Genetic Environments of Plasmid-Mediated blaCTXM-15 Beta-Lactamase Gene in Enterobacteriaceae from Africa
Abstract
:1. Introduction
2. Materials and Methods
3. Results
References | Country | Sample Sources | Enterobacterial Species | Genetic Environment Pattern | Additional Resistance Genes | Mobile Genetic Elements | |
---|---|---|---|---|---|---|---|
Integron/Gene Cassettes | Plasmids | ||||||
[12] | Nigeria | Environment | Escherichia coli | ISEcp1-IS26-orf477, ISEcp1-orf477 | Intl1/dfrA17-aadA5, Intl1/dfrA32-ereA-aadA2, Intl1/dfrA16-aadA2, Intl1/aadA1, Intl1/dfrA7, Int2 | ||
[20] | Nigeria | Human | Escherichia coli | ISEcp1 | aac-(6′)-lb-cr, qnrB1, qnrA1 | ||
[44] | Nigeria | Human | Enterobacter cloacae, Pantoea agglomerans | aadA1, aph, aac-(6′)-Ib), sul1, cat1, qnrB1, tet (A), tet (E) | Intl1, Intl2 | ||
[21] | Nigeria | Human | Proteus mirabilis | ISEcp1 | aac (6′)-Ib-cr, qnrA, blaTEM-1 | Int1, Int2, aadA1, aadA1-qacH, aadB-aadA2, aadA5, dfrA7, dfrA15, dfrA17, dfrA17-aadA5 | |
[47] | Nigeria | Human | Escherichia coli | aac (6′)-Ib-cr, qnrS1, qnrB1, qepA1, blaOXA-1, blaTEM-1, blaCMY-2 | IncFIA-FIB-FII, IncHI2, IncY, IncX, IncX2, IncI2 | ||
[46] | Nigeria | Chicken, pig | Escherichia coli | qnrS1, blaTEM-1 | IncN | ||
[42] | Nigeria | Human | Escherichia coli | ISEcp1, ISEcp1-IS26, ISEcp1-IS26-IS903 | qnrB, aac (6′)-lb-cr, blaTEM-1 | Int1/aadA1, int1/dfrA17-aadA5 | IncFIA, IncFIB, HI2 IncK |
[13] | Nigeria | Human | Escherichia coli | ISEcp1-orf477 | aac (6′)-Ib-cr, blaOXA-1, blaSHV, blaTEM-1 | ||
[48] | Nigeria | Human | Escherichia coli, Klebsiella spp. | blaCTXM-2, blaOXA-1, blaSHV, blaTEM-1, blaAmpC | IncF | ||
[43] | Nigeria | Chicken | Escherichia coli | ISEcp1-IS26-orf477 | aac (3)-IIa, aac (6′)-Ib-cr, dfrA5, dfrA12, strA, strB, sul1, sul2, tet (A), tet (B), blaOXA-1, blaTEM-1 | Intl1/aadA2-orfF-dfrA12 | IncFIB, IncFIA-IncFIB-IncI1 |
[22] | Nigeria | Human | Escherichia coli, Klebsiella spp., Proteus mirabilis | ISEcp1 | blaTEM, blaSHV | ||
[23] | Nigeria | Human | Klebsiella spp. | ISEcp1 | tet(A), aac (3)-II, aac (6′)-Ib | ||
[14] | Ghana | Human | Escherichia coli, Klebsiella spp. | ISEcp1- orf477 | blaTEM, aac (3)-II, blaOXA-30 | IncFII-FIA-FIB, IncFIIK | |
[49] | Ghana | Human | Salmonella Poona | blaTEM-1B, blaOXA−1, qnrB1, aac (6′) Ib-cr, tet(A), dfrA15, sul2, catB3, strA, strB, aac (3)-Iia | TrfA-IncHI2-IncHI2A | ||
[15] | Mauritania | Human | Escherichia coli | ISEcp1-orf477 | aac (6′)-Ib-cr, tet(A), sul2, sul3, strA, strB, blaOXA-1, blaTEM-1B | intI/dfrA17-aadA5 | |
[24] | Niger | Human | Morganella morganii, Citrobacter freundii | ISEcp1 | blaDHA, blaCIT, blaTEM-1 | ||
[50] | Niger | Human | Escherichia coli | blaCMY-2, blaSHV-44 | FII/FIA/FIB, FII/I1/Iγ, | ||
[51] | Senegal | Human | Salmonella enterica | qnrB1, aac (6′)-Ib-cr | IncHI2, IncN, IncFII | ||
[25] | Senegal | Human | Escherichia coli | ISEcp1 | blaTEM-1, blaOXA-1, aac (6)-Ib-cr, tet(A) | intI/dfrA17-aadA5 | IncFIA-FIB-FII |
[26] | Senegal | Human | Salmonella Kentucky | ISEcp1 | blaTEM-1, blaOXA-30 | ||
[52] | Sao Tome and Principle | Human | Escherichia coli | blaOXA-181, blaTEM-1, rmtB | IncX3 | ||
[27] | DRC | Human | Salmonella Typhi | ISEcp1 | blaTEM-1D, sulI, dfrA7 | ||
[53] | Central African Republic | Human | Escherichia coli, Enterobactercloacae | aac (6′)-Ib-cr, qnrB, qnrS | IncF | ||
[28] | Cameroon | Human | Escherichia coli | ISEcp1 | blaOXA-181, blaTEM-1, aac (6′) Ib-cr | ||
[54] | Cameroon | Human | Klebsiella spp. | sul1, fosA, oqxA, oqxB, blaTEM-1B, dfrA15, strA, strB | ColRNAI, IncFIB (K), IncFIA (HI1 | ||
[29] | Egypt | Human | Escherichia coli | ISEcp1 | blaTEM-1 | ||
