Pulmonary Hypertension Secondary to Fungal Infections: Underexplored Pathological Links
Abstract
1. Introduction
2. Vascular Remodeling Post Endothelial Injury
3. Direct Vascular Remodeling During Infection
4. Distant Vascular Remodeling Post-Infection
5. Underlying Mechanisms of PCM-Induced Pulmonary Hypertension
6. Participation of NETs in the Development of Lung Remodeling and Hypertension
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sedik, S.; Wolfgruber, S.; Hoenigl, M.; Kriegl, L. Diagnosing fungal infections in clinical practice: A narrative review. Expert Rev. Anti-Infect. Ther. 2024, 22, 935–949. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.L.; Nosanchuk, J.D. Fungal diseases as neglected pathogens: A wake-up call to public health officials. PLoS Negl. Trop. Dis. 2020, 14, 399–411. [Google Scholar] [CrossRef]
- Oliveira, S.D.; Almodóvar, S.; Butrous, G.; De Jesus Perez, V.; Fabro, A.; Graham, B.B.; Mocumbi, A.; Nyasulu, P.S.; Tura-Ceide, O.; Oliveira, R.K.F.; et al. Infection and pulmonary vascular diseases consortium: United against a global health challenge. Pulm. Circ. 2024, 14, e70003. [Google Scholar] [CrossRef] [PubMed]
- Vanhoffelen, E.; Resendiz-Sharpe, A.; Vande, V.G. Microcomputed tomography to visualize and quantify fungal infection burden and inflammation in the mouse lung over time. In Antifungal Immunity: Methods and Protocols; Drummond, R.A., Ed.; Springer: New York, NY, USA, 2023; pp. 211–224. [Google Scholar] [CrossRef]
- Pipitone, N.; Salvarani, C. The role of infectious agents in the pathogenesis of vasculitis. Best Pract. Res. Clin. Rheumatol. 2008, 22, 897–911. [Google Scholar] [CrossRef]
- Revercomb, L.; Hanmandlu, A.; Wareing, N.; Akkanti, B.; Karmouty-Quintana, H. Mechanisms of pulmonary hypertension in acute respiratory distress syndrome (ARDS). Front. Mol. Biosci. 2021, 7, 624093. [Google Scholar] [CrossRef] [PubMed]
- Epelbaum, O.; Marinelli, T.; Haydour, Q.; Pennington, K.M.; Evans, S.E.; Carmona, E.M.; Husain, S.; Knox, K.S.; Jarrett, B.J.; Azoulay, E.; et al. Treatment of invasive pulmonary aspergillosis and preventive and empirical therapy for invasive candidiasis in adult pulmonary and critical care patients: An official American Thoracic Society clinical practice guideline. Am. J. Respir. Crit. Care Med. 2025, 211, 34–53. [Google Scholar] [CrossRef]
- Navabi, M.A.; Ajami, H.; Amirghofran, A.; Peyravian, F. Aspergillus endocarditis: Rare but serious Aspergillus ball obstructing the pulmonary artery. Eur. J. Cardio-Thorac. Surg. 1998, 14, 530–532. [Google Scholar] [CrossRef]
- Miranda, J.O.; De Sousa, A.R.; Monterroso, J. Aspergillus endocarditis in a paediatric patient after a cardiac surgery, associated with septic pulmonary embolism and pulmonary hypertension. Cardiol. Young 2015, 25, 563–565. [Google Scholar] [CrossRef]
- Phillipson, M.; Kubes, P. The neutrophil in vascular inflammation. Nat. Med. 2011, 17, 1381–1390. [Google Scholar] [CrossRef]
- Earle, K.; Valero, C.; Conn, D.P.; Vere, G.; Cook, P.C.; Bromley, M.J.; Bowyer, P.; Gago, S. Pathogenicity and virulence of Aspergillus fumigatus. Virulence 2023, 14, 2172264. [Google Scholar] [CrossRef]
- Puerta-Arias, J.D.; Mejía, S.P.; González, A. The role of the interleukin-17 axis and neutrophils in the pathogenesis of endemic and systemic mycoses. Front. Cell. Infect. Microbiol. 2020, 10, 595301. [Google Scholar] [CrossRef]
