Spatiotemporal Dynamics of Dengue in the State of Pará and the Socio-Environmental Determinants in Eastern Brazilian Amazon
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shabbir, W.; Pilz, J.; Naeem, A. A spatial-temporal study for the spread of dengue depending on climate factors in Pakistan (2006–2017). BMC Public Health 2020, 20, 995. [Google Scholar] [CrossRef]
- Scott, V.K.; Pinheiro, M.S.N.; Machado, M.M.T.; Castro, M.C. Acceptability of a hypothetical dengue vaccine and the potential impact of dengue vaccination on personal vector control behavior: A qualitative study in Fortaleza, Brazil. BMC Public Health 2023, 23, 2408. [Google Scholar] [CrossRef]
- Yin, S.; Hua, J.; Ren, C.; Wang, R.; Weemaels, A.I.; Guénard, B.; Shi, Y.; Lee, T.-C.; Yuan, H.-Y.; Chong, K.C.; et al. Spatial pattern assessment of dengue fever risk in subtropical urban environments: The case of Hong Kong. Landsc. Urban Plan. 2023, 237, 104815. [Google Scholar] [CrossRef]
- Sansone, N.M.S.; Boschiero, M.N.; Marson, F.A.L. Dengue outbreaks in Brazil and Latin America: The new and continuing challenges. Int. J. Infect. Dis. 2024, 147, 107192. [Google Scholar] [CrossRef] [PubMed]
- Lima-Camara, T. Dengue é um produto do ambiente: Uma abordagem sobre os impactos do ambiente no mosquito Aedes aegypti e casos de doenças. Rev. Bras. Epidemiol. 2024, 27, e240048. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Hage, R.; Bohm, B.C.; Casagrande, C.P.; Silva, S.C.M.; Soares, A.T.; Lima, J.V.; Bruhn, N.C.P.; Bruhn, F.R.P. Spatiotemporal expansion of dengue in Brazilian Amazon between 2001 and 2021. Sci. Rep. 2025, 15, 1032. [Google Scholar] [CrossRef] [PubMed]
- Codeço, C.T.; Dal’asta, A.P.; Rorato, A.C.; Lana, R.M.; Neves, T.C.; Andreazzi, C.S.; Barbosa, M.; Escada, M.I.S.; Fernandes, D.A.; Rodrigues, D.L.; et al. Epidemiology, Biodiversity, and Technological Trajectories in the Brazilian Amazon: From Malaria to COVID-19. Front. Public Health 2021, 9, 647754. [Google Scholar] [CrossRef] [PubMed]
- da Silva, C.F.A.; Santos, A.M.; Bonfim, C.V.; Silva Melo, J.L.; Sato, S.S.; Barreto, E.P. Deforestation impacts on dengue incidence in the Brazilian Amazon. Environ. Monit. Assess. 2023, 195, 593. [Google Scholar] [CrossRef]
- Serra, E.M.F.; Ferreira, D.B.S.; Silva Jr, J.A.; Moraes, B.C.; Lima, A.M.M.; Silva, B.C.S.; Godoy, B.S.; Coutinho, E.C.; Parente, A.T.; Cohen, J.C.P.; et al. Mapping the Incidence of Dengue Fever in the State of Pará, Eastern Amazon: Epidemiology and Relationships with Climate. Reports 2025, 8, 61. [Google Scholar] [CrossRef]
- Akter, R.; Hu, W.; Gatton, M.; Bambrick, H.; Cheng, J.; Tong, S. Climate variability, socio-ecological factors and dengue transmission in tropical Queensland, Australia: A Bayesian spatial analysis. Environ. Res. 2021, 195, 110285. [Google Scholar] [CrossRef]
- IBGE. Cidade e Estados—Pará. Available online: www.ibge.gov.br/cidades-e-estados/pa (accessed on 10 January 2025).
- FAPESPA. Pará No Contexto Nacional. Available online: www.fapespa.pa.gov.br/para-no-contexto-nacional-2 (accessed on 22 January 2025).
