Carbapenem-Resistant Gram-Negative Bacteria in Hospitalized Patients: A Five-Year Surveillance in Italy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Specimen Processing and Identification
2.3. Antimicrobial Susceptibility Testing
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laxminarayan, R.; Van Boeckel, T.; Frost, I.; Kariuki, S.; Khan, E.A.; Limmathurotsakul, D.; Larsson, D.G.J.; Levy-Hara, G.; Mendelson, M.; Outterson, K.; et al. The Lancet Infectious Diseases Commission on antimicrobial resistance: 6 years later. Lancet Infect. Dis. 2020, 20, e51–e60. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- World Health Organization. Ten Threats to Global Health. Available online: https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019 (accessed on 30 March 2025).
- Ahmad, M.; Khan, A.U. Global economic impact of antibiotic resistance: A review. J. Glob. Antimicrob. Resist. 2019, 19, 313–316. [Google Scholar] [CrossRef]
- Marchaim, D.; Zaidenstein, R.; Lazarovitch, T.; Karpuch, Y.; Ziv, T.; Weinberger, M. Epidemiology of bacteremia episodes in a single center: Increase in Gram-negative isolates, antibiotics resistance, and patient age. Eur. J. Clin. Microbiol. Infect. Dis. 2008, 27, 1045–1051. [Google Scholar] [CrossRef]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. The Review on Antimicrobial Resistance, London, 2016. Available online: https://apo.org.au/sites/default/files/resource-files/2016-05/apo-nid63983.pdf (accessed on 30 March 2025).
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Kaur, N.K.A.; Singh, S.; Singh, S. Prevalence of ESBL and MBL producing gram-negative isolates from various clinical samples in a tertiary care hospital. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1423–1430. [Google Scholar] [CrossRef]
- World Health Organization. WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2024. Available online: https://iris.who.int/bitstream/handle/10665/376776/9789240093461-eng.pdf?sequence=1 (accessed on 30 March 2025).
- World Health Organization. WHO Publishes a List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/en/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 1 April 2025).
- Ruppé, É.; Woerther, P.L.; Barbier, F. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann. Intensive Care 2015, 5, 61. [Google Scholar] [CrossRef]
- Bakleh, M.Z.; Kohailan, M.; Marwan, M.; Alhaj Sulaiman, A. A Systematic Review and Comprehensive Analysis of mcr Gene Prevalence in Bacterial Isolates in Arab Countries. Antibiotics 2024, 13, 958. [Google Scholar] [CrossRef]
- Codjoe, F.S.; Donkor, E.S. Carbapenem Resistance: A Review. Med. Sci. 2017, 6, 1. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. ECDC, 2023. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/healthcare-associated-point-prevalence-survey-acute-care-hospitals-2022-2023.pdf (accessed on 1 April 2025).
- European Centre for Disease Prevention and Control. ECDC Country Visit to Italy to Discuss Antimicrobial Resistance Issues. 2017. Available online: https://www.ecdc.europa.eu/en/publications-data/ecdc-country-visit-italy-discuss-antimicrobial-resistance-issues (accessed on 1 April 2025).
- Ashiru-Oredope, D.; Hopkins, S.; Vasandani, S.; Umoh, E.; Oloyede, O.; Nilsson, A.; Kinsman, J.; Elsert, L.; Monnet, D.L.; The #ECDC Antibiotic Survey Project Advisory Group. Healthcare workers’ knowledge, attitudes and behaviours with respect to antibiotics, antibiotic use and antibiotic resistance across 30 EU/EEA countries in 2019. Euro Surveill. 2021, 26, 1900633. [Google Scholar] [CrossRef]