- Baptista de Barros Ribeiro Dourado, L.P.; Santos, M.; Moreira-Gonçalves, D. NETs, pulmonary arterial hypertension, and thrombo-inflammation. J. Mol. Med. 2022, 100, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Aldabbous, L.; Abdul-Salam, V.; McKinnon, T.; Duluc, L.; Pepke-Zaba, J.; Southwood, M.; Wojciak-Stothard, B. Neutrophil extracellular traps promote angiogenesis: Evidence from vascular pathology in pulmonary hypertension. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 2078–2087. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, X.; Pelayo, R.; Monestier, M.; Ammollo, C.T.; Semeraro, F.; Taylor, F.B.; Esmon, N.L.; Lupu, F.; Esmon, C.T. Extracellular histones are major mediators of death in sepsis. Nat. Med. 2009, 15, 1318–1321. [Google Scholar] [CrossRef] [PubMed]
- Massberg, S.; Grahl, L.; Von Bruehl, M.L.; Manukyan, D.; Pfeiler, S.; Goosmann, C.; Brinkmann, V.; Lorenz, M.; Bidzhekov, K.; Khandagale, A.B.; et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med. 2010, 16, 887–896. [Google Scholar] [CrossRef] [PubMed]
- Brill, A.; Fuchs, T.A.; Savchenko, A.S.; Thomas, G.M.; Martinod, K.; de Meyer, S.F.; Bhandari, A.A.; Wagner, D.D. Neutrophil extracellular traps promote deep vein thrombosis in mice. J. Thromb. Haemost. 2012, 10, 136–144. [Google Scholar] [CrossRef]
- Fuchs, T.A.; Brill, A.; Duerschmied, D.; Schatzberg, D.; Monestier, M.; Myers, D.D.; Wrobleski, S.K.; Wakefield, T.W.; Hartwig, J.H.; Wagner, D.D. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. USA 2010, 107, 15880–15885. [Google Scholar] [CrossRef]
- von Brühl, M.L.; Stark, K.; Steinhart, A.; Chandraratne, S.; Konrad, I.; Lorenz, M.; Khandoga, A.; Tirniceriu, A.; Coletti, R.; Köllnberger, M.; et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 2012, 209, 819–835. [Google Scholar] [CrossRef]
- Semeraro, F.; Ammollo, C.T.; Morrissey, J.H.; Dale, G.L.; Friese, P.; Esmon, N.L.; Esmon, C.T. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: Involvement of platelet TLR2 and TLR4. Blood 2011, 118, 1952–1961. [Google Scholar] [CrossRef]
- Kamath, A.; Mishra, G.; Munje, R.; Atram, J. Post-COVID Pulmonary Aspergillosis with Pulmonary Thromboembolism and Pulmonary Artery Hypertension Unmasking Prediabetes: A Case Report. Vidarbha J. Intern. Med. 2023, 33, 42–45. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, Q.; Jiang, J.; Yang, W.; Fu, A.; Ge, Y. Acute heart failure due to pulmonary Aspergillus fumigatus and Cryptococcus neoformans infection associated with COVID-19. Clin. Lab. 2023, 69, 2011–2016. [Google Scholar] [CrossRef] [PubMed]
- Bongomin, F.; Kwizera, R.; Atukunda, A.; Kirenga, B.J. Cor pulmonale complicating chronic pulmonary aspergillosis with fatal consequences: Experience from Uganda. Med. Mycol. Case Rep. 2019, 25, 22–24. [Google Scholar] [CrossRef]
- Shreiner, A.B.; Murdock, B.J.; Akha, A.A.S.; Falkowski, N.R.; Christensen, P.J.; White, E.S.; Hogaboam, C.M.; Huffnagle, G.B. Repeated exposure to Aspergillus fumigatus conidia results in CD4+ T cell-dependent and -independent pulmonary arterial remodeling in a mixed Th1/Th2/Th17 microenvironment that requires interleukin-4 (IL-4) and IL-10. Infect. Immun. 2012, 80, 388–397. [Google Scholar] [CrossRef]
