Urinary Hydroxyproline as an Inflammation-Independent Biomarker of Inflammatory Bowel Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient and Control Cohorts
2.2. Enzyme-Linked Immunosorbent Assays (ELISAs)
2.3. Statistical Analysis
3. Results
3.1. Urinary Hydroxyproline Levels of Patients and Controls
3.2. Urinary Hydroxyproline in Relation to Age, BMI, and Gender
3.3. Urinary Hydroxyproline in Relation to Measures of Inflammation and Kidney and Liver Function
3.4. Urinary Hydroxyproline in Relation to Time since First Diagnosis, Disease Localization, Ileocecal Surgery, and Fistula
3.5. Urinary Hydroxyproline in Relation to the Gastrointestinal Symptom Rating Scale and Bristol Stool Score
3.6. Urinary Hydroxyproline in Relation to Current Medication
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, S.J.; Mayer, L. The immune response in inflammatory bowel disease. Am. J. Gastroenterol. 2007, 102, 2058–2069. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H. The genetics and immunopathogenesis of inflammatory bowel disease. Nat. Rev. Immunol. 2008, 8, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Dahlhamer, J.M.; Zammitti, E.P.; Ward, B.W.; Wheaton, A.G.; Croft, J.B. Prevalence of Inflammatory Bowel Disease Among Adults Aged ≥18 Years—United States, 2015. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 1166–1169. [Google Scholar] [CrossRef] [PubMed]
- Ott, C.; Obermeier, F.; Thieler, S.; Kemptner, D.; Bauer, A.; Scholmerich, J.; Rogler, G.; Timmer, A. The incidence of inflammatory bowel disease in a rural region of Southern Germany: A prospective population-based study. Eur. J. Gastroenterol. Hepatol. 2008, 20, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, M.; Christensen, H.S.; Bogsted, M.; Colombel, J.F.; Jess, T.; Allin, K.H. The Rising Burden of Inflammatory Bowel Disease in Denmark Over Two Decades: A Nationwide Cohort Study. Gastroenterology 2022, 163, 1547–1554.e1545. [Google Scholar] [CrossRef] [PubMed]
- GBD 2017 Inflammatory Bowel Disease Collaborators. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.T.; Zhang, Y.; She, Y.; Goyal, H.; Wu, Z.Q.; Xu, H.G. Diagnostic Utility of Non-invasive Tests for Inflammatory Bowel Disease: An Umbrella Review. Front. Med. 2022, 9, 920732. [Google Scholar] [CrossRef] [PubMed]
- Mao, R.; Xiao, Y.L.; Gao, X.; Chen, B.L.; He, Y.; Yang, L.; Hu, P.J.; Chen, M.H. Fecal calprotectin in predicting relapse of inflammatory bowel diseases: A meta-analysis of prospective studies. Inflamm. Bowel Dis. 2012, 18, 1894–1899. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Huang, C.; Xu, J.; Xu, H.; Liu, L.; Zhao, H.; Wang, J.; Huang, W.; Peng, W.; Chen, Y.; et al. Gut Microbiota Is a Potential Biomarker in Inflammatory Bowel Disease. Front. Nutr. 2021, 8, 818902. [Google Scholar] [CrossRef]
- van Rheenen, P.F.; Van de Vijver, E.; Fidler, V. Faecal calprotectin for screening of patients with suspected inflammatory bowel disease: Diagnostic meta-analysis. BMJ 2010, 341, c3369. [Google Scholar] [CrossRef]
- Harpole, M.; Davis, J.; Espina, V. Current state of the art for enhancing urine biomarker discovery. Expert. Rev. Proteom. 2016, 13, 609–626. [Google Scholar] [CrossRef]
- Hirata, E.; Iwano, M.; Hirayama, T.; Horii, Y.; Kitamura, Y.; Kishimoto, T.; Hanatani, M.; Dohi, K. Rapid measurement of urinary IL-6 by ELISA: Urinary IL-6 as a marker of mesangial proliferation. Nihon Jinzo Gakkai Shi 1994, 36, 33–37. [Google Scholar]
- Tews, H.C.; Elger, T.; Grewal, T.; Weidlich, S.; Vitali, F.; Buechler, C. Fecal and Urinary Adipokines as Disease Biomarkers. Biomedicines 2023, 11, 1186. [Google Scholar] [CrossRef]