[30] | Algeria | Human | Salmonella enterica ser Infantis | ISEcp1 | armA, blaTEM-1 | IncL, IncM | |
[31] | Algeria | Human | Klebsiella spp. | ISEcp1 | blaTEM-1 | Int1 | |
[16] | Angola | Human | Escherichia coli, Klebsiella spp. | ISEcp1-orf477, IS26-orf447, ISEcp1-IS3-orf477 | blaOXA-1, blaTEM-1, aac-6′-Ib-cr | IncFII, IncFIIK6, IncHI2 and IncY | |
[45] | Angola | Dog | Escherichia coli | qepA, qnrS1, qnrB19, aac (6′)-Ib-cr | Intl1/dfrA17-aadA5, Intl1/dfrA1-aadA1, Intl2/dfrA1-sat-aadA1 | IncFIB, IncY, IncN, IncI1 | |
[32] | Madagascar | Human | Escherichia coli, Klebsiella spp. | ISEcp1 | blaTEM-1, blaOXA-1, aac (6′)-Ib-cr, sul1-sul2, tet(A), qnrB | Intl1/ aadA1-aadA2-aadA4-aadA5-dfrA5-dfrA22 | IncFII-FIA-FIB, IncHI2 |
[17] | Morocco | Human | Klebsiella spp. | ISEcp1-orf477 | blaTEM-1B , bla OXA-1 , aac (6′)- Ib-cr, qnrB1 | ||
[33] | Morocco | Human | Klebsiella spp. | ISEcp1 | qnrB1, bla NDM-1 | IncH | |
[34] | Kenya | Human | Salmonella Typhimurium | ISEcp1 | blaTEM-1, blaOXA-1, aac (6′)-Ib, sul1, sul2, aadA1 | Intl1/dfrA14-catA1 | IncFII, IncHI2 |
[35] | Tanzania | Human | Escherichia coli | ISEcp1 | blaTEM-1 | IncFIA- FIB | |
[41] | Tanzania | Human | Enterobacter spp. | ISEcp1 | |||
[36] | Tanzania | Human | Klebsiella spp. | ISEcp1 | blaTEM-1, blaSHV-11 | IncFII, IncFIA | |
[37] | Tunisia | Human | Escherichia coli | ISEcp1 | blaTEM-1, blaSHV-12 | ||
[18] | Tunisia | Human | Escherichia coli | ISEcp1-orf477 | blaTEM-1, blaOXA-1, aac (3)-II, aac (6′)-Ib-cr, strA, strB, sul2, tet (B) | Intl1/ dfrA17–aadA5, Intl1/ dfrA12–orfF–aadA2, Intl1/aadA2 | |
[38] | Tunisia | Human | Escherichia coli | ISEcp1 | blaTEM-52 | IncA, IncC | |
[39] | Tunisia | Human | Klebsiella spp. | ISEcp1 | blaTEM-1, blaSHV-12 | IncFII, IncL, IncM | |
[40] | Tunisia | Human | Escherichia coli | ISEcp1-IS26 | |||
[19] | Tunisia | Human | Klebsiella spp. | ISEcp1- orf477 | blaTEM-1, blaOXA-1, blaSHV-1 | Intl1/ dfrA17–ereA2, Intl1/aadA |
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Cantón, R.; González-Alba, J.M.; Galán, J.C. CTX-M enzymes: Origin and diffusion. Front. Microbiol. 2012, 3. [Google Scholar] [CrossRef] [Green Version]
- Peirano, G.; Pitout, J.D.D. Molecular epidemiology of Escherichia coli producing CTX-M β-lactamases: The worldwide emergence of clone ST131 O25:H4. Int. J. Antimicrob. Agents 2010, 35, 316–321. [Google Scholar] [CrossRef]
- Pitout, J.D.; Laupland, K.B. Extended-spectrum β-lactamase-producing Enterobacteriaceae: An emerging public-health concern. Lancet Infect. Dis. 2008, 8, 159–166. [Google Scholar] [CrossRef]
- Lee, H.; Doak, T.G.; Popodi, E.; Foster, P.L.; Tang, H. Insertion sequence-caused large-scale rearrangements in the genome of Escherichia coli. Nucleic Acids Res. 2016, 44, 7109–7119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nzabarushimana, E.; Tang, H. Insertion sequence elements-mediated structural variations in bacterial genomes. Mob. DNA 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Mahillon, J.; Chandler, M. Insertion sequences. Microbiol. Mol. Biol. Rev. 1998, 62, 725–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poirel, L.; Naas, T.; Nordmann, P. Genetic support of extended-spectrum β-lactamases. Clin. Microbiol. Infect. 2008, 14, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.-H.; Hu, Z.-Q. Epidemiology and genetics of CTX-M extended-spectrum β-lactamases in Gram-negative bacteria. Crit. Rev. Microbiol. 2013, 39, 79–101. [Google Scholar] [CrossRef]
- Karim, A.; Poirel, L.; Nagarajan, S.; Nordmann, P. Plasmid-mediated extended-spectrum beta-lactamase (CTX-M-3 like) from India and gene association with insertion sequence ISEcp1. FEMS Microbiol. Lett. 2001, 201, 237–241. [Google Scholar]