- Julian, R.J.; Goryo, M. Pulmonary aspergillosis causing right ventricular failure and ascites in meat-type chickens. Avian Pathol. 1990, 19, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.D.; Siemsen, D.W.; Pullen, R.R.; Han, S. CD4+ T cells and IFN-γ are required for the development of pneumocystis-associated pulmonary hypertension. Am. J. Pathol. 2014, 184, 483–493. [Google Scholar] [CrossRef]
- Swain, S.D.; Han, S.; Harmsen, A.; Shampeny, K.; Harmsen, A.G. Pulmonary hypertension can be a sequela of prior pneumocystis pneumonia. Am. J. Pathol. 2007, 171, 790–799. [Google Scholar] [CrossRef]
- Svobodová, E.; Staib, P.; Losse, J.; Hennicke, F.; Barz, D.; Józsi, M. Differential interaction of the two related fungal species Candida albicans and Candida dubliniensis with human neutrophils. J. Immunol. 2012, 189, 2502–2511. [Google Scholar] [CrossRef]
- Campos-Garcia, L.; Jimenez-Valdes, R.J.; Hernandez-Bello, R.; Palma-Nicolas, J.; Gonzalez, G.M.; Sanchez-Gonzalez, A. Candida albicans and non-albicans isolates from bloodstream have different capacities to induce neutrophil extracellular traps. J. Fungi 2019, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Bruns, S.; Kniemeyer, O.; Hasenberg, M.; Aimanianda, V.; Nietzsche, S.; Thywien, A.; Jeron, A.; Latgé, J.P.; Brakhage, A.A.; Gunzer, M. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLoS Pathog. 2010, 6, e1000873. [Google Scholar] [CrossRef]
- Thompson-Souza, G.A.; Santos, G.M.P.; Silva, J.C.; Muniz, V.S.; Braga, Y.A.V.; Figueiredo, R.T.; Melo, R.C.N.; Santos, A.L.S.; Pinto, M.R.; Neves, J.S. Histoplasma capsulatum-induced extracellular DNA trap release in human neutrophils. Cell. Microbiol. 2020, 22, e13220. [Google Scholar] [CrossRef]
- Liu, Q.; Yi, W.; Jiang, S.; Song, J.; Liang, P. Neutrophil extracellular traps serve as key effector molecules in the protection against Phialophora verrucosa. Mycopathologia 2021, 186, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Rocha, J.D.B.; Nascimento, M.T.C.; Decote-Ricardo, D.; Côrte-Real, S.; Morrot, A.; Heise, N.; Nunes, M.P.; Previato, J.O.; Mendonça-Previato, L.; DosReis, G.A.; et al. Capsular polysaccharides from Cryptococcus neoformans modulate production of neutrophil extracellular traps (NETs) by human neutrophils. Sci. Rep. 2015, 5, 8008. [Google Scholar] [CrossRef]
- Reis, A.P.C.; Celestrino, G.A.; Igoa, M.V.B.; Jesus, T.M.; França, T.T.; Moreira, D.V.S.; Rigato, P.O.; Sato, P.K.; Condino-Neto, A.; Noronha, I.L.; et al. The dermatophyte Trichophyton rubrum induces neutrophil extracellular traps release by human neutrophils. J. Fungi 2022, 8, 147. [Google Scholar] [CrossRef] [PubMed]
- Zonta, Y.R.; Dezen, A.L.O.; Della Coletta, A.M.; Yu, K.S.T.; Carvalho, L.; Santos, L.A.; Deprá, I.C.; Kratofil, R.M.; Willson, M.E.; Zbytnuik, L.; et al. Paracoccidioides brasiliensis releases a DNase-like protein that degrades NETs and allows for fungal escape. Front. Cell. Infect. Microbiol. 2021, 10, 634283. [Google Scholar] [CrossRef]
- Luna-Rodríguez, C.E.; González, G.M.; Montoya, A.M.; Treviño-Rangel, R.J.; Sánchez-González, A. Production of neutrophil extracellular traps (NETs) in response to Scedosporium apiospermum in a murine model of pulmonary infection. Microb. Pathog. 2020, 149, 104472. [Google Scholar] [CrossRef]