- Gunawan, S.; Elger, T.; Loibl, J.; Fererberger, T.; Sommersberger, S.; Kandulski, A.; Muller, M.; Tews, H.C.; Buechler, C. Urinary chemerin as a potential biomarker for inflammatory bowel disease. Front. Med. 2022, 9, 1058108. [Google Scholar] [CrossRef]
- Tews, H.C.; Elger, T.; Gunawan, S.; Fererberger, T.; Sommersberger, S.; Loibl, J.; Huss, M.; Liebisch, G.; Muller, M.; Kandulski, A.; et al. Fecal short chain fatty acids and urinary 3-indoxyl sulfate do not discriminate between patients with Crohn s disease and ulcerative colitis and are not of diagnostic utility for predicting disease severity. Lipids Health Dis. 2023, 22, 164. [Google Scholar] [CrossRef]
- Baldan-Martin, M.; Chaparro, M.; Gisbert, J.P. Systematic Review: Urine Biomarker Discovery for Inflammatory Bowel Disease Diagnosis. Int. J. Mol. Sci. 2023, 24, 10159. [Google Scholar] [CrossRef]
- Belostotsky, R.; Frishberg, Y. Catabolism of Hydroxyproline in Vertebrates: Physiology, Evolution, Genetic Diseases and New siRNA Approach for Treatment. Int. J. Mol. Sci. 2022, 23, 1005. [Google Scholar] [CrossRef]
- Seibel, M.J. Biochemical markers of bone turnover: Part I: Biochemistry and variability. Clin. Biochem. Rev. 2005, 26, 97–122. [Google Scholar]
- Sjoerdsma, A.; Davidson, J.D.; Udenfriend, S.; Mitoma, C. Increased excretion of hydroxyproline in Marfan’s syndrome. Lancet 1958, 2, 994. [Google Scholar] [CrossRef]
- Benoit, F.L.; Theil, G.B.; Watten, R.H. Hydroxyproline Excretion in Endocrine Disease. Metabolism 1963, 12, 1072–1082. [Google Scholar]
- Russell, R.G.; Beard, D.J.; Cameron, E.C.; Douglas, D.L.; Forrest, A.R.; Guilland-Cumming, D.; Paterson, A.D.; Poser, J.; Preston, C.J.; Milford-Ward, A.; et al. Biochemical markers of bone turnover in Paget’s disease. Metab. Bone Dis. Relat. Res. 1981, 3, 255–262. [Google Scholar] [CrossRef]
- Halse, J.; Gordeladze, J.O. Urinary hydroxyproline excretion in acromegaly. Acta Endocrinol. 1978, 89, 483–491. [Google Scholar] [CrossRef]
- Crabbe, P.; Isselbacher, K.J. Urinary Hydroxyproline Excretion in Malabsorption States. Gastroenterology 1965, 48, 307–311. [Google Scholar] [CrossRef]
- Fries, W.; Giacomin, D.; Plebani, M.; Martin, A. Effect of Experimental Colitis on Bone Metabolism in the Rat. Digestion 1994, 55, 229–233. [Google Scholar] [CrossRef]
- Motil, K.J.; Altchuler, S.I.; Grand, R.J. Mineral balance during nutritional supplementation in adolescents with Crohn disease and growth failure. J. Pediatr. 1985, 107, 473–479. [Google Scholar] [CrossRef]
- Park, J.M.; Kim, J.; Lee, Y.J.; Bae, S.U.; Lee, H.W. Inflammatory bowel disease-associated intestinal fibrosis. J. Pathol. Transl. Med. 2023, 57, 60–66. [Google Scholar] [CrossRef]
- Pehrsson, M.; Alexdottir, M.S.; Karsdal, M.A.; Thakker, P.; Mortensen, J.H. Novel fibro-inflammatory biomarkers associated with disease activity in patients with Crohn’s disease. Expert. Rev. Gastroenterol. Hepatol. 2023, 17, 575–587. [Google Scholar] [CrossRef]
- Domislovic, V.; Hog Mortensen, J.; Lindholm, M.; Kaarsdal, M.A.; Brinar, M.; Barisic, A.; Manon-Jensen, T.; Krznaric, Z. Inflammatory Biomarkers of Extracellular Matrix Remodeling and Disease Activity in Crohn’s Disease and Ulcerative Colitis. J. Clin. Med. 2022, 11, 5907. [Google Scholar] [CrossRef]
- Mortensen, J.H.; Godskesen, L.E.; Jensen, M.D.; Van Haaften, W.T.; Klinge, L.G.; Olinga, P.; Dijkstra, G.; Kjeldsen, J.; Karsdal, M.A.; Bay-Jensen, A.C.; et al. Fragments of Citrullinated and MMP-degraded Vimentin and MMP-degraded Type III Collagen Are Novel Serological Biomarkers to Differentiate Crohn’s Disease from Ulcerative Colitis. J. Crohns Colitis 2015, 9, 863–872. [Google Scholar] [CrossRef]
- Rabiee, A.; Silveira, M.G. Primary sclerosing cholangitis. Transl. Gastroenterol. Hepatol. 2021, 6, 29. [Google Scholar] [CrossRef]
