0.53 c | 11.08 c | 0.11 ± 0.01 b |
C | 54.67 ± 0.10 a | 58.82 ± 0.26 b | 4.15 ± 0.32 a | 7.59 a | 0.08 ± 0.01 a |
D | 53.67 ± 0.40 a | 57.69 ± 0.69 a | 4.69 ± 0.51 b | 8.85 b | 0.09 ± 0.01 a |
Fish Group | No. of Fish | Type of Innoculate | Days after Challenge | No of Dead Fish | M (%) | S (%) | RLP | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |||||||
A (−ve) | 10 | *NS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 100.0 |
A (+ve) | 10 | P a | 3 | 1 | 2 | 1 | 1 | 0 | 0 | 8 | 80 | 20 | 0.0 |
B | 10 | P a | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 4 | 40 | 60 | 50.0 |
C | 10 | P a | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 20 | 80 | 75.0 |
D | 10 | P a | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 3 | 30 | 70 | 62.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiamiyu, A.M.; Olatoye, I.O.; Olayemi, O.A.; Ekundayo, T.C.; Adedeji, O.B.; Okocha, R.C. Medicinal Plant Feed Additives Enhanced Survivability and Growth Performance of Clarias gariepinus (African Catfish) against Bacterial Infection. Microbiol. Res. 2021, 12, 744-752. https://doi.org/10.3390/microbiolres12040054
Tiamiyu AM, Olatoye IO, Olayemi OA, Ekundayo TC, Adedeji OB, Okocha RC. Medicinal Plant Feed Additives Enhanced Survivability and Growth Performance of Clarias gariepinus (African Catfish) against Bacterial Infection. Microbiology Research. 2021; 12(4):744-752. https://doi.org/10.3390/microbiolres12040054
Chicago/Turabian StyleTiamiyu, Adebisi Musefiu, Isaac Olufemi Olatoye, Okunlade Akinsola Olayemi, Temitope Cyrus Ekundayo, Olufemi Bolarinwa Adedeji, and Reuben Chukwuka Okocha. 2021. "Medicinal Plant Feed Additives Enhanced Survivability and Growth Performance of Clarias gariepinus (African Catfish) against Bacterial Infection" Microbiology Research 12, no. 4: 744-752. https://doi.org/10.3390/microbiolres12040054
APA StyleTiamiyu, A. M., Olatoye, I. O., Olayemi, O. A., Ekundayo, T. C., Adedeji, O. B., & Okocha, R. C. (2021). Medicinal Plant Feed Additives Enhanced Survivability and Growth Performance of Clarias gariepinus (African Catfish) against Bacterial Infection. Microbiology Research, 12(4), 744-752. https://doi.org/10.3390/microbiolres12040054