- Zhong, H.; Lu, R.Y.; Wang, Y. Neutrophil extracellular traps in fungal infections: A seesaw battle in hosts. Front. Immunol. 2022, 13, 1035112. [Google Scholar] [CrossRef] [PubMed]
- Della Coletta, A.M.; Bachiega, T.F.; de Quaglia e Silva, J.C.; Soares, Â.M.V.d.C.; De Faveri, J.; Marques, S.A.; Marques, M.E.; Ximenes, V.F.; Dias-Melicio, L.A. Neutrophil Extracellular Traps Identification in Tegumentary Lesions of Patients with Paracoccidioidomycosis and Different Patterns of NETs Generation In Vitro. PLoS Negl. Trop. Dis. 2015, 9, e0004037. [Google Scholar] [CrossRef]
- Wan, R.; Jiang, J.; Hu, C.; Chen, X.; Chen, C.; Zhao, B.; Hu, X.; Zheng, Z.; Li, Y. Erratum: Correction for: Neutrophil extracellular traps amplify neutrophil recruitment and inflammation in neutrophilic asthma by stimulating the airway epithelial cells to activate the TLR4/NF-κB pathway and secrete chemokines. Aging 2024, 16, 7505–7506. [Google Scholar] [CrossRef]
- King, P.T.; Dousha, L. Neutrophil Extracellular Traps and Respiratory Disease. J. Clin. Med. 2024, 13, 2390. [Google Scholar] [CrossRef]
- Moriceau, S.; Lenoir, G.; Witko-Sarsat, V. In cystic fibrosis homozygotes and heterozygotes, neutrophil apoptosis is delayed and modulated by diamide or roscovitine: Evidence for an innate neutrophil disturbance. J. Innate Immun. 2010, 2, 260–266. [Google Scholar] [CrossRef]
- Gehrig, S.; Duerr, J.; Weitnauer, M.; Wagner, C.J.; Graeber, S.Y.; Schatterny, J.; Hirtz, S.; Belaaouaj, A.; Dalpke, A.H.; Schultz, C.; et al. Lack of neutrophil elastase reduces inflammation, mucus hypersecretion, and emphysema, but not mucus obstruction, in mice with cystic fibrosislike lung disease. Am. J. Respir. Crit. Care Med. 2014, 189, 1082–1092. [Google Scholar] [CrossRef]
- Dicker, A.J.; Crichton, M.L.; Pumphrey, E.G.; Cassidy, A.J.; Suarez-Cuartin, G.; Sibila, O.; Furrie, E.; Fong, C.J.; Ibrahim, W.; Brady, G.; et al. Neutrophil extracellular traps are associated with disease severity and microbiota diversity in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2018, 141, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Grabcanovic-Musija, F.; Obermayer, A.; Stoiber, W.; Krautgartner, W.D.; Steinbacher, P.; Winterberg, N.; Bathke, A.C.; Klappacher, M.; Studnicka, M. Neutrophil extracellular trap (NET) formation characterises stable and exacerbated COPD and correlates with airflow limitation. Respir. Res. 2015, 16, 59. [Google Scholar] [CrossRef]
- King, P.T. The role of the immune response in the pathogenesis of bronchiectasis. BioMed Res. Int. 2018, 2018, 6802637. [Google Scholar] [CrossRef]
- Angrill, J.; Agustí, C.; de Celis, R.; Filella, X.; Raño, A.; Elena, M.; De La Bellacasa, J.P.; Xaubet, A.; Torres, A. Bronchial Inflammation and Colonization in Patients with Clinically Stable Bronchiectasis. Am. J. Respir. Crit. Care Med. 2001, 164, 1628–1632. [Google Scholar] [CrossRef]
- Chalmers, J.D.; Moffitt, K.L.; Suarez-Cuartin, G.; Sibila, O.; Finch, S.; Furrie, E.; Dicker, A.; Wrobel, K.; Elborn, J.S.; Walker, B.; et al. Neutrophil elastase activity is associated with exacerbations and lung function decline in bronchiectasis. Am. J. Respir. Crit. Care Med. 2017, 195, 1384–1393. [Google Scholar] [CrossRef] [PubMed]