- Lartigue, M.-F.; Poirel, L.; Nordmann, P. Diversity of genetic environment of blaCTX-M genes. FEMS Microbiol. Lett. 2004, 234, 201–207. [Google Scholar] [CrossRef]
- Carattoli, A. Resistance plasmid families in enterobacteriaceae. Antimicrob. Agents Chemother. 2009, 53, 2227–2238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adelowo, O.O.; Caucci, S.; Banjo, O.A.; Nnanna, O.C.; Awotipe, E.O.; Peters, F.B.; Fagade, O.E.; Berendonk, T.U. Extended Spectrum Beta-Lactamase (ESBL)-producing bacteria isolated from hospital wastewaters, rivers and aquaculture sources in Nigeria. Environ. Sci. Pollut. Res. 2018, 25, 2744–2755. [Google Scholar] [CrossRef]
- Iroha, I.R.; Esimone, C.O.; Neumann, S.; Marlinghaus, L.; Korte, M.; Szabados, F.; Gatermann, S.; Kaase, M. First description of Escherichia coli producing CTX-M-15- extended spectrum beta lactamase (ESBL) in out-patients from south eastern Nigeria. Ann. Clin. Microbiol. Antimicrob. 2012, 11, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agyekum, A.; Fajardo-Lubián, A.; Ansong, D.; Partridge, S.R.; Agbenyega, T.; Iredell, J.R. blaCTX-M-15 carried by IncF-type plasmids is the dominant ESBL gene in Escherichia coli and Klebsiella pneumoniae at a hospital in Ghana. Diagn. Microbiol. Infect. Dis. 2016, 84, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Sallem, R.B.; Slama, K.B.; Estepa, V.; Cheikhna, E.O.; Mohamed, A.M.; Chairat, S.; Ruiz-Larrea, F.; Boudabous, A.; Torres, C. Detection of CTX-M-15-producing Escherichia coli isolates of lineages ST410-A, ST617-A and ST354-D in faecal samples of hospitalized patients in a Mauritanian hospital. J. Chemother. 2015, 27, 114–116. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.G.; Novais, Â.; Peixe, L.; Machado, E. Atypical epidemiology of CTX-M-15 among Enterobacteriaceae from a high diversity of non-clinical niches in Angola: Table 1. J. Antimicrob. Chemother. 2016, 71, 1169–1173. [Google Scholar] [CrossRef] [Green Version]
- Barguigua, A.; El Otmani, F.; Talmi, M.; Reguig, A.; Jamali, L.; Zerouali, K.; Timinouni, M. Prevalence and genotypic analysis of plasmid-mediated β-lactamases among urinary Klebsiella pneumoniae isolates in Moroccan community. J. Antibiot. 2013, 66, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Ben Slama, K.; Ben Sallem, R.; Jouini, A.; Rachid, S.; Moussa, L.; Sáenz, Y.; Estepa, V.; Somalo, S.; Boudabous, A.; Torres, C. Diversity of genetic lineages among CTX-M-15 and CTX-M-14 producing Escherichia coli strains in a Tunisian hospital. Curr. Microbiol. 2011, 62, 1794–1801. [Google Scholar] [CrossRef]
- Abbassi, M.S.; Torres, C.; Achour, W.; Vinué, L.; Sáenz, Y.; Costa, D.; Bouchami, O.; Hassen, A.B. Genetic characterisation of CTX-M-15-producing Klebsiella pneumoniae and Escherichia coli strains isolated from stem cell transplant patients in Tunisia. Int. J. Antimicrob. Agents 2008, 32, 308–314. [Google Scholar] [CrossRef]
- Aibinu, I.; Odugbemi, T.; Koenig, W.; Ghebremedhin, B. Sequence type ST131 and ST10 complex (ST617) predominant among CTX-M-15-producing Escherichia coli isolates from Nigeria. Clin. Microbiol. Infect. 2012, 18, E49–E51. [Google Scholar] [CrossRef] [Green Version]
- Alabi, O.S.; Mendonça, N.; Adeleke, O.E.; Da Silva, G.J. Molecular screening of antibiotic-resistant determinants among multidrug-resistant clinical isolates of Proteus mirabilis from South West Nigeria. Afr. Health Sci. 2017, 17, 356. [Google Scholar] [CrossRef] [Green Version]