- van Munster, K.N.; Bergquist, A.; Ponsioen, C.Y. Inflammatory bowel disease and primary sclerosing cholangitis: One disease or two? J. Hepatol. 2023, 80, 155–168. [Google Scholar] [CrossRef]
- Anttinen, H.; Ryhanen, L.; Puistola, U.; Arranto, A.; Oikarinen, A. Decrease in liver collagen accumulation in carbon tetrachloride-injured and normal growing rats upon administration of zinc. Gastroenterology 1984, 86, 532–539. [Google Scholar] [CrossRef]
- George, J.; Chandrakasan, G. Biochemical abnormalities during the progression of hepatic fibrosis induced by dimethylnitrosamine. Clin. Biochem. 2000, 33, 563–570. [Google Scholar] [CrossRef]
- Elsisi, A.E.; Elfert, A.A.; Elsayad, M.; Zakaria, S. A randomized controlled study of the effect of AT1 antagonist on fibrosis markers in HCV Egyptian patients. J. Gastro Hepatol. Res. 2012, 1, 217–222. [Google Scholar]
- Liu, P.; Liu, C.; Xu, L.M.; Hu, Y.Y.; Xue, H.M.; Liu, C.H.; Zhang, Z.Q. Effects of Fuzheng Huayu 319 recipe on liver fibrosis in chronic hepatitis B. World J. Gastroenterol. 1998, 4, 348–353. [Google Scholar] [CrossRef]
- Kucharzik, T.; Dignass, A.; Siegmund, B. Aktualisierung der S3-Leitlinie Colitis ulcerosa 2019. Z. Gastroenterol. 2019, 57, 1279–1280. [Google Scholar] [CrossRef]
- Sturm, A.; Maaser, C.; Calabrese, E.; Annese, V.; Fiorino, G.; Kucharzik, T.; Vavricka, S.R.; Verstockt, B.; van Rheenen, P.; Tolan, D.; et al. ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 2: IBD scores and general principles and technical aspects. J. Crohns Colitis 2019, 13, 273–284. [Google Scholar] [CrossRef]
- EASL Clinical Practice Guidelines on sclerosing cholangitis. J. Hepatol. 2022, 77, 761–806. [CrossRef]
- Mandrekar, J.N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef]
- Gomes, A.T.; Bastos, C.G.; Afonso, C.L.; Medrado, B.F.; Andrade, Z.A. How variable are hydroxyproline determinations made in different samples of the same liver? Clin. Biochem. 2006, 39, 1160–1163. [Google Scholar] [CrossRef]
- Gabr, S.A.; Alghadir, A.H.; Sherif, Y.E.; Ghfar, A.A. Hydroxyproline as a Biomarker in Liver Disease. In Biomarkers in Disease: Methods, Discoveries and Applications; Patel, V., Preedy, V., Eds.; Springer: Dordrecht, The Netherlands, 2017. [Google Scholar]
- Weisbrode, S.E.; Capen, C.C. Ultrastructural evaluation of the interaction of glucocorticoids and vitamin D on bone cells in thyroparathyroidectomized rats. Am. J. Pathol. 1976, 84, 457–468. [Google Scholar]
- Kivirikko, K.I.; Laitinen, O. Effect of cortisone on the hydroxyproline in the serum and urine of young rats. Acta Physiol. Scand. 1965, 64, 356–360. [Google Scholar] [CrossRef]
- Dedeoglu, M.; Garip, Y.; Bodur, H. Osteomalacia in Crohn’s disease. Arch. Osteoporos. 2014, 9, 177. [Google Scholar] [CrossRef]
- Andreassen, H.; Rungby, J.; Dahlerup, J.F.; Mosekilde, L. Inflammatory bowel disease and osteoporosis. Scand. J. Gastroenterol. 1997, 32, 1247–1255. [Google Scholar] [CrossRef]
- Soare, I.; Sirbu, A.; Diculescu, M.M.; Mateescu, B.R.; Tieranu, C.; Martin, S.; Barbu, C.G.; Ionescu, M.; Fica, S. Lean mass, magnesium, faecal calprotectin and glucocorticoid exposure as risk factors for low bone mineral density in inflammatory bowel disease patients. Endocr. Connect. 2021, 10, 918–925. [Google Scholar] [CrossRef]
- Collier, J. Bone disorders in chronic liver disease. Hepatology 2007, 46, 1271–1278. [Google Scholar] [CrossRef]
- Sands, B.E. Biomarkers of Inflammation in Inflammatory Bowel Disease. Gastroenterology 2015, 149, 1275–1285.e1272. [Google Scholar] [CrossRef]
- Sakurai, T.; Saruta, M. Positioning and Usefulness of Biomarkers in Inflammatory Bowel Disease. Digestion 2023, 104, 30–41. [Google Scholar] [CrossRef]
- Jukic, A.; Bakiri, L.; Wagner, E.F.; Tilg, H.; Adolph, T.E. