Phage Therapy for Mycobacteria: Overcoming Challenges, Unleashing Potential
1. Introduction
2. Overcoming Challenges
3. Conclusions
Author Contributions
Conflicts of Interest
References
- Opperman, C.J.; Wojno, J.; Goosen, W.; Warren, R. Phages for the treatment of Mycobacterium species. Prog. Mol. Biol. Transl. Sci. 2023, 201, 41–92. [Google Scholar] [CrossRef] [PubMed]
- Opperman, C.J.; Wojno, J.M.; Brink, A.J. Treating bacterial infections with bacteriophages in the 21st century. S. Afr. J. Infect. Dis. 2022, 37, 346. [Google Scholar] [CrossRef] [PubMed]
- Zeynali Kelishomi, F.; Khanjani, S.; Fardsanei, F.; Saghi Sarabi, H.; Nikkhahi, F.; Dehghani, B. Bacteriophages of Mycobacterium tuberculosis, their diversity, and potential therapeutic uses: A review. BMC Infect. Dis. 2022, 22, 957. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.J.; Jia, P.P.; Yin, S.; Bu, L.K.; Yang, G.; Pei, D. Engineering bacteriophages for enhanced host range and efficacy: Insights from bacteriophage-bacteria interactions. Front. Microbiol. 2023, 14, 1172635. [Google Scholar] [CrossRef]
- Borin, J.M.; Lee, J.J.; Gerbino, K.R.; Meyer, J.R. Comparison of bacterial suppression by phage cocktails, dual-receptor generalists, and coevolutionarily trained phages. Evol. Appl. 2022, 16, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Iredell, J.; Sinclair, H.; Khatami, A. Personalized bacteriophage therapy for difficult-to-treat infections. Nat. Microbiol. 2024, 9, 1401–1402. [Google Scholar] [CrossRef] [PubMed]
- Abdelkader, K.; Gutiérrez, D.; Tamés-Caunedo, H.; Ruas-Madiedo, P.; Safaan, A.; Khairalla, A.S.; Gaber, Y.; Dishisha, T.; Briers, Y. Engineering a lysin with intrinsic antibacterial zctivity (LysMK34) by cecropin A fusion enhances its antibacterial properties against Acinetobacter baumannii. Appl. Environ. Microbiol. 2022, 88, e0151521. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.M.; Rasheed, F.; Yang, Y.; Liu, B.; Zhang, R. Endolysins: A new antimicrobial agent against antimicrobial resistance. Strategies and opportunities in overcoming the challenges of endolysins against Gram-negative bacteria. Front. Pharmacol. 2024, 15, 1385261. [Google Scholar] [CrossRef]
- Yang, Q.; Le, S.; Zhu, T.; Wu, N. Regulations of phage therapy across the world. Front. Microbiol. 2023, 14, 1250848. [Google Scholar] [CrossRef]
- Lin, R.C.; Sacher, J.C.; Ceyssens, P.J.; Zheng, J.; Khalid, A.; Iredell, J.R.; Network, T.A.P.B. Phage biobank: Present challenges and future perspectives. Curr. Opin. Biotechnol. 2021, 68, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Dedrick, R.M.; Smith, B.E.; Cristinziano, M.; Freeman, K.G.; Jacobs-Sera, D.; Belessis, Y.; Brown, W.A.; Cohen, K.A.; Davidson, R.M.; van Duin, D.; et al. Phage therapy of Mycobacterium infections: Compassionate use of phages in 20 patients with drug-resistant mycobacterial disease. Clin. Infect. Dis. 2023, 76, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Fajardo-Lubian, A.; Venturini, C. Use of bacteriophages to target intracellular pathogens. Clin. Infect. Dis. 2023, 77, S423–S432. [Google Scholar] [CrossRef] [PubMed]
- Klumpp, J.; Dunne, M.; Loessner, M.J. A perfect fit: Bacteriophage receptor-binding proteins for diagnostic and therapeutic applications. Curr. Opin. Microbiol. 2023, 71, 102240. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Banerjee, P.; Xu, M.; Mukhopadhyay, S.; Ip, M.; Carrigy, N.B.; Lechuga-Ballesteros, D.; To, K.K.W.; Leung, S.S.Y. Formulation strategies for bacteriophages to target intracellular bacterial pathogens. Adv. Drug Deliv. Rev. 2021, 176, 113864. [Google Scholar] [CrossRef] [PubMed]
- Davis, N.K.; Chionh, Y.H.; McBee, M.E.; Hia, F.; Ma, D.; Cui, L.; Sharaf, M.L.; Cai, W.M.; Jumpathong, W.; Levine, S.S. Facile metabolic reprogramming distinguishes mycobacterial adaptation to hypoxia and starvation: Ketosis drives starvation-induced persistence in M. bovis BCG. Commun. Biol. 2024, 7, 866. [Google Scholar] [CrossRef] [PubMed]
- Popescu, M.; Van Belleghem, J.D.; Khosravi, A.; Bollyky, P.L. Bacteriophages and the immune system. Annu. Rev. Virol. 2021, 8, 415–435. [Google Scholar] [CrossRef] [PubMed]
- Dedrick, R.M.; Freeman, K.G.; Nguyen, J.A.; Bahadirli-Talbott, A.; Smith, B.E.; Wu, A.E.; Ong, A.S.; Lin, C.T.; Ruppel, L.C.; Parrish, N.M.; et al. Potent antibody-mediated neutralization limits bacteriophage treatment of a pulmonary Mycobacterium abscessus infection. Nat. Med. 2021, 27, 1357–1361. [Google Scholar] [CrossRef] [PubMed]
- Hatfull, G.F. Phage therapy for nontuberculous mycobacteria: Challenges and opportunities. Pulm. Ther. 2023, 9, 91–107. [Google Scholar] [CrossRef] [PubMed]
- Allué-Guardia, A.; Garcia-Vilanova, A.; Olmo-Fontánez, A.M.; Peters, J.; Maselli, D.J.; Wang, Y.; Turner, J.; Schlesinger, L.S.; Torrelles, J.B. Host- and age-dependent transcriptional changes in Mycobacterium tuberculosis cell envelope biosynthesis genes after exposure to human alveolar lining fluid. Int. J. Mol. Sci. 2022, 23, 983. [Google Scholar] [CrossRef] [PubMed]
- Segura-Cerda, C.A.; López-Romero, W.; Flores-Valdez, M.A. Changes in host response to Mycobacterium tuberculosis infection associated with type 2 diabetes: Beyond hyperglycemia. Front. Cell Infect. Microbiol. 2019, 9, 342. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opperman, C.J.; Brink, A.J. Phage Therapy for Mycobacteria: Overcoming Challenges, Unleashing Potential. Infect. Dis. Rep. 2025, 17, 24. https://doi.org/10.3390/idr17020024
Opperman CJ, Brink AJ. Phage Therapy for Mycobacteria: Overcoming Challenges, Unleashing Potential. Infectious Disease Reports. 2025; 17(2):24. https://doi.org/10.3390/idr17020024
Chicago/Turabian StyleOpperman, Christoffel Johannes, and Adrian J. Brink. 2025. "Phage Therapy for Mycobacteria: Overcoming Challenges, Unleashing Potential" Infectious Disease Reports 17, no. 2: 24. https://doi.org/10.3390/idr17020024
APA StyleOpperman, C. J., & Brink, A. J. (2025). Phage Therapy for Mycobacteria: Overcoming Challenges, Unleashing Potential. Infectious Disease Reports, 17(2), 24. https://doi.org/10.3390/idr17020024