- Raji, M.A.; Jamal, W.; Ojemeh, O.; Rotimi, V.O. Sequence analysis of genes mediating extended-spectrum beta-lactamase (ESBL) production in isolates of Enterobacteriaceae in a Lagos Teaching Hospital, Nigeria. BMC Infect. Dis. 2015, 15. [Google Scholar] [CrossRef] [Green Version]
- Soge, O.O.; Queenan, A.M.; Ojo, K.K.; Adeniyi, B.A.; Roberts, M.C. CTX-M-15 extended-spectrum β-lactamase from Nigerian Klebsiella pneumoniae. J. Antimicrob. Chemother. 2006, 57, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Soleimanian, S.; Gordon, N.C.; Wareham, D.W. Polymicrobial necrotizing fasciitis involving enterobacteria producing CTX-M-15 extended-spectrum -lactamases. J. Med. Microbiol. 2011, 60, 135–137. [Google Scholar] [CrossRef] [Green Version]
- Ruppe, E.; Woerther, P.-L.; Diop, A.; Sene, A.-M.; Da Costa, A.; Arlet, G.; Andremont, A.; Rouveix, B. Carriage of CTX-M-15-producing Escherichia coli isolates among children living in a remote village in Senegal. Antimicrob. Agents Chemother. 2009, 53, 3135–3137. [Google Scholar] [CrossRef] [Green Version]
- Weill, F.-X.; Perrier-Gros-Claude, J.-D.; Demartin, M.; Coignard, S.; Grimont, P.A.D. Characterization of extended-spectrum-Î2-lactamase (CTX-M-15)-producing strains of Salmonella enterica isolated in France and Senegal. FEMS Microbiol. Lett. 2004, 238, 353–358. [Google Scholar]
- Phoba, M.-F.; Barbé, B.; Lunguya, O.; Masendu, L.; Lulengwa, D.; Dougan, G.; Wong, V.K.; Bertrand, S.; Ceyssens, P.J.; Jacobs, J.; et al. Salmonella enterica serovar typhi producing CTX-M-15 extended spectrum β-lactamase in the democratic Republic of the Congo. Clin. Infect. Dis. 2017, 65, 1229–1231. [Google Scholar] [CrossRef] [PubMed]
- Lonchel Magoué, C.; Melin, P.; Gangoué-Piéboji, J.; Assoumou, M.-C.O.; Boreux, R.; De Mol, P. Prevalence and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae in Ngaoundere, Cameroon. Clin. Microbiol. Infect. 2013, 19, E416–E420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalaf, N.G.; Eletreby, M.M.; Hanson, N.D. Characterization of CTX-M ESBLs in Enterobacter cloacae, Escherichia coli and Klebsiella pneumoniae clinical isolates from Cairo, Egypt. BMC Infect. Dis. 2009, 9. [Google Scholar] [CrossRef] [Green Version]
- Naas, T.; Bentchouala, C.; Cuzon, G.; Yaou, S.; Lezzar, A.; Smati, F.; Nordmann, P. Outbreak of Salmonella enterica serotype Infantis producing ArmA 16S RNA methylase and CTX-M-15 extended-spectrum β-lactamase in a neonatology ward in Constantine, Algeria. Int. J. Antimicrob. Agents 2011, 38, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Messai, Y.; Iabadene, H.; Benhassine, T.; Alouache, S.; Tazir, M.; Gautier, V.; Arlet, G.; Bakour, R. Prevalence and characterization of extended-spectrum β-lactamases in Klebsiella pneumoniae in Algiers hospitals (Algeria). Pathol. Biol. 2008, 56, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Rakotonirina, H.C.; Garin, B.; Randrianirina, F.; Richard, V.; Talarmin, A.; Arlet, G. Molecular characterization of multidrug-resistant extended-spectrum β-lactamase-producing Enterobacteriaceae isolated in Antananarivo, Madagascar. BMC Microbiol. 2013, 13, 85. [Google Scholar] [CrossRef]
- Villa, L.; Poirel, L.; Nordmann, P.; Carta, C.; Carattoli, A. Complete sequencing of an IncH plasmid carrying the blaNDM-1, blaCTX-M-15 and qnrB1 genes. J. Antimicrob. Chemother. 2012, 67, 1645–1650. [Google Scholar] [CrossRef]