- Keir, H.R.; Shoemark, A.; Dicker, A.J.; Perea, L.; Pollock, J.; Giam, Y.H.; Suarez-Cuartin, G.; Crichton, M.L.; Lonergan, M.; Oriano, M.; et al. Neutrophil extracellular traps, disease severity, and antibiotic response in bronchiectasis: An international, observational, multicohort study. Lancet Respir. Med. 2021, 9, 873–884. [Google Scholar] [CrossRef] [PubMed]
- Lachowicz-Scroggins, M.E.; Dunican, E.M.; Charbit, A.R.; Raymond, W.; Looney, M.R.; Peters, M.C.; Gordon, E.D.; Woodruff, P.G.; Lefrançais, E.; Phillips, B.R.; et al. Extracellular DNA, neutrophil extracellular traps, and inflammasome activation in severe asthma. Am. J. Respir. Crit. Care Med. 2019, 199, 1076–1085. [Google Scholar] [CrossRef]
- Bianchi, M.; Hakkim, A.; Brinkmann, V.; Siler, U.; Seger, R.A.; Zychlinsky, A.; Reichenbach, J. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood 2009, 114, 2619–2622. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Giaglis, S.; Hahn, S.; Blum, C.A.; Baumgartner, C.; Kutz, A.; van Breda, S.V.; Mueller, B.; Schuetz, P.; Christ-Crain, M.; et al. Markers of neutrophil extracellular traps predict adverse outcome in community-acquired pneumonia: Secondary analysis of a randomised controlled trial. Eur. Respir. J. 2018, 51, 1701389. [Google Scholar] [CrossRef]
- Scozzi, D.; Liao, F.; Krupnick, A.S.; Kreisel, D.; Gelman, A.E. The role of neutrophil extracellular traps in acute lung injury. Front. Immunol. 2022, 13, 953195. [Google Scholar] [CrossRef]
- Zhou, X.; Jin, J.; Lv, T.; Song, Y. A Narrative Review: The Role of NETs in Acute Respiratory Distress Syndrome/Acute Lung Injury. Int. J. Mol. Sci. 2024, 25, 1464. [Google Scholar] [CrossRef] [PubMed]
- Czaikoski, P.G.; Mota, J.M.S.C.; Nascimento, D.C.; Sônego, F.; Castanheira, F.V.E.S.; Melo, P.H.; Scortegagna, G.T.; Silva, R.L.; Barroso-Sousa, R.; Souto, F.O.; et al. Neutrophil extracellular traps induce organ damage during experimental and clinical sepsis. PLoS ONE 2016, 11, e0148142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhou, Y.; Qu, M.; Yu, Y.; Chen, Z.; Zhu, S.; Guo, K.; Chen, W.; Miao, C. Tissue Factor-Enriched Neutrophil Extracellular Traps Promote Immunothrombosis and Disease Progression in Sepsis-Induced Lung Injury. Front. Cell Infect. Microbiol. 2021, 13, 677902. [Google Scholar] [CrossRef]
- Lefrançais, E.; Mallavia, B.; Zhuo, H.; Calfee, C.S.; Looney, M.R. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight 2018, 3, e98178. [Google Scholar] [CrossRef]
- Pu, S.; Wang, D.; Liu, D.; Zhao, Y.; Qi, D.; He, J.; Zhou, G. Effect of sivelestat sodium in patients with acute lung injury or acute respiratory distress syndrome: A meta-analysis of randomized controlled trials. BMC Pulm. Med. 2017, 17, 148. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Yalavarthi, S.; Shi, H.; Gockman, K.; Zuo, M.; Madison, J.A.; Blair, C.; Weber, A.; Barnes, B.J.; Egeblad, M.; et al. Neutrophil extracellular traps in COVID-19. JCI Insight 2020, 5, e138999. [Google Scholar] [CrossRef]
- Reusch, N.; De Domenico, E.; Bonaguro, L.; Schulte-Schrepping, J.; Baßler, K.; Schultze, J.L.; Aschenbrenner, A.C. Neutrophils in COVID-19. Front. Immunol. 2021, 12, 652470. [Google Scholar] [CrossRef]
