Unhealthy Food Consumption Is Associated with Post-Acute Sequelae of COVID-19 in Brazilian Elderly People
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Location
2.2. Sample Selection and Data Collection
3. Study Variables
3.1. Post-Acute Sequelae of COVID-19
3.2. Food Consumption Markers
3.3. Covariates
4. Statistical Analysis
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sudre, C.H.; Murray, B.; Varsavsky, T.; Graham, M.S.; Penfold, R.S.; Bowyer, R.C.; Pujol, J.C.; Klaser, K.; Antonelli, M.; Canas, L.S.; et al. Attributes and Predictors of Long COVID. Nat. Med. 2021, 27, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Parotto, M.; Gyöngyösi, M.; Howe, K.; Myatra, S.N.; Ranzani, O.; Shankar-Hari, M.; Herridge, M.S. Post-acute sequelae of COVID-19: Understanding and addressing the burden of multisystem manifestations. Lancet Respir. Med. 2023, 11, 739–754. [Google Scholar] [CrossRef]
- Wang, C.; Ramasamy, A.; Verduzco-Gutierrez, M.; Brode, W.M.; Melamed, E. Acute and post-acute sequelae of SARS-CoV-2 infection: A review of risk factors and social determinants. Virol. J. 2023, 20, 124. [Google Scholar] [CrossRef] [PubMed]
- Antoncecchi, V.; Antoncecchi, E.; Orsini, E.; D’Ascenzo, G.; Oliviero, U.; Savino, K.; Aloisio, A.; Casalino, L.; Lillo, A.; Chiuini, E.; et al. High prevalence of cardiac post-acute sequelae in patients recovered from Covid-19. Results from the ARCA post-COVID study. Int. J. Cardiol. Cardiovasc. Risk Prev. 2024, 21, 200267. [Google Scholar] [CrossRef]
- Hejazian, S.S.; Vafaei Sadr, A.; Shahjouei, S.; Vemuri, A.; Abedi, V.; Zand, R. Prevalence and determinants of long-term post-COVID conditions in the United States: 2022 behavioral risk factor surveillance system. Am. J. Med. 2024, 24, 00090–00091. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.N. Long COVID challenges in Brazil: An unfinished agenda for the Brazilian Unified National Health System. Cad. Saude Publica 2024, 2, e00008724. [Google Scholar] [CrossRef]
- Jiao, T.; Huang, Y.; Sun, H.; Yang, L. Research progress of post-acute sequelae after SARS-CoV-2 infection. Cell Death Dis. 2024, 15, 257. [Google Scholar] [CrossRef]
- Raman, B.; Bluemke, D.A.; Lüscher, T.F.; Neubauer, S. Long COVID: Post-acute sequelae of COVID-19 with a cardiovascular focus. Eur. Heart J. 2022, 43, 1157–1172. [Google Scholar] [CrossRef]
- Durstenfeld, M.S.; Peluso, M.J.; Kelly, J.D.; Win, S.; Swaminathan, S.; Li, D.; Arechiga, V.M.; Zepeda, V.; Sun, K.; Shao, S.; et al. Role of antibodies, inflammatory markers, and echocardiographic findings in post-acute cardiopulmonary symptoms after SARS-CoV-2 infection. medRxiv 2021. [Google Scholar] [CrossRef]
- Hao, X.; Wang, D.; Chen, Y.; Zhang, N.; Li, T.; Fan, R.; Yang, L.; Yang, C.; Yang, J. Factors influencing cardiovascular system-related post-COVID-19 sequelae: A single-center cohort study. Open Med. 2024, 1, 20240950. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Yue, Y.; Yuan, C.; Kang, J.H.; Chavarro, J.E.; Bhupathiraju, S.N.; Roberts, A.L. Adherence to Healthy Lifestyle Prior to Infection and Risk of Post–COVID-19 Condition. JAMA Intern. Med. 2023, 183, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Huang, W.Y.J.; Sun, F.H.; Wong, M.C.S.; Siu, P.M.F.; Chen, X.K.; Wong, S.H.S. Association of sedentary lifestyle with risk of acute and post-acute COVID-19 sequelae: A retrospective cohort study. Am. J. Med. 2023, 138, 298–307.e4. [Google Scholar] [CrossRef]