- Kariuki, S.; Okoro, C.; Kiiru, J.; Njoroge, S.; Omuse, G.; Langridge, G.; Kingsley, R.A.; Dougan, G.; Revathi, G. Ceftriaxone-resistant Salmonella enterica serotype typhimurium sequence type 313 from Kenyan patients is associated with the bla CTX-M-15 gene on a novel IncHI2 plasmid. Antimicrob. Agents Chemother. 2015, 59, 3133–3139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mshana, S.E.; Imirzalioglu, C.; Hain, T.; Domann, E.; Lyamuya, E.F.; Chakraborty, T. Multiple ST clonal complexes, with a predominance of ST131, of Escherichia coli harbouring blaCTX-M-15 in a tertiary hospital in Tanzania. Clin. Microbiol. Infect. 2011, 17, 1279–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mshana, S.E.; Hain, T.; Domann, E.; Lyamuya, E.F.; Chakraborty, T.; Imirzalioglu, C. Predominance of Klebsiella pneumoniaeST14 carrying CTX-M-15 causing neonatal sepsis in Tanzania. BMC Infect. Dis. 2013, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Réjiba, S.; Mercuri, P.S.; Power, P.; Kechrid, A. Emergence and dominance of CTX-M-15 extended spectrum beta-lactamase among Escherichia coli isolates from children. Microb. Drug Resist. 2011, 17, 135–140. [Google Scholar] [CrossRef]
- Chouchani, C.; Salabi, A.; Marrakchi, R.; Ferchichi, L.; Walsh, T.R. Characterization of IncA/C conjugative plasmid harboring bla TEM-52 and bla CTX-M-15 extended-spectrum β-lactamases in clinical isolates of Escherichia coli in Tunisia. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1081–1087. [Google Scholar] [CrossRef]
- Elhani, D.; Bakir, L.; Aouni, M.; Passet, V.; Arlet, G.; Brisse, S.; Weill, F.-X. Molecular epidemiology of extended-spectrum β-lactamase-producing Klebsiella pneumoniae strains in a university hospital in Tunis, Tunisia, 1999–2005. Clin. Microbiol. Infect. 2010, 16, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Ayari, K.; Bourouis, A.; Chihi, H.; Mahrouki, S.; Naas, T.; Belhadj, O. Dissemination and genetic support of broad-spectrum beta-lactam-resistant Escherichia coli strain isolated from two Tunisian hospitals during 2004–2012. Afr. Health Sci. 2017, 17, 346. [Google Scholar] [CrossRef] [Green Version]
- Mshana, S.E.; Gerwing, L.; Minde, M.; Hain, T.; Domann, E.; Lyamuya, E.; Chakraborty, T.; Imirzalioglu, C. Outbreak of a novel Enterobacter sp. carrying blaCTX-M-15 in a neonatal unit of a tertiary care hospital in Tanzania. Int. J. Antimicrob. Agents 2011. [Google Scholar] [CrossRef] [Green Version]
- Inwezerua, C.; Mendonça, N.; Calhau, V.; Domingues, S.; Adeleke, O.E.; Da Silva, G.J. Occurrence of extended-spectrum beta-lactamases in human and bovine isolates of Escherichia coli from Oyo state, Nigeria. J. Infect. Dev. Ctries. 2014, 8. [Google Scholar] [CrossRef] [Green Version]
- Ojo, O.E.; Schwarz, S.; Michael, G.B. Detection and characterization of extended-spectrum β-lactamase-producing Escherichia coli from chicken production chains in Nigeria. Vet. Microbiol. 2016, 194, 62–68. [Google Scholar] [CrossRef]
- Aibinu, I.; Pfeifer, Y.; Peters, F.; Ogunsola, F.; Adenipekun, E.; Odugbemi, T.; Keonig, W. Emergence of blaCTX-M-15, qnrB1 and aac(6′)-Ib-cr resistance genes in Pantoea agglomerans and Enterobacter cloacae from Nigeria (sub-Saharan Africa). J. Med. Microbiol. 2012, 61, 165–167. [Google Scholar] [CrossRef]
- Albrechtova, K.; Kubelova, M.; Mazancova, J.; Dolejska, M.; Literak, I.; Cizek, A. High prevalence and variability of CTX-M-15-producing and fluoroquinolone-resistant Escherichia coli observed in stray dogs in rural angola. Microb. Drug Resist. 2014, 20, 372–375. [Google Scholar] [CrossRef]
- Fortini, D.; Fashae, K.; Garcia-Fernandez, A.; Villa, L.; Carattoli, A. Plasmid-mediated quinolone resistance and -lactamases in Escherichia coli from healthy animals from Nigeria. J. Antimicrob. Chemother. 2011, 66, 1269–1272. [Google Scholar] [CrossRef]