- Lopes, M.N.G.; De Souza, E.B.; Silva, D.B.F. Climatologia regional da precipitação no estado do Pará. Rev. Bras. Climatol. 2013, 12, 84–102. [Google Scholar] [CrossRef]
- Souza, E.B.; Ferreira, D.B.S.; Guimarães, J.T.F.; Franco, V.S.; Azevedo, F.T.M.; Souza, P.J.O.P. Padrões climatológicos e tendências da precipitação nos regimes chuvoso e seco da Amazônia oriental. Rev. Bras. Climatol. 2017, 21, 81–93. [Google Scholar] [CrossRef]
- Brasil. Ministério da Saúde. Informações de Saúde (TABNET)—DATASUS. 2024. Available online: https://datasus.saude.gov.br/informacoes-de-saude-tabnet (accessed on 25 January 2025).
- CNES. Downloads Base de Dados. 2025. Available online: https://cnes.datasus.gov.br/pages/downloads/arquivosBaseDados.jsp (accessed on 26 January 2025).
- IBGE. Censo Demográfico. 2022. Available online: https://www.ibge.gov.br/estatisticas/sociais/populacao/22827-censo-demografico-2022.html (accessed on 14 January 2025).
- Atlas Brasil. Ranking. 2022. Available online: www.atlasbrasil.org.br/ranking (accessed on 16 January 2025).
- IBGE—Áreas urbanizadas do Brasil: 2019. Available online: www.ibge.gov.br/geociencias/organizacao-do-territorio/tipologias-do-territorio/15789-areas-urbanizadas.html?edicao=35569&t=acesso-ao-produto (accessed on 21 January 2025).
- TerraBrasilis. Amazônia Legal—PRODES (Desmatamento). 2025. Available online: https://terrabrasilis.dpi.inpe.br/downloads (accessed on 28 January 2025).
- Xu, L.; Chen, N.; Moradkhani, H.; Zhang, X.; Hu, C. Improving global monthly and daily precipitation estimation by fusing gauge observations, remote sensing, and reanalysis data sets. Water Resour. Res. 2020, 56, e2019WR026444. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Li, R.; Cheng, S.; Luo, C.; Rutherford, S.; Cao, J.; Xu, Q.; Liu, X.; Liu, Y.; Xue, F.; Xu, Q.; et al. Epidemiological Characteristics and Spatial-Temporal Clusters of Mumps in Shandong Province, China, 2005–2014. Sci. Rep. 2017, 7, 46328. [Google Scholar] [CrossRef] [PubMed]
- Rotejanaprasert, C.; Chinpong, K.; Lawson, A.B.; Maude, R.J. Comparative evaluation of spatiotemporal methods for effective dengue cluster detection with a case study of national surveillance data in Thailand. Sci. Rep. 2024, 14, 31064. [Google Scholar] [CrossRef] [PubMed]
- Kulldorff, M. A spatial scan statistic. Commun. Stat.-Theory Methods 1997, 26, 1481–1496. [Google Scholar] [CrossRef]
- De Oliveira, E.C.A.; Da Silva, I.E.P.; Ferreira, R.J.; de Paula Souza, R.J.; de Souza Gomes, E.C.; Barbosa, C.S. Mapping the risk for transmission of urban schistosomiasis in the Brazilian Northeast. Geospat. Health 2020, 15, 371–381. [Google Scholar] [CrossRef]
- Ullah, S.; Barakzai, M.A.K.; Xie, T. Performance of a negative binomial-GLM in spatial scan statistic: A case study of low-birth weights in Pakistan. Geospat. Health 2024, 19, 1313. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.F.; Hastie, T.; D’eNza, A.I.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev. Methods Prim. 2022, 2, 100. [Google Scholar] [CrossRef]
- Zhang, D. A Coefficient of Determination for Generalized Linear Models. Am. Stat. 2017, 71, 310–316. [Google Scholar] [CrossRef]
- Kalbus, A.; de Souza Sampaio, V.; Boenecke, J.; Reintjes, R. Exploring the influence of deforestation on dengue fever incidence in the Brazilian Amazonas state. PLoS ONE 2021, 16, e0242685. [Google Scholar] [CrossRef]
- Corrêa, J.A.J.; Costa, A.C.L.; Pereira, I.C.N. Associação entre a precipitação pluviométrica e a incidência de dengue em sete municípios do Estado do Pará. Rev. Bras. Geogr. Física 2016, 9, 2264–2276. [Google Scholar] [CrossRef]
- de Azevedo, T.S.; Lorenz, C.; Chiaravalloti-Neto, F. Spatiotemporal evolution of dengue outbreaks in Brazil. Trans. R. Soc. Trop. Med. Hyg. 2020, 114, 593–602. [Google Scholar] [CrossRef]
- Instituto Trata Brasil. Ranking do Saneamento 2024. 2024. Available online: https://tratabrasil.org.br/ranking-do-saneamento-2024 (accessed on 29 January 2025).