- Butler, M.J.; Barrientos, R.M. The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain Behav. Immun. 2021, 87, 53–54. [Google Scholar] [CrossRef]
- Simon, M.; Pizzorno, J.; Katzinger, J. Modifiable risk factors for SARS-CoV-2. Integr. Med. 2021, 20, 8–14. [Google Scholar]
- Gombart, A.F.; Pierre, A.; Maggini, S. A Review of Micronutrients and the Immune System–Working in Harmony to Reduce the Risk of Infection. Nutrients 2020, 12, 236. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C.; Carr, A.C.; Gombart, A.F.; Eggersdorfer, M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients 2020, 12, 1181. [Google Scholar] [CrossRef]
- Mortaz, E.; Bezemer, G.; Alipoor, S.D.; Varahram, M.; Mumby, S.; Folkerts, G.; Garssen, J.; Adcock, I.M. Nutritional Impact and Its Potential Consequences on COVID-19 Severity. Front. Nutr. 2021, 8, 698617. [Google Scholar] [CrossRef] [PubMed]
- Cobre, A.F.; Surek, M.; Vilhena, R.O.; Böger, B.; Fachi, M.M.; Momade, D.R.; Tonin, F.S.; Sarti, F.M.; Pontarolo, R. Influence of foods and nutrients on COVID-19 recovery: A multivariate analysis of data from 170 countries using a generalized linear model. Clin. Nutr. 2022, 41, 3077–3084. [Google Scholar] [CrossRef]
- Brazil Ministry of Health (MS); Department of Health Care; Department of Primary Care. Reference Framework for Food and Nutritional Surveillance in Primary Care; MS: Brasília, Brazil, 2015.
- Barros, A.J.; Hirakata, V.N. Alternatives for logistic regression in cross-sectional studies: An empirical comparison of models that directly estimate the prevalence ratio. BMC Med. Res. Methodol. 2003, 3, 21. [Google Scholar] [CrossRef]
- Ribeiro, G.J.S.; de Araújo Pinto, A.; Souza, G.C.; Moriguchi, E.H. Association between pre-existing cardiovascular risk factors and post-acute sequelae of COVID-19 in older adults. An. Sist. Sanit. Navar. 2025, 48, e1103. [Google Scholar] [CrossRef]
- Wang, Y.; Su, B.; Alcalde-Herraiz, M.; Barclay, N.L.; Tian, Y.; Li, C.; Prieto-Alhambra DANI, E.L. Healthy lifestyle for the prevention of post-COVID-19 multisystem sequelae, hospitalization, and death: A prospective cohort study. medRxiv 2024. [Google Scholar] [CrossRef]
- Rahaman, M.; Hossain, R.; Herrera-Bravo, J.; Islam, M.T.; Atolani, O.; Adeyemi, O.S.; Owolodun, O.A.; Kambizi, L.; Daştan, S.D.; Calina, D.; et al. Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update. Food Sci. Nutr. 2023, 11, 1657–1670. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Larsen, V.; Potts, J.F.; Omenaas, E.; Heinrich, J.; Svanes, C.; Garcia-Aymerich, J.; Burney, P.G.; Jarvis, D.L. Dietary antioxidants and 10-year lung function decline in adults from the ECRHS survey. Eur. Respir. J. 2017, 50, 1602286. [Google Scholar] [CrossRef]
- Wang, S.; Teng, H.; Zhang, L.; Wu, L. Association between dietary antioxidant intakes and chronic respiratory diseases in adults. World Allergy Organ. J. 2024, 17, 100851. [Google Scholar] [CrossRef]
- Zurbau, A.; Au-Yeung, F.; Blanco Mejia, S.; Khan, T.A.; Vuksan, V.; Jovanovski, E.; Leiter, L.A.; Kendall, C.W.C.; Jenkins, D.J.A.; Sievenpiper, J.L. Relation of different fruit and vegetable sources with incident cardiovascular outcomes: A systematic review and meta-analysis of prospective cohort studies. J. Am. Heart Assoc. 2020, 19, 017728. [Google Scholar] [CrossRef]