- Fortini, D.; Fashae, K.; Villa, L.; Feudi, C.; García-Fernández, A.; Carattoli, A. A novel plasmid carrying blaCTX-M-15 identified in commensal Escherichia coli from healthy pregnant women in Ibadan, Nigeria. J. Glob. Antimicrob. Resist. 2015, 3, 9–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogbolu, D.O.; Alli, O.A.T.; Olanipekun, L.B.; Ojo, O.I.; Makinde, O.O. Faecal carriage of extended-spectrum beta-lactamase (ESBL)-producing commensal Klebsiella pneumoniae and Escherichia coli from hospital out-patients in Southern Nigeria. Int. J. Med. Med. Sci. 2013, 9, 97–105. [Google Scholar] [CrossRef]
- Kudirkiene, E.; Andoh, L.A.; Ahmed, S.; Herrero-Fresno, A.; Dalsgaard, A.; Obiri-Danso, K.; Olsen, J.E. The use of a combined bioinformatics approach to locate antibiotic resistance genes on plasmids from whole genome sequences of Salmonella enterica serovars from humans in Ghana. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Woerther, P.-L.; Angebault, C.; Jacquier, H.; Hugede, H.-C.; Janssens, A.-C.; Sayadi, S.; El Mniai, A.; Armand-Lefevre, L.; Ruppe, E.; Barbier, F.; et al. Massive increase, spread, and exchange of extended spectrum β-lactamase-encoding genes among intestinal enterobacteriaceae in hospitalized children with severe acute malnutrition in Niger. Clin. Infect. Dis. 2011, 53, 677–685. [Google Scholar] [CrossRef] [Green Version]
- Harrois, D.; Breurec, S.; Seck, A.; Delauné, A.; Hello, S.L.; de la Gándara, M.P.; Sontag, L.; Perrier-Gros-Claude, J.-D.; Sire, J.-M.; Garin, B.; et al. Prevalence and characterization of extended-spectrum β-lactamase-producing clinical Salmonella enterica isolates in Dakar, Senegal, from 1999 to 2009. Clin. Microbiol. Infect. 2014, 20, O109–O116. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Aires-de-Sousa, M.; Kudyba, P.; Kieffer, N.; Nordmann, P. Screening and characterization of multidrug-resistant gram-negative bacteria from a remote African Area, São Tomé and Príncipe. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafaï, C.; Frank, T.; Manirakiza, A.; Gaudeuille, A.; Mbecko, J.-R.; Nghario, L.; Serdouma, E.; Tekpa, B.; Garin, B.; Breurec, S. Dissemination of IncF-type plasmids in multiresistant CTX-M-15-producing Enterobacteriaceae isolates from surgical-site infections in Bangui, Central African Republic. BMC Microbiol. 2015, 15, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Founou, L.L.; Founou, R.C.; Allam, M.; Ismail, A.; Djoko, C.F.; Essack, S.Y. Genome sequencing of extended-spectrum β-lactamase (esbl)-producing Klebsiella pneumoniae isolated from pigs and abattoir workers in cameroon. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef]
- Eckert, C.; Gautier, V.; Arlet, G. DNA sequence analysis of the genetic environment of various blaCTX-M genes. J. Antimicrob. Chemother. 2006, 57, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Ensor, V.M.; Shahid, M.; Evans, J.T.; Hawkey, P.M. Occurrence, prevalence and genetic environment of CTX-M β-lactamases in Enterobacteriaceae from Indian hospitals. J. Antimicrob. Chemother. 2006, 58, 1260–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gourbeyre, E.; Siguier, P.; Chandler, M. Bacterial insertion sequences: Their genomic impact and diversity. FEMS Microbiol. Rev. 2014, 38, 865–891. [Google Scholar]
- Lartigue, M.-F.; Poirel, L.; Aubert, D.; Nordmann, P. In vitro analysis of ISEcp1B-mediated mobilization of naturally occurring β-lactamase gene blaCTX-M of Kluyvera ascorbata. Antimicrob. Agents Chemother. 2006, 50, 1282–1286. [Google Scholar] [CrossRef] [Green Version]
- Bevan, E.R.; Jones, A.M.; Hawkey, P.M. Global epidemiology of CTX-M β-lactamases: Temporal and geographical shifts in genotype. J. Antimicrob. Chemother. 2017, 72, 2145–2155. [Google Scholar] [CrossRef] [Green Version]
- Cantón, R.; Coque, T.M. The CTX-M β-lactamase pandemic. Curr. Opin. Microbiol. 2006, 9, 466–475. [Google Scholar] [CrossRef]
- Singh, N.S.; Singhal, N.; Virdi, J.S. Genetic environment of blaTEM-1, blaCTX-M-15, blaCMY-42 and characterization of ontegrons of Escherichia coli isolated from an Indian urban aquatic environment. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Shahid, M.; Sobia, F.; Singh, A.; Khan, H.M. Concurrent occurrence of blaampC families and blaCTX-M genogroups and association with mobile genetic elements ISEcp1, IS26, ISCR1, and sul1-type class 1 integrons in Escherichia coli and Klebsiella pneumoniae isolates originating from India. J. Clin. Microbiol. 2012, 50, 1779–1782. [Google Scholar] [CrossRef] [Green Version]
- Smet, A.; Van Nieuwerburgh, F.; Vandekerckhove, T.T.M.; Martel, A.; Deforce, D.; Butaye, P.; Haesebrouck, F. Complete nucleotide sequence of CTX-M-15-plasmids from clinical Escherichia coli isolates: Insertional events of transposons and insertion sequences. PLoS ONE 2010, 5, e11202. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Etayo, L.; Berzosa, M.; González, D.; Vitas, A. Prevalence of integrons and insertion sequences in ESBL-producing, E. coli isolated from different sources in Navarra, Spain. Int. J. Environ. Res. Public Health 2018, 15, 2308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saladin, M. Diversity of CTX-M β-lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS Microbiol. Lett. 2002, 209, 161–168. [Google Scholar] [CrossRef]
- Dhanji, H.; Patel, R.; Wall, R.; Doumith, M.; Patel, B.; Hope, R.; Livermore, D.M.; Woodford, N. Variation in the genetic environments of blaCTX-M-15 in Escherichia coli from the faeces of travellers returning to the United Kingdom. J. Antimicrob. Chemother. 2011, 66, 1005–1012. [Google Scholar] [CrossRef]
- Johnson, T.J.; Danzeisen, J.L.; Youmans, B.; Case, K.; Llop, K.; Munoz-Aguayo, J.; Flores-Figueroa, C.; Aziz, M.; Stoesser, N.; Sokurenko, E.; et al. Separate F-type plasmids have shaped the evolution of the H 30 Subclone of Escherichia coli sequence type 131. mSphere 2016, 1. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Decousser, J.-W.; Nordmann, P. Insertion sequence ISEcp1B is involved in expression and mobilization of a blaCTX-M β-lactamase gene. Antimicrob. Agents Chemother. 2003, 47, 2938–2945. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Lartigue, M.-F.; Decousser, J.-W.; Nordmann, P. ISEcp1B-mediated transposition of blaCTX-M in Escherichia coli. Antimicrob. Agents Chemother. 2005, 49, 447–450. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Garcés, J.L.; Saéz, D.; Almagro, M.; Fernández-Romero, S.; Merino, F.; Campos, J.; Oteo, J. Osteomyelitis associated to CTX-M-15-producing Aeromonas hydrophila: First description in the literature. Diagn. Microbiol. Infect. Dis. 2011, 70, 420–422. [Google Scholar] [CrossRef] [PubMed]
- Boyd, D.A.; Tyler, S.; Christianson, S.; McGeer, A.; Muller, M.P.; Willey, B.M.; Bryce, E.; Gardam, M.; Nordmann, P.; Mulvey, M.R. Complete nucleotide sequence of a 92-Kilobase plasmid harboring the CTX-M-15 extended-spectrum beta-lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada. Antimicrob. Agents Chemother. 2004, 48, 3758–3764. [Google Scholar] [CrossRef] [Green Version]
- Baraniak, A. Ceftazidime-hydrolysing CTX-M-15 extended-spectrum beta-lactamase (ESBL) in Poland. J. Antimicrob. Chemother. 2002, 50, 393–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upadhyay, S.; Hussain, A.; Mishra, S.; Maurya, A.P.; Bhattacharjee, A.; Joshi, S.R. Genetic environment of plasmid mediated CTX-M-15 extended spectrum beta-lactamases from clinical and food borne bacteria in North-Eastern India. PLoS ONE 2015, 10, e0138056. [Google Scholar] [CrossRef]