- Minogue, T.D.; Daligault, H.A.; Davenport, K.W.; Bishop-Lilly, K.A.; Broomall, S.M.; Bruce, D.C.; Chain, P.S.; Chertkov, O.; Coyne, S.R.; Freitas, T.; et al. Complete Genome Assembly of Escherichia coli ATCC 25922, a Serotype O6 Reference Strain. Genome Announc. 2014, 2, e00969-14. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of MICs and Zone Diameters Version 15.0, valid from 2025-01-01. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_15.0_Breakpoint_Tables.pdf (accessed on 5 April 2025).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Morales, L.; Cobo, A.; Frías, M.P.; Gálvez, A.; Ortega, E. The Prevalence of Antibiotic Resistance Phenotypes and Genotypes in Multidrug-Resistant Bacterial Isolates from the Academic Hospital of Jaén, Spain. Antibiotics 2024, 13, 429. [Google Scholar] [CrossRef]
- Vom Steeg, L.G.; Klein, S.L. SeXX matters in infectious disease pathogenesis. PLoS Pathog. 2016, 12, e1005374. [Google Scholar] [CrossRef]
- Onorato, L.; Sarnelli, B.; D’Agostino, F.; Signoriello, G.; Trama, U.; D’Argenzio, A.; Montemurro, M.V.; Coppola, N. Epidemiological, Clinical and Microbiological Characteristics of Patients with Bloodstream Infections Due to Carbapenem-Resistant K. Pneumoniae in Southern Italy: A Multicentre Study. Antibiotics 2022, 11, 633. [Google Scholar] [CrossRef]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. 2016, 16, 626–638. [Google Scholar] [CrossRef]
- Dias, S.P.; Brouwer, M.C.; van de Beek, D. Sex and Gender Differences in Bacterial Infections. Infect. Immun. 2022, 90, e0028322. [Google Scholar] [CrossRef] [PubMed]
- Kumwenda, P.; Adukwu, E.C.; Tabe, E.S.; Ujor, V.C.; Kamudumuli, P.S.; Ngwira, M.; Wu, J.T.S.; Chisale, M.R.O. Prevalence, distribution and antimicrobial susceptibility pattern of bacterial isolates from a tertiary Hospital in Malawi. BMC Infect. Dis. 2021, 21, 34. [Google Scholar] [CrossRef]
- Hammour, K.A.; Abu-Farha, R.; Itani, R.; Karout, S.; Allan, A.; Manaseer, Q.; Hammour, W.A. The prevalence of Carbapenem Resistance Gram negative pathogens in a Tertiary Teaching Hospital in Jordan. BMC Infect. Dis. 2023, 23, 634. [Google Scholar] [CrossRef] [PubMed]
- Monnet, D.L.; Harbarth, S. Will coronavirus disease (COVID-19) have an impact on antimicrobial resistance? Euro Surveill. 2020, 25, 2001886. [Google Scholar] [CrossRef] [PubMed]
- Rawson, T.M.; Ming, D.; Ahmad, R.; Moore, L.S.P.; Holmes, A.H. Antimicrobial use, drug-resistant infections and COVID-19. Nat. Rev. Microbiol. 2020, 18, 409–410. [Google Scholar] [CrossRef]
- Musicha, P.; Cornick, J.E.; Bar-Zeev, N.; French, N.; Masesa, C.; Denis, B.; Kennedy, N.; Mallewa, J.; Gordon, M.A.; Msefula, C.L.; et al. Trends in antimicrobial resistance in bloodstream infection isolates at a large urban hospital in Malawi (1998–2016): A surveillance study. Lancet Infect. Dis. 2017, 17, 1042–1052. [Google Scholar] [CrossRef]
- Iroh Tam, P.Y.; Musicha, P.; Kawaza, K.; Cornick, J.; Denis, B.; Freyne, B.; Everett, D.; Dube, Q.; French, N.; Feasey, N.; et al. Emerging Resistance to Empiric Antimicrobial Regimens for Pediatric Bloodstream Infections in Malawi (1998–2017). Clin. Infect. Dis. 2019, 69, 61–68. [Google Scholar] [CrossRef]
- Goebel, M.C.; Trautner, B.W.; Grigoryan, L. The Five Ds of Outpatient Antibiotic Stewardship for Urinary Tract Infections. Clin. Microbiol. Rev. 2021, 34, e0000320. [Google Scholar] [CrossRef]
- Iacchini, S.; Boros, S.; Pezzotti, P.; Caramia, A.; Errico, E.; Del Grosso, M.; Camilli, R.; Giufrè, M.; Pantosti, A.; Maraglino, F.; et al. AR-ISS: Sorveglianza Nazionale dell’Antibiotico-Resistenza. Dati 2022. Rapporti ISS Sorveglianza RIS-4/2023. Available online: https://www.epicentro.iss.it/antibiotico-resistenza/ar-iss/RIS-4_2023.pdf (accessed on 22 April 2025).