- Pereira, E.D.A.; Carmo, C.N.; Araujo, W.R.M.; Branco, M.R.F.C. Distribuição espacial de arboviroses e sua associação com um índice de desenvolvimento social e o descarte de lixo em São Luís, Maranhão, 2015 a 2019. Rev. Bras. Epidemiol. 2024, 27, e240017. [Google Scholar] [CrossRef]
- Monteles, J.S.; Gerhard, P.; Ferreira, A.; Sonoda, K.C. Agriculture impacts benthic insects on multiple scales in the Eastern Amazon. Biol. Conserv. 2021, 255, 108998. [Google Scholar] [CrossRef]
- da Costa Hianes, A.; Hianes, L.D.C.D.; Soares, D.A.S.; da Silva, C.N. Análise ambiental do saneamento básico no contexto da REURB: O caso de Sapucaia (Pará, Brasil). Univ. Meio Ambiente 2023, 8, 11–32. Available online: https://periodicos.ufpa.br/index.php/reumam/article/view/14678 (accessed on 24 March 2025). [CrossRef]
- Sepetauskas, C.S.; Freitas, V.L.; Cardoso, H.S.; Santos, L.B. Unveiling connections: Mobility and dengue case networks on an intraurban scale. Phys. D Nonlinear Phenom. 2025, 481, 134812. [Google Scholar] [CrossRef]
- Chaves, E.C.; Costa, S.V.; Flores, R.L.R.; Bernardes, A.C. Condições de vida populacional e incidência de dengue no estado do Pará, Brasil. Pará Res. Med. J. 2018, 2, 1–9. [Google Scholar] [CrossRef]
Dimension | Variable | Description | Unit |
---|---|---|---|
Epidemiological | Dengue cases | Positive cases of dengue | Total count |
Dengue incidence | (Number of dengue cases ÷ Population) × 100,000 inhabitants | Dimensionless | |
Health | Health establishments | Number of hospitals or health centers (total in December of each year) | Total count |
Mortality < 14 years | Total number of deaths of people under 14 yr age | Total count | |
Population_60+ | Population over 60 years old | % | |
Socioeconomic | Urban area | Size of urbanized area | km2 |
Illiterate | People aged 15 or over who are illiterate | % | |
GDP | Gross domestic product per capita | R$ | |
Sanitary | Inadequate sewage system | Households with sewage system via a rudimentary septic tank or hole, via a ditch, via a river, lake, or stream and without bathroom | % |
Inadequate waste collection | Households that do not have waste collection | % | |
Inadequate water supply | Households whose water supply comes from stored rainwater, rivers, dams, streams, or creeks | % | |
Environmental/ Climate | Deforestation | Deforestation increase per year | km2 |
Min. and Max. air temperature | Minimum and Maximum air temperature | °C | |
Precipitation | CHIRPS accumulated precipitation | mm |
Cluster | Period | Population | Municipalities | Observed Cases | Expected Cases | Relative Risk |
---|---|---|---|---|---|---|
1 | 2010 to 2016 | 17,385 | 1 | 9239 | 100.90 | 100.15 |
2 | 2010 to 2013 | 3,514,901 | 73 | 29,624 | 11,176.26 | 3.28 |