- Fabre, L.; Delauné, A.; Espié, E.; Nygard, K.; Pardos de la Gandara, M.; Polomack, L.; Guesnier, F.; Galimand, M.; Lassen, J.; Weill, F.X. Chromosomal integration of the extended-spectrum beta-lactamase gene blaCTX-M-15 in Salmonella enterica serotype Concord isolates from internationally adopted children. Antimicrob. Agents Chemother. 2009, 53, 1808–1816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Stephan, R.; Zurfluh, K.; Hachler, H.; Fanning, S. Characterization of the genetic environment of blaESBL genes, integrons and toxin-antitoxin systems identified on large transferrable plasmids in multi-drug resistant Escherichia coli. Front. Microbiol. 2015, 5. [Google Scholar] [CrossRef]
- Kaushik, M.; Kumar, S.; Kapoor, R.K.; Virdi, J.S.; Gulati, P. Integrons in Enterobacteriaceae: Diversity, distribution and epidemiology. Int. J. Antimicrob. Agents 2018, 51, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Lahlaoui, H.; Ben Haj Khalifa, A.; Ben Moussa, M. Epidemiology of Enterobacteriaceae producing CTX-M type extended spectrum β-lactamase (ESBL). Med. Mal. Infect. 2014, 44, 400–404. [Google Scholar] [CrossRef]
- Woodford, N.; Carattoli, A.; Karisik, E.; Underwood, A.; Ellington, M.J.; Livermore, D.M. Complete nucleotide sequences of plasmids pEK204, pEK499, and pEK516, encoding CTX-M enzymes in three major Escherichia coli lineages from the United Kingdom, all belonging to the international O25:H4-ST131 clone. Antimicrob. Agents Chemother. 2009, 53, 4472–4482. [Google Scholar] [CrossRef] [Green Version]
- Nicolas-Chanoine, M.-H.; Blanco, J.; Leflon-Guibout, V.; Demarty, R.; Alonso, M.P.; Caniça, M.M.; Park, Y.J.; Lavigne, J.P.; Pitout, J.; Johnson, J.R. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J. Antimicrob. Chemother. 2007, 61, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Rogers, B.A.; Sidjabat, H.E.; Paterson, D.L. Escherichia coli O25b-ST131: A pandemic, multiresistant, community-associated strain. J. Antimicrob. Chemother. 2010, 66, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Marcadé, G.; Deschamps, C.; Boyd, A.; Gautier, V.; Picard, B.; Branger, C.; Denamur, E.; Arlet, G. Replicon typing of plasmids in Escherichia coli producing extended-spectrum β-lactamases. J. Antimicrob. Chemother. 2009, 63, 67–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zurfluh, K.; Glier, M.; Hächler, H.; Stephan, R. Replicon typing of plasmids carrying blaCTX-M-15 among Enterobacteriaceae isolated at the environment, livestock and human interface. Sci. Total Environ. 2015, 521–522, 75–78. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awosile, B.B.; Agbaje, M. Genetic Environments of Plasmid-Mediated blaCTXM-15 Beta-Lactamase Gene in Enterobacteriaceae from Africa. Microbiol. Res. 2021, 12, 383-394. https://doi.org/10.3390/microbiolres12020026
Awosile BB, Agbaje M. Genetic Environments of Plasmid-Mediated blaCTXM-15 Beta-Lactamase Gene in Enterobacteriaceae from Africa. Microbiology Research. 2021; 12(2):383-394. https://doi.org/10.3390/microbiolres12020026
Chicago/Turabian StyleAwosile, Babafela B., and Michael Agbaje. 2021. "Genetic Environments of Plasmid-Mediated blaCTXM-15 Beta-Lactamase Gene in Enterobacteriaceae from Africa" Microbiology Research 12, no. 2: 383-394. https://doi.org/10.3390/microbiolres12020026
APA StyleAwosile, B. B., & Agbaje, M. (2021). Genetic Environments of Plasmid-Mediated blaCTXM-15 Beta-Lactamase Gene in Enterobacteriaceae from Africa. Microbiology Research, 12(2), 383-394. https://doi.org/10.3390/microbiolres12020026