- Arcanjo, A.; Logullo, J.; Menezes, C.C.B.; de Souza Carvalho Giangiarulo, T.C.; dos Reis, M.C.; de Castro, G.M.M.; da Silva Fontes, Y.; Todeschini, A.R.; Freire-de-Lima, L.; Decoté-Ricardo, D.; et al. The emerging role of neutrophil extracellular traps in severe acute respiratory syndrome coronavirus 2 (COVID-19). Sci. Rep. 2020, 10, 19630. [Google Scholar] [CrossRef]
- Barnes, B.J.; Adrover, J.M.; Baxter-Stoltzfus, A.; Borczuk, A.; Cools-Lartigue, J.; Crawford, J.M.; Daßler-Plenker, J.; Guerci, P.; Huynh, C.; Knight, J.S.; et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J. Exp. Med. 2020, 217, e20200652. [Google Scholar] [CrossRef]
- Middleton, E.A.; He, X.Y.; Denorme, F.; Campbell, R.A.; Ng, D.; Salvatore, S.P.; Mostyka, M.; Baxter-Stoltzfus, A.; Borczuk, A.C.; Loda, M.; et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 2020, 136, 1169–1179. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Al-hussaniy, H.A.; Al-Harcan, N.A.H.; Alexiou, A.; Batiha, G.E.S. Neutrophil Extracellular Traps (NETs) and Covid-19: A new frontiers for therapeutic modality. Int. Immunopharmacol. 2022, 104, 108516. [Google Scholar] [CrossRef]
- Nicolai, L.; Leunig, A.; Brambs, S.; Kaiser, R.; Weinberger, T.; Weigand, M.; Muenchhoff, M.; Hellmuth, J.C.; Ledderose, S.; Schulz, H.; et al. Immunothrombotic Dysregulation in COVID-19 Pneumonia Is Associated With Respiratory Failure and Coagulopathy. Circulation 2020, 42, 1176–1189. [Google Scholar] [CrossRef]
- Veras, F.P.; Pontelli, M.C.; Silva, C.M.; Toller-Kawahisa, J.E.; de Lima, M.; Nascimento, D.C.; Schneider, A.H.; Caetité, D.; Tavares, L.A.; Paiva, I.M.; et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J. Exp. Med. 2020, 217, 20201129. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.G.; Chau, A.S.; Egeblad, M.; Barnes, B.J.; Janowitz, T. Nebulized in-line endotracheal dornase alfa and albuterol administered to mechanically ventilated COVID-19 patients: A case series. Mol. Med. 2020, 26, 91. [Google Scholar] [CrossRef] [PubMed]
- Toma, A.; Darwish, C.; Taylor, M.; Harlacher, J.; Darwish, R. The Use of Dornase Alfa in the Management of COVID-19-Associated Adult Respiratory Distress Syndrome. Crit. Care Res. Pract. 2021, 2021, 8881115. [Google Scholar] [CrossRef]
- Shao, B.Z.; Yao, Y.; Li, J.P.; Chai, N.L.; Linghu, E.Q. The Role of Neutrophil Extracellular Traps in Cancer. Front. Oncol. 2021, 11, 714357. [Google Scholar] [CrossRef]
- Demers, M.; Krause, D.S.; Schatzberg, D.; Martinod, K.; Voorhees, J.R.; Fuchs, T.A.; Scadden, D.T.; Wagner, D.D. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc. Natl. Acad. Sci. USA 2012, 109, 13076–13081. [Google Scholar] [CrossRef] [PubMed]
- Teijeira, Á.; Garasa, S.; Gato, M.; Alfaro, C.; Migueliz, I.; Cirella, A.; de Andrea, C.; Ochoa, M.C.; Otano, I.; Etxeberria, I.; et al. CXCR1 and CXCR2 Chemokine Receptor Agonists Produced by Tumors Induce Neutrophil Extracellular Traps that Interfere with Immune Cytotoxicity. Immunity 2020, 19, 856–871.e8. [Google Scholar] [CrossRef]
- Stoiber, D.; Assinger, A. Platelet-Leukocyte Interplay in Cancer Development and Progression. Cells 2020, 9, 855. [Google Scholar] [CrossRef]