3 | 2024 | 3,785,011 | 40 | 9211 | 3354.04 | 2.91 |
4 | 2017 to 2022 | 140,630 | 6 | 3183 | 738.49 | 4.41 |
5 | 2018 to 2022 | 17,385 | 1 | 1144 | 76.69 | 15.07 |
6 | 2010 to 2012 | 62,468 | 2 | 1328 | 151.41 | 8.87 |
7 | 2016 to 2017 | 783,960 | 8 | 3922 | 1354.87 | 2.97 |
8 | 2022 | 207,426 | 1 | 1194 | 227.48 | 5.30 |
9 | 2020 to 2022 | 24,254 | 1 | 600 | 64.27 | 9.38 |
10 | 2010 to 2012 | 122,108 | 1 | 1140 | 286.54 | 4.01 |
11 | 2010 to 2012 | 80,020 | 4 | 916 | 188.60 | 4.89 |
12 | 2016 | 57,208 | 1 | 482 | 49.35 | 9.81 |
13 | 2020 to 2021 | 246,419 | 3 | 1372 | 426.43 | 3.25 |
14 | 2016 to 2017 | 15,407 | 1 | 316 | 26.61 | 11.91 |
15 | 2015 | 5635 | 1 | 183 | 4.80 | 38.17 |
16 | 2019 | 42,763 | 1 | 266 | 31.88 | 8.36 |
17 | 2023 | 150,196 | 5 | 433 | 114.78 | 3.78 |
18 | 2016 to 2022 | 21,859 | 1 | 474 | 135.74 | 3.50 |
19 | 2022 | 24,438 | 1 | 178 | 20.96 | 8.51 |
20 | 2018 | 27,746 | 1 | 172 | 24.20 | 7.12 |
21 | 2015 | 27,345 | 1 | 166 | 23.80 | 6.98 |
22 | 2016 | 24,254 | 1 | 139 | 20.74 | 6.71 |
23 | 2018 | 30,379 | 1 | 149 | 25.67 | 5.81 |
24 | 2021 | 29,475 | 1 | 127 | 26.71 | 4.76 |
25 | 2015 | 31,320 | 2 | 125 | 27.50 | 4.55 |
26 | 2018 to 2020 | 31,050 | 1 | 231 | 82.52 | 2.80 |
27 | 2015 | 28,418 | 1 | 115 | 25.07 | 4.59 |
28 | 2023 | 246,419 | 3 | 456 | 248.49 | 1.84 |
29 | 2019 | 186,989 | 6 | 338 | 166.26 | 2.04 |
30 | 2022 | 37,795 | 1 | 109 | 32.86 | 3.32 |
31 | 2015 | 122,108 | 1 | 224 | 105.67 | 2.12 |
32 | 2016 | 60,091 | 2 | 133 | 52.57 | 2.53 |
33 | 2017 | 51,377 | 1 | 116 | 44.94 | 2.58 |
34 | 2019 | 15,497 | 1 | 59 | 14.34 | 4.12 |
35 | 2017 | 20,837 | 1 | 66 | 17.92 | 3.68 |
36 | 2021 | 44,444 | 1 | 107 | 41.54 | 2.58 |
37 | 2014 | 15,407 | 1 | 54 | 13.19 | 4.10 |
38 | 2021 | 15,407 | 1 | 43 | 13.61 | 3.16 |
39 | 2020 | 7209 | 1 | 26 | 6.35 | 4.09 |
40 | 2021 | 59,360 | 1 | 96 | 52.44 | 1.83 |
41 | 2022 | 37,222 | 2 | 68 | 34.52 | 1.97 |
Variables | Mean | Median | Std. Deviation | Minimum | Maximum |
---|---|---|---|---|---|
Number of dengue cases | 585.61 | 187 | 1227.80 | 0 | 10,387 |
Dengue incidence rate | 135.34 | 41.47 | 412.68 | 0 | 4643.11 |
Number of health establishments | 142.05 | 78.82 | 303.17 | 17.73 | 3431.73 |
Mortality under 14 years | 281.65 | 162.50 | 537.04 | 10 | 5568 |
Population_60+ | 10.46 | 10.18 | 2.42 | 5.09 | 16.29 |
Urban area (km2) | 12.12 | 7.35 | 17.27 | 0.83 | 147.35 |
Illiterate population up to 15 years old | 30.72 | 29.07 | 11.78 | 6.94 | 64.89 |
GDP | 28,067.05 | 13,844.21 | 80,160.77 | 6447.28 | 894,806.28 |
Households with inadequate sewage | 68.55 | 74.08 | 19.30 | 9.12 | 98.04 |
Households that do not have waste collection | 34.40 | 33.34 | 19.060 | 1.8316 | 78 |