- Al-Hakeim, H.K.; Al-Rubaye, H.T.; Al-Hadrawi, D.S.; Almulla, A.F.; Maes, M. Long-COVID post-viral chronic fatigue and affective symptoms are associated with oxidative damage, lowered antioxidant defenses and inflammation: A proof of concept and mechanism study. Mol. Psychiatry 2022, 2, 564–578. [Google Scholar] [CrossRef]
- Vajargah, K.T.; Zargarzadeh, N.; Ebrahimzadeh, A.; Mousavi, S.M.; Mobasheran, P.; Mokhtari, P.; Rahban, H.; Gaman, M.A.; Akhgarjand, C.; Taghizadeh, M.; et al. Association of fruits, vegetables, and fiber intake with COVID-19 severity and symptoms in hospitalized patients: A cross-sectional study. Front. Nutr. 2022, 9, 934568. [Google Scholar] [CrossRef]
- Beglou, R.M.; Karimi, N.; Samadi Kafil, H. A Review of the Role of Nutrition During Sars-Cov-2 Infection (COVID-19). Intern. Med. Today 2021, 28, 2–15. [Google Scholar] [CrossRef]
- Jovic, T.H.; Ali, S.R.; Ibrahim, N.; Jessop, Z.M.; Tarassoli, S.P.; Dobbs, T.D.; Holford, P.; Thornton, C.A.; Whitaker, I.S. Could Vitamins Help in the Fight Against COVID-19? Nutrients 2020, 12, 2550. [Google Scholar] [CrossRef]
- Deschasaux-Tanguy, M.; Srour, B.; Bourhis, L.; Arnault, N.; Druesne-Pecollo, N.; Esseddik, Y.; de Edelenyi, F.S.; Allègre, J.; Allès, B.; Andreeva, V.A.; et al. Nutritional risk factors for SARS-CoV-2 infection: A prospective study within the NutriNet-Santé cohort. BMC Med. 2021, 19, 290. [Google Scholar] [CrossRef]
- D’marco, L.; Puchades, M.J.; Romero-Parra, M.; Gimenez-Civera, E.; Soler, M.J.; Ortiz, A.; Gorriz, J.L. Coronavirus disease 2019 in chronic kidney disease. Clin. Kidney J. 2020, 13, 297–306. [Google Scholar] [CrossRef]
- Martins, A.M.; Moreira, A.S.B.; Canella, D.S.; Rodrigues, J.; Santin, F.; Wanderley, B.; Lourenço, R.A.; Avesani, C.M. Elderly patients on hemodialysis have worse dietary quality and higher consumption of ultraprocessed food than elderly without chronic kidney disease. Nutrition 2017, 41, 73–79. [Google Scholar] [CrossRef]
- Zhou, L.; Li, H.; Zhang, S.; Yang, H.; Ma, Y.; Wang, Y. Impact of ultra-processed food intake on the risk of COVID-19: A prospective cohort study. Eur. J. Nutr. 2022, 62, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.-C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Commentary Ultra-Processed Foods: What They Are and How to Identify Them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Quetglas-Llabrés, M.M.; Monserrat-Mesquida, M.; Bouzas, C.; Mateos, D.; Ugarriza, L.; Gómez, C.; Tur, J.A.; Sureda, A. Oxidative Stress and Inflammatory Biomarkers Are Related to High Intake of Ultra-Processed Food in Old Adults with Metabolic Syndrome. Antioxidants 2023, 12, 1532. [Google Scholar] [CrossRef]
- Whelan, K.; Bancil, A.S.; Lindsay, J.O.; Chassaing, B. Ultra-processed foods and food additives in gut health and disease. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 406–427. [Google Scholar] [CrossRef] [PubMed]
- Peluso, M.J.; Lu, S.; Tang, A.F.; Durstenfeld, M.S.; Ho, H.; Goldberg, S.A.; Forman, C.A.; Munter, S.E.; Hoh, R.; Tai, V.; et al. Markers of Immune Activation and Inflammation in Individuals with Postacute Sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J. Infect. Dis. 2021, 224, 1839–1848. [Google Scholar] [CrossRef] [PubMed]
- Yong, S.J.; Halim, A.; Halim, M.; Liu, S.; Aljeldah, M.; Al Shammari, B.R.; Alwarthan, S.; Alhajri, M.; Alawfi, A.; Alshengeti, A.; et al. Inflammatory and vascular biomarkers in post-COVID-19 syndrome: A systematic review and meta-analysis of over 20 biomarkers. Rev. Med. Virol. 2023, 2, 2424. [Google Scholar] [CrossRef]