- Rodriguez-Maresca, M.; Sorlozano, A.; Grau, M.; Rodriguez-Castado, R.; Rutz-Valverde, A.; Gutierrez-Fernandez, J. Implementation of a computerized decision support system to improve the appropriateness of antibiotic therapy using local microbiologic data. Biomed. Res. Int. 2014, 2014, 395434. [Google Scholar] [CrossRef]
- Mangioni, D.; Viaggi, B.; Giani, T.; Arena, F.; D’Arienzo, S.; Forni, S.; Tulli, G.; Rossolini, G.M. Diagnostic stewardship for sepsis: The need for risk stratification to triage patients for fast microbiology workflows. Future Microbiol. 2019, 14, 169–174. [Google Scholar] [CrossRef]
- Walker, T.; Dumadag, S.; Jiyoun Lee, C.; Lee, S.H.; Bender, J.M.; Cupo Abbott, J.; She, R.C. Clinical impact of laboratory implementation of Verigene BC-GN microarray-based assay for detection of Gram-negative bacteria in positive blood cultures. J. Clin. Microbiol. 2016, 54, 789–796. [Google Scholar] [CrossRef]
- Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial resistance: A global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 2017, 57, 2857–2876. [Google Scholar] [CrossRef]
Parameters | Female (n = 142) | Male (n = 240) | Total (n = 382) | p |
---|---|---|---|---|
Age, mean ± SD | 69.4 ± 14.6 | 68.1 ± 15.9 | 68.6 ± 15.4 | 0.206 1 |
Age group | ||||
1–25, n (%) | 3 (2.1) | 5 (2.1) | 8 (2.1) | |
26–45, n (%) | 5 (3.5) | 21 (8.7) | 26 (6.8) | |
46–65, n (%) | 43 (30.3) | 47 (19.6) | 90 (23.67) | |
>65, n (%) | 91 (64.1) | 167 (69.6) | 258 (67.5) | 0.040 2 |
Years | ||||
2018, n (%) | 31 (21.8) | 51 (21.2) | 82(21.5) | |
2019, n (%) | 27(19.0) | 39 (16.3) | 66 (17.3) | |
2020, n (%) | 16 (11.3) | 23 (9.6) | 39 (10.2) | |
2021, n (%) | 18 (12.7) | 53 (22.1) | 71 (18.6) | |
2022, n (%) | 50 (35.2) | 74 (30.8) | 124 (32.4) | 0.246 3 |
Microbe | Sputum n (%) | BAL n (%) | BAS n (%) | PE n (%) | Surgical Wound n (%) | CSF n (%) | Bone n (%) | Blood n (%) | Rectal Swab n (%) | Urine n (%) |
---|---|---|---|---|---|---|---|---|---|---|
K. pneumoniae | 6 (3.7) | 2 (1.2) | 24 (14.6) | 1 (0.6) | 16 (9.8) | 1 (0.6) | - | 39 (23.8) | 11 (6.7) | 64 (39.0) |
E. coli | - | 1 (2.3) | 1 (2.3) | 1 (2.3) | 3 (7.0) | - | - | 8 (18.6) | 1 (2.3) | 28 (65.1) |
P. aeruginosa | 4 (5.2) | 4 (5.2) | 18 (23.4) | 1 (1.3) | 10 (13.0) | - | 2 (2.6) | 19 (24.7) | - | 19 (24.7) |
E. cloacae | - | 1 (11.1) | 2 (22.2) | - | 4 (44.4) | - | - | 1 (11.1) | - | 1 (11.1) |
P. mirabilis | 1 (4.0) | - | 6 (24.0) | - | 6 (24.0) | - | 1 (4.0) | - | - | 11 (44.0) |
S. marcescens | 1 (10.0) | - | 6 (60.0) | - | - | - | - | 2 (20.0) | - | 1 (10.0) |
M. morganii | - | - | - | - | - | - | - | 1 (50.0) | - | 1 (50.0) |
A. baumannii | 5 (7.7) | 5 (7.7) | 24 (36.9) | - | 5 (7.7) | - | - | 19 (29.2) | - | 7 (10.8) |