Households with inadequate water supply | 8.94 | 2.99 | 14.84 | 0.08 | 77.05 |
Accumulated deforestation (km2) | 21.56 | 2.39 | 53.88 | 0 | 415.29 |
Average minimum temperature (°C) | 23.07 | 23.09 | 0.81 | 20.97 | 24.89 |
Average maximum temperature (°C) | 31.87 | 31.87 | 0.78 | 30.38 | 33.66 |
Accumulated precipitation (mm) | 207.66 | 208.89 | 38.27 | 139.07 | 278.40 |
Coefficient | Estimated | Standard Error | z-Value | p-Value |
---|---|---|---|---|
Intercept | 6.23954 | 0.09311 | 67.010 | 0.0000 1 |
socioeconomic_PC1 | −0.47641 | 0.12038 | −3.958 | 0.0006 1 |
socioeconomic_PC2 | 0.13009 | 0.14263 | 0.912 | 0.3617 |
health_PC1 | −0.12538 | 0.10262 | −1.222 | 0.2218 |
health _PC2 | −0.08114 | 0.12727 | −0.63 | 0.5238 |
environmental_PC1 | −0.15828 | 0.07781 | −2.034 | 0.0419 1 |
environmental_PC2 | −0.21441 | 0.13204 | −1.624 | 0.1044 |
sanitary_PC1 | −0.02620 | 0.11667 | −0.225 | 0.8223 |
sanitary_PC2 | 0.08907 | 0.12684 | 0.702 | 0.4825 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, B.C.S.; Guimarães, R.J.d.P.S.e.; Godoy, B.S.; Parente, A.T.; de Moraes, B.C.; Pimentel, M.A.d.S.; Ferreira, D.B.d.S.; Serra, E.M.F.; Silva Junior, J.d.A.; dos Anjos, L.J.S.; et al. Spatiotemporal Dynamics of Dengue in the State of Pará and the Socio-Environmental Determinants in Eastern Brazilian Amazon. Infect. Dis. Rep. 2025, 17, 99. https://doi.org/10.3390/idr17040099
da Silva BCS, Guimarães RJdPSe, Godoy BS, Parente AT, de Moraes BC, Pimentel MAdS, Ferreira DBdS, Serra EMF, Silva Junior JdA, dos Anjos LJS, et al. Spatiotemporal Dynamics of Dengue in the State of Pará and the Socio-Environmental Determinants in Eastern Brazilian Amazon. Infectious Disease Reports. 2025; 17(4):99. https://doi.org/10.3390/idr17040099
Chicago/Turabian Styleda Silva, Brenda Caroline Sampaio, Ricardo José de Paula Souza e Guimarães, Bruno Spacek Godoy, Andressa Tavares Parente, Bergson Cavalcanti de Moraes, Marcia Aparecida da Silva Pimentel, Douglas Batista da Silva Ferreira, Emilene Monteiro Furtado Serra, João de Athaydes Silva Junior, Luciano Jorge Serejo dos Anjos, and et al. 2025. "Spatiotemporal Dynamics of Dengue in the State of Pará and the Socio-Environmental Determinants in Eastern Brazilian Amazon" Infectious Disease Reports 17, no. 4: 99. https://doi.org/10.3390/idr17040099
APA Styleda Silva, B. C. S., Guimarães, R. J. d. P. S. e., Godoy, B. S., Parente, A. T., de Moraes, B. C., Pimentel, M. A. d. S., Ferreira, D. B. d. S., Serra, E. M. F., Silva Junior, J. d. A., dos Anjos, L. J. S., & de Souza, E. B. (2025). Spatiotemporal Dynamics of Dengue in the State of Pará and the Socio-Environmental Determinants in Eastern Brazilian Amazon. Infectious Disease Reports, 17(4), 99. https://doi.org/10.3390/idr17040099