- Ancona, G.; Alagna, L.; Alteri, C.; Palomba, E.; Tonizzo, A.; Pastena, A.; Muscatello, A.; Gori, A.; Bandera, A. Gut and airway microbiota dysbiosis and their role in COVID-19 and long-COVID. Front. Immunol. 2023, 14, 1080043. [Google Scholar] [CrossRef]
- Herforth, A.; Ahmed, S. The food environment, its effects on dietary consumption, and potential for measurement within agriculture-nutrition interventions. Food Sec. 2015, 7, 505–520. [Google Scholar] [CrossRef]
- Leite, M.A.; de Assis, M.M.; Carmo, A.S.D.; Costa, B.V.d.L.; Claro, R.M.; de Castro, I.R.; Cardoso, L.d.O.; Netto, M.P.; Mendes, L.L. Is neighbourhood social deprivation in a Brazilian city associated with the availability, variety, quality and price of food in supermarkets? Public Health Nutr. 2019, 22, 3395–3404. [Google Scholar] [CrossRef]
- Almeida, I.J.; Garcez, A.; Backes, V.; Cunha, C.M.L.; Schuch, I.; Canuto, R. Association between the community food environment and dietary patterns in residents of areas of different socio-economic levels of a southern capital city in Brazil. Br. J. Nutr. 2023, 6, 1066–1074. [Google Scholar] [CrossRef] [PubMed]
- Assumpção, D.D.; Domene, S.M.Á.; Fisberg, R.M.; Barros, M.B.D.A. Diet quality and associated factors among the elderly: A population-based study in Campinas, São Paulo State, Brazil. Cad. Saúde Pública 2014, 30, 1680–1694. [Google Scholar] [CrossRef] [PubMed]
- de Souza Fernandes, D.P.; Lopes Duarte, M.S.; Pessoa, M.C.; do Carmo Castro Franceschini, S.; Queiroz Ribeiro, A. Evaluation of diet quality of the elderly and associated factors. Arch. Gerontol. Geriatr. 2017, 72, 174–180. [Google Scholar] [CrossRef]
- Giuli, C.; Papa, R.; Mocchegiani, E.; Marcellini, F. Dietary habits and ageing in a sample of italian older people. J. Nutr. Health Aging 2012, 16, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Louzada, M.L.C.; Couto, V.D.C.S.; Rauber, F.; Tramontt, C.R.; Santos, T.S.S.; Lourenço, B.H.; Jaime, P.C. Food and Nutrition Surveillance System markers predict diet quality. Rev. Saude Publica 2023, 57, 82. [Google Scholar] [CrossRef]
- Lourenço, B.H.L.; Guedes, B.M.; Santos, T.S.S. Sisvan food intake markers: Structure and measurement invariance in Brazil. Rev. Saude Publica 2023, 57, 52. [Google Scholar] [CrossRef]
Variables | Post-Acute Sequelae of COVID-19 | p-Value | ||
---|---|---|---|---|
Total (%) | Yes (%) | No (%) | ||
Sex | ||||
Male | 45.0 | 58.7 | 41.3 | <0.04 |
Female | 55.0 | 64.2 | 35.8 | |
Age range (years) 1 | ||||
60–69 | 53.9 | 53.4 | 46.6 | <0.001 |
70–79 | 31.5 | 69.7 | 30.3 | |
80 or more | 14.7 | 75.3 | 24.7 | |
Skin color/race | ||||
Yellow (Asian) | 4.6 | 85.2 | 14.8 | <0.001 |
White | 22.8 | 58.6 | 41.4 | |
Brown | 45.2 | 57.3 | 42.7 | |
Black | 16.8 | 62.6 | 37.4 | |
Indigenous | 10.6 | 75.7 | 24.3 | |
Education level 1 | ||||
No study | 47.2 | 67.0 | 33.0 | <0.001 |
Up to 8 years | 29.9 | 60.0 | 40.0 | |
More than 8 years | 22.9 | 53.1 | 46.9 | |
Place of residence | ||||
Non-metropolitan | 35.9 | 73.1 | 26.9 | <0.001 |
Capital | 64.1 | 55.4 | 44.6 |
Foods | Crude Model | Adjusted Model | Interactions | |
---|---|---|---|---|
PR (95%CI) | PR (95%CI) | Covariates | PR (95%CI) | |
Beans | 1.02 (0.92–1.12) | 0.98 (0.90–1.06) | - | - |