P. stuartii | - | - | 2 (28.6) | - | 1 (14.3) | - | - | 1 (14.3) | - | 3 (42.9) |
Total | 17 (4.2) | 13 (3.2) | 83 (20.6) | 3 (0.8) | 45 (11.2) | 1 (0.2) | 3 (0.8) | 90 (22.4) | 12 (3.0) | 135 (33.6) |
Clinical Operative Units | Klebsiella pneumoniae n (%) | Escherichia coli n (%) | Pseudomonas aeruginosa n (%) | Enterobacter cloacae n (%) | Proteus mirabilis n (%) | Serratia marcescens n (%) | Morganella morganii n (%) | Acinetobacter baumannii n (%) | Providencia stuartii n (%) | Total n (%) |
---|---|---|---|---|---|---|---|---|---|---|
Cardiac surgery | 20 (12.2) | 6 (14.0) | 8 (10.4) | 3 (33.3) | 5 (20.0) | 1 (10.0) | - (-) | 3 (4.6) | - (-) | 46 (11.4) |
Cardiology | 14 (8.5) | 5 (11.6) | 5 (6.5) | 1 (11.1) | 3 (12.0) | 2 (20.0) | - (-) | 2 (3.1) | - (-) | 32 (8.0) |
General surgery | 2 (1.2) | 1 (2.3) | 1 (1.3) | 1 (11.1) | - (-) | - (-) | - (-) | 1 (1.5) | - (-) | 6 (1.5) |
Thoracic surgery | 2 (1.2) | 1 (2.3) | 1 (1.3) | - (-) | - (-) | - (-) | - (-) | - (-) | - (-) | 4 (1.0) |
Hematology | 5 (3.0) | - (-) | 7 (9.1) | - (-) | - (-) | - (-) | - (-) | - (-) | - (-) | 12 (3.0) |
Gynecology | - (-) | - (-) | 1 (1.3) | - (-) | - (-) | - (-) | - (-) | - (-) | - (-) | 1 (0.2) |
General medicine | 41 (25.0) | 3 (7.0) | 17 (22.1) | - (-) | 5 (20.0) | 3 (30.0) | - (-) | 13 (20.0) | 2 (28.6) | 84 (20.9) |
Nephrology | 11 (6.7) | 2 (4.7) | 2 (2.6) | - (-) | 1 (4.0) | - (-) | - (-) | 1 (1.5) | - (-) | 17 (4.2) |
Neurology | 2 (1.2) | 1 (2.3) | 2 (2.6) | - (-) | 2 (8.0) | 1 (10.0) | - (-) | 2 (3.1) | - (-) | 8 (2.0) |
Neurosurgery | 10 (6.1) | - (-) | 8 (10.4) | 2 (22.2) | - (-) | 1 (10.0) | - (-) | 3 (4.6) | 1 (14.3) | 27 (6.7) |
Ophthalmology | - (-) | - (-) | - (-) | - (-) | 1 (4.0) | - (-) | - (-) | - (-) | - (-) | 1 (0.2) |
Oncology | 2 (1.2) | - (-) | 1 (1.3) | - (-) | - (-) | - (-) | - (-) | - (-) | - (-) | 3 (0.7) |
Orthopedics | 15 (9.1) | 12 (27.9) | 1 (1.3) | - (-) | 3 (12.0) | - (-) | - (-) | 3 (4.6) | - (-) | 46 (11.4) |
Pneumology | 7 (4.3) | 1 (2.3) | 13 (16.9) | - (-) | 3 (12.0) | 1 (10.0) | - (-) | 8 (12.3) | 2 (28.6) | 26 (6.5) |
Psychiatry | - (-) | 2 (4,7) | 1 (1.3) | - (-) | - (-) | - (-) | - (-) | - (-) | - (-) | 3 (0.7) |
Intensive care | 25 (15.2) | 2 (4.7) | 4 (5.2) | 2 (22.2) | 1 (4.0) | 1 (10.0) | 2 (100) | 29 (44.6) | 2 (28.6) | 68 (16.9) |
Urology | 8 (4.9) | 7 (16.3) | 2 (2.6) | - (-) | 1 (4.0) | - (-) | - (-) | - (-) | - (-) | 18 (4.5) |
Antimicrobial Agents | No. of Bacteria Tested | Susceptibility Patterns | ||
---|---|---|---|---|
Resistant No. (%) | Intermediate No. (%) | Sensitive No. (%) | ||
Amikacin | 335 | 103 (30.7) | 9 (2.7) | 223 (66.6) |
Amoxicillin/Clavulanic acid | 125 | 75 (60.0) | - (-) | 50 (40.0) |
Cefepime | 243 | 126 (51.9) | 42 (17.3) | 75 (30.9) |
Ceftazidime | 334 | 203 (60.8) | 36 (10.8) | 95 (28.4) |
Ceftazidime/Avibactam | 182 | 33 (18.1) | - (-) | 149 (81.9) |
Ceftolozane/Tazobactam | 182 | 79 (43.4) | - (-) | 103 (56.6) |
Ciprofloxacin | 397 | 273 (68.8) | 35 (8.8) | 89 (22.4) |
Ertapenem | 139 | 79 (56.8) | 2 (1.4) | 79 (56.8) |
Fosfomycin | 155 | 88 (56.8) | - (-) | 67 (43.2) |
Gentamicin | 351 | 147 (41.9) | 8 (2.3) | 147 (41.9) |
Imipenem | 279 | 144 (51.6) | 50 (17.9) | 85 (30.5) |
Meropenem | 401 | 209 (52.1) | 11 (2.7) | 181 (45.1) |
Piperacillin/Tazobactam | 334 | 188 (56.3) | 34 (10.2) | 112 (33.5) |
Tigecycline | 82 | 36 (43.9) | 23 (28.0) | 23 (28.0) |
Trimethoprim/Sulfamethoxazole | 346 | 227 (65.6) | 2 (0.6) | 117 (33.8) |
Group/Antimicrobial | 2018 % (n) | 2019 % (n) | 2020 % (n) | 2021 % (n) | 2022 % (n) | Total % (n) | p *° |
---|---|---|---|---|---|---|---|
Aminoglycosides | 61.8 (89) | 56.3 (40) | 40.0 (45) | 47.9 (34) | 34.1 (43) | 52.1 (251) | 0.0019 |
Amikacin | 36.0 (82) | 38.0 (71) | 29.7 (37) | 27.5 (51) | 20.2 (94) | 30.7 (335) | 0.0018 |
Gentamicin | 46.1 (89) | 38.0 (71) | 33.3 (39) | 43.1 (58) | 43.6 (94) | 41.9 (351) | 0.0017 |
Beta-Lactams | 73.7 (76) | 67.2 (61) | 56.8 (37) | 60.7 (56) | 58.1 (105) | 63.6 (335) | 0.0915 |
Amoxicillin/Clavulanic acid | 80.4 (56) | 73.7 (19) | 45.5 (11) | 33.3 (15) | 25.0 (24) | 60.0 (125) | 0.0016 |
Piperacillin/Tazobactam | 61.8 (76) | 57.4 (61) | 48.6 (37) | 51.8 (56) | 57.1 (105) | 56.4 (335) | 0.6240 |
Cephalosporins | 58.4 (89) | 65.0 (60) | 51.4 (37) | 54.4 (57) | 63.8 (105) | 62.1 (348) | 1.0500 |
Cefepime | 60.0 (55) | 20.0 (5) | 45.5 (22) | 50.9 (57) | 51.0 (104) | 51.9 (243) | 1.3212 |
Ceftazidime | 69.3 (76) | 65.0 (60) | 51.4 (37) | 52.6 (57) | 60.0 (105) | 60.8 (335) | 0.5220 |
Ceftazidime/Avibactam | - (0) § | - (0) § | 30.0 (20) | 14.0 (57) | 18.1 (105) | 18.1 (182) | 1.2988 |
Ceftolozane/Tazobactam | - (0) § | - (0) § | 42.9 (21) | 40.4 (57) | 45.2 (104) | 43.4 (182) | 1.3705 |
Fluoroquinolones | |||||||
Ciprofloxacin | 77.5 (89) | 72.9 (52) | 68.9 (45) | 60.6 (71) | 64.8 (122) | 68.8 (379) | 0.5797 |
Carbapenems | 66.3 (89) | 56.3 (71) | 53.3 (45) | 54.9 (71) | 53.6 (125) | 57.1 (401) | 1.2296 |
Ertapenem | 61.8 (76) | 52.9 (51) | 41.7 (12) | - (0) § | - (0) § | 56.8 (139) | 1.1172 |
Imipenem | 45.2 (62) | 0.0 (4) | 56.5 (23) | 54.3 (70) | 54.2 (120) | 51.6 (279) | 0.3416 |
Meropenem | 53.9 (89) | 56.3 (71) | 48.9 (45) | 54.9 (71) | 48.0 (125) | 52.1 (401) | 1.0548 |
Phosphonics | |||||||
Fosfomycin | 62.5 (88) | 48.1 (54) | 50.0 (12) | - (0) | 100 (1) | 56.8 (155) | 0.9014 |
Glycylcyclines | |||||||
Tigecycline | 44.8 (58) | 57.1 (14) | 10.5 (19) | - (0) § | - (0) § | 43.9 (91) | 1.2348 |
Sulfonamides | |||||||
Trimethoprim/Sulfamethoxazole | 75.3 (89) | 69.8 (63) | 58.3 (36) | 63.9 (61) | 57.7 (97) | 65.6 (346) | 0.5135 |
AMR | 96.6 (89) | 85.9 (71) | 80.0 (45) | 80.3 (71) | 81.0 (126) | 85.1 (402) | 0.0018 |
MDR | 87.6 (89) | 74.6 (71) | 62.2 (45) | 62.0 (71) | 47.6 (126) | 65.4 (402) | <0.0001 |
XDR | 10.1 (89) | 4.2 (71) | 2.2 (45) | 0.0 (71) | 0.0 (126) | 3.2 (402) | <0.0001 |
Microbe | Resistant Total n (%) | Carbapenem-Resistant Isolates n (%) | ESBL 1 Isolates n (%) |
---|---|---|---|
K. pneumoniae | 135 * (59.7) | 115 (85.2) | 21 (15.6) |
E. coli | 15 (6.6) | 2 (13.3) | 13 (86.7) |
P. aeruginosa | 54 (23.9) | 28 (51.9) | 26 (48.1) |
E. cloacae | 2 (0.9) | 1 (50.0) | 1 (50.0) |
P. mirabilis | 10 (4.4) | 2 (20.0) | 8 (80.0) |
S. marcescens | 3 (1.3) | 2 (66.7) | 1 (33.3) |
M. morganii | 1 (0.4) | 1 (100) | - (-) |
P. stuartii | 3 (1.3) | 1 (33.3) | 2 (66.7) |
A. baumannii | 3 (1.3) | 2 (66.7) | 1 (33.3) |
Total | 226 | 154 | 73 |
Microbe | Isolates (n) (%) | KPC (n) (%) | IMP (n) (%) | VIM (n) (%) | NDM (n) (%) | OXA (n) (%) |
---|---|---|---|---|---|---|
K. pneumoniae | 115 (74.7) | 113 (98.2) | 1 (0.9) | 1 (0.9) | 1 (0.9) | 1 (0.9) |
E. coli | 2 (1.3) | 2 (100) | - (-) | - (-) | - (-) | - (-) |
P. aeruginosa | 28 (18.2) | 26 (92.9) | - (-) | 2 (7.1) | - (-) | - (-) |
E. cloacae | 1 (0.6) | 1 (100) | - (-) | - (-) | - (-) | - (-) |
P. mirabilis | 2 (1.3) | 2 (100) | - (-) | - (-) | - (-) | - (-) |
S. marcescens | 2 (1.3) | 2 (100) | - (-) | - (-) | - (-) | - (-) |
M. morganii | 1 (0.6) | 1 (100) | - (-) | - (-) | - (-) | - (-) |
P. stuartii | 1 (0.6) | 1 (100) | - (-) | - (-) | - (-) | - (-) |
A. baumannii | 2 (1.3) | 2 (100) | - (-) | - (-) | - (-) | - (-) |
Total | 154 | 150 | 1 | 3 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guido, M.; Zizza, A.; Sedile, R.; Nuzzo, M.; Lupo, L.I.; Grima, P. Carbapenem-Resistant Gram-Negative Bacteria in Hospitalized Patients: A Five-Year Surveillance in Italy. Infect. Dis. Rep. 2025, 17, 76. https://doi.org/10.3390/idr17040076
Guido M, Zizza A, Sedile R, Nuzzo M, Lupo LI, Grima P. Carbapenem-Resistant Gram-Negative Bacteria in Hospitalized Patients: A Five-Year Surveillance in Italy. Infectious Disease Reports. 2025; 17(4):76. https://doi.org/10.3390/idr17040076
Chicago/Turabian StyleGuido, Marcello, Antonella Zizza, Raffaella Sedile, Milva Nuzzo, Laura Isabella Lupo, and Pierfrancesco Grima. 2025. "Carbapenem-Resistant Gram-Negative Bacteria in Hospitalized Patients: A Five-Year Surveillance in Italy" Infectious Disease Reports 17, no. 4: 76. https://doi.org/10.3390/idr17040076
APA StyleGuido, M., Zizza, A., Sedile, R., Nuzzo, M., Lupo, L. I., & Grima, P. (2025). Carbapenem-Resistant Gram-Negative Bacteria in Hospitalized Patients: A Five-Year Surveillance in Italy. Infectious Disease Reports, 17(4), 76. https://doi.org/10.3390/idr17040076