- Li, Z.; Lin, Y.; Zhang, S.; Zhou, L.; Yan, G.; Wang, Y.; Zhang, M.; Wang, M.; Lin, H.; Tong, Q.; et al. Emodin regulates neutrophil phenotypes to prevent hypercoagulation and lung carcinogenesis. J. Transl. Med. 2019, 17, 90. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Li, M.; Liu, B.; Ma, Z.; Yang, Q. Neutrophil extracellular traps and pulmonary fibrosis: An update. J. Inflamm. 2023, 20, 2. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jia, X.; Zhang, Q.; Zhang, L.; Yang, J.; Hu, C.; Shi, J.; Jiang, X.; Lu, J.; Shen, H. Neutrophil extracellular traps activate lung fibroblast to induce polymyositis-related interstitial lung diseases via TLR9-miR-7-Smad2 pathway. J. Cell Mol. Med. 2020, 24, 1658–1669. [Google Scholar] [CrossRef] [PubMed]
- Chrysanthopoulou, A.; Mitroulis, I.; Apostolidou, E.; Arelaki, S.; Mikroulis, D.; Konstantinidis, T.; Sivridis, E.; Koffa, M.; Giatromanolaki, A.; Boumpas, D.T.; et al. Neutrophil extracellular traps promote differentiation and function of fibroblasts. J. Pathol. 2014, 233, 294–307. [Google Scholar] [CrossRef]
- Suzuki, M.; Ikari, J.; Anazawa, R.; Tanaka, N.; Katsumata, Y.; Shimada, A.; Suzuki, E.; Tatsumi, K. PAD4 Deficiency improves bleomycin-induced neutrophil extracellular traps and fibrosis in mouse lung. Am. J. Respir. Cell Mol. Biol. 2020, 63, 806–818. [Google Scholar] [CrossRef]
- Narasaraju, T.; Yang, E.; Samy, R.P.; Ng, H.H.; Poh, W.P.; Liew, A.A.; Phoon, M.C.; van Rooijen, N.; Chow, V.T. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am. J. Pathol. 2011, 179, 199–210. [Google Scholar] [CrossRef]
- Yepez, C.G.; Puigbó, J.J.; Hirschhaut, E.; Carbonell, L.; Suárez, P.B.H.; Suárez, J.A. Chronic Cor Pulmonale Due to Paracoccidioidomycosis Clinical, Functional and Anatomical Study. Am. J. Cardiol. 1962, 10, 30–37. [Google Scholar]
- Machado Filho, J.; Lisboa, R.M.; de Mattos, A.; Januzzi, A.; Miranda, J.L. Considerations on South American blastomycosis. The cardiovascular repercussions of the pulmonary lesions. Hemodynamic, oximetric and angiopneumographical data. Hospital 1961, 60, 241–259. [Google Scholar]
- Campos, E.P.; Padovani, C.R.; Cataneo, A.M. Paracoccidioidomycosis: Radiologic and pulmonary study in 58 cases. Rev. Inst. Med. Trop. Sao Paulo 1991, 33, 267–276. [Google Scholar] [CrossRef]
- Gaspar, G.G.; Cocio, T.A.; Guioti-Puga, F.; Nascimento, E.; Fabro, A.T.; Kress MRvon, Z.; Bagagli, E.; Martinez, R. Paracoccidioidomycosis due to Paracoccidioides lutzii complicated with adrenal injury and pulmonary arterial hypertension. Rev. Inst. Med. Trop. Sao Paulo 2020, 62, e89. [Google Scholar] [CrossRef]
- Batah, S.S.; Alda, M.A.; Machado-Rugulo, J.R.; Felix, R.G.; Nascimento, E.; Martinez, R.; de Pádua, A.I.; Bagagli, E.; Hrycyk, M.F.; Salgado, H.C.; et al. Pulmonary paracoccidioidomycosis-induced pulmonary hypertension. Clin. Transl. Med. 2020, 10, e213. [Google Scholar] [CrossRef] [PubMed]
- Frangou, E.; Chrysanthopoulou, A.; Mitsios, A.; Kambas, K.; Arelaki, S.; Angelidou, I.; Arampatzioglou, A.; Gakiopoulou, H.; Bertsias, G.K.; Verginis, P.; et al. REDD1/autophagy pathway promotes thromboinflammation and fibrosis in human systemic lupus erythematosus (SLE) through NETs decorated with tissue factor (TF) and interleukin-17A (IL-17A). Ann. Rheum. Dis. 2019, 78, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Königshoff, M.; Bonniaud, P. Live and Let Die: Targeting Alveolar Epithelial Cell Proliferation in Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2014, 190, 1339–1341. [Google Scholar] [CrossRef] [PubMed]
- Gregory, A.D.; Kliment, C.R.; Metz, H.E.; Kim, K.H.; Kargl, J.; Agostini, B.A.; Crum, L.T.; Oczypok, E.A.; Oury, T.A.; Houghton, A.M. Neutrophil elastase promotes myofibroblast differentiation in lung fibrosis. J. Leukoc. Biol. 2015, 98, 143–152. [Google Scholar] [CrossRef]
Study Type | Agent | Lung Findings | Heart Findings | References |
---|---|---|---|---|
Autopsy study (n = 5) | P. brasiliensis | Intravascular thrombosis, granulomas, fibrosis, and emphysema. | Cor pulmonale | Yepez et al. [78] |
Case report | P. brasiliensis | Pulmonary hypertension | ----------- | Machado-filho et al. [79] |
Clinical study (n = 14) | P. brasiliensis | Pulmonary hypertension | Cor pulmonale | Campos et al. [80] |
Case report (n = 2) | Aspergillus sp. | Pulmonary artery hypertension | Endocarditis | Navabi et al., [8] |
Case report | Aspergillus fumigatus | Pulmonary embolism Pulmonary hypertension | Endocarditis | Miranda et al. [9] |
Case report | Aspergillus sp. | Pulmonary hypertension | Cor pulmonale | Bongomin et al. [23] |
Case report | P. lutzi | Pulmonary hypertension | ---- | Gaspar et al. [81] |
Clinical study and animal model | P. brasiliensis | Granulomas Pulmonary hypertension | ----- | Batah et al. [82] |
Case report | Aspergillus fumigatus and Cryptococcus neoformans | --------------- | Acute heart failure | Ren et al. [22] |
Animal model | Aspergillus fumigatus | Pulmonary arterial remodeling | ------ | Shreiner et al. [24] |
Animal model | Pneumocystis sp. | Perivascular inflammation, medial hypertrophy, perivascular fibrosis, pulmonary hypertension | Right ventricular hypertrophy (RVH), elevated right ventricular pressure | Swain et al. [26,27] |
Animal model | Aspergillus fumigatus | Interstitial pneumonia, pulmonary consolidation, fibrosis, vascular obstruction, pulmonary hypertension | Right ventricular hypertrophy and dilation, valvular insufficiency, ascites | Julian, Goryo [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Herrera, A.J.; Setembre Batah, S.; Faci do Marco, M.J.; González-Zambrano, C.M.; Dias-Melicio, L.A.; Fabro, A.T. Pulmonary Hypertension Secondary to Fungal Infections: Underexplored Pathological Links. Infect. Dis. Rep. 2025, 17, 84. https://doi.org/10.3390/idr17040084
Rodríguez-Herrera AJ, Setembre Batah S, Faci do Marco MJ, González-Zambrano CM, Dias-Melicio LA, Fabro AT. Pulmonary Hypertension Secondary to Fungal Infections: Underexplored Pathological Links. Infectious Disease Reports. 2025; 17(4):84. https://doi.org/10.3390/idr17040084
Chicago/Turabian StyleRodríguez-Herrera, Andrea Jazel, Sabrina Setembre Batah, Maria Júlia Faci do Marco, Carlos Mario González-Zambrano, Luciane Alarcão Dias-Melicio, and Alexandre Todorovic Fabro. 2025. "Pulmonary Hypertension Secondary to Fungal Infections: Underexplored Pathological Links" Infectious Disease Reports 17, no. 4: 84. https://doi.org/10.3390/idr17040084
APA StyleRodríguez-Herrera, A. J., Setembre Batah, S., Faci do Marco, M. J., González-Zambrano, C. M., Dias-Melicio, L. A., & Fabro, A. T. (2025). Pulmonary Hypertension Secondary to Fungal Infections: Underexplored Pathological Links. Infectious Disease Reports, 17(4), 84. https://doi.org/10.3390/idr17040084