Fruits | 0.81 (0.75–0.88) | 0.92 (0.85–0.99) | Sex | 0.94 (0.81–1.09) |
Age | 1.01 (1.002–1.02) | |||
Place of residence (capital and non-metropolitan) | 0.87 (0.76–1.01) | |||
Education level | 1.11 (0.93–1.32) | |||
Skin color/race | 0.95 (0.78–1.16) | |||
Hospitalization (yes/no) | 1.16 (1.02–1.32) | |||
Hypertension | 0.96 (0.70–1.32) | |||
Diabetes mellitus | 1.19 (0.98–1.44) | |||
Hypercholesterolemia | 1.05 (0.87–1.26) | |||
Obesity | 1.05 (0.88–1.28) | |||
Chronic kidney disease (yes/no) | 1.17 (1.01–1.37) | |||
Smoking | 0.97 (0.82–1.16) | |||
Vegetables | 0.89 (0.81–0.97) | 0.99 (0.92–1.07) | - | - |
Foods | Raw Model | Adjusted Model | Interactions | |
---|---|---|---|---|
PR (95%CI) | PR (95%CI) | PR (95%CI) | ||
Burger and sausages | 1.34 (1.24–1.46) | 1.05 (0.97–1.13) | - | - |
Sugar-sweetened beverages | 1.56 (1.42–1.71) | 1.23 (1.12–1.35) | Sex | 0.92 (0.77–1.10) |
Age | 0.99 (0.98–1.00) | |||
Place of residence (capital and non-metropolitan) | 1.53 (1.29–1.82) | |||
Education level | 1.06 (0.79–1.23) | |||
Skin color/race | 0.86 (0.69–1.07) | |||
Hospitalization | 0.99 (0.82–1.21) | |||
Hypertension | 0.92 (0.68–1.24) | |||
Diabetes mellitus | 0.88 (0.72–1.07) | |||
Hypercholesterolemia | 0.85 (0.70–1.04) | |||
Obesity | 0.88 (0.71–1.09) | |||
Chronic kidney disease | 0.97 (0.79–1.21) | |||
Smoking | 0.90 (0.69–1.17) | |||
Instant noodles, packaged snacks or savory crackers | 1.36 (1.26–1.48) | 1.04 (0.96–1.12) | - | - |
Sandwich cookies, sweets and treats | 1.42 (1.30–1.55) | 1.12 (1.03–1.22) | Sex | 1.07 (0.91–1.25) |
Age | 0.99 (0.99–1.00) | |||
Place of residence (capital and non-metropolitan) | 1.17 (1.003–1.38) | |||
Education level | 0.99 (0.82–1.18) | |||
Skin color/race | 1.08 (0.89–1.31) | |||
Hospitalization | 0.98 (0.83–1.14) | |||
Hypertension | 0.98 (0.73–1.32) | |||
Diabetes mellitus | 0.99 (0.82–1.21) | |||
Hypercholesterolemia (yes/no) | 0.82 (0.68–0.99) | |||
Obesity | 1.10 (0.88–1.37) | |||
Chronic kidney disease | 0.85 (0.71–1.01) | |||
Smoking | 0.92 (0.75–1.11) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, G.J.S.; Morais, R.N.G.d.; Abimbola, O.G.; Dias, N.d.P.; Filgueiras, M.D.S.; Pinto, A.d.A.; Novaes, J.F.d. Unhealthy Food Consumption Is Associated with Post-Acute Sequelae of COVID-19 in Brazilian Elderly People. Infect. Dis. Rep. 2025, 17, 25. https://doi.org/10.3390/idr17020025
Ribeiro GJS, Morais RNGd, Abimbola OG, Dias NdP, Filgueiras MDS, Pinto AdA, Novaes JFd. Unhealthy Food Consumption Is Associated with Post-Acute Sequelae of COVID-19 in Brazilian Elderly People. Infectious Disease Reports. 2025; 17(2):25. https://doi.org/10.3390/idr17020025
Chicago/Turabian StyleRibeiro, Guilherme José Silva, Rafaela Nogueira Gomes de Morais, Olufemi Gabriel Abimbola, Nalva de Paula Dias, Mariana De Santis Filgueiras, André de Araújo Pinto, and Juliana Farias de Novaes. 2025. "Unhealthy Food Consumption Is Associated with Post-Acute Sequelae of COVID-19 in Brazilian Elderly People" Infectious Disease Reports 17, no. 2: 25. https://doi.org/10.3390/idr17020025
APA StyleRibeiro, G. J. S., Morais, R. N. G. d., Abimbola, O. G., Dias, N. d. P., Filgueiras, M. D. S., Pinto, A. d. A., & Novaes, J. F. d. (2025). Unhealthy Food Consumption Is Associated with Post-Acute Sequelae of COVID-19 in Brazilian Elderly People. Infectious Disease Reports, 17(2), 25. https://doi.org/10.3390/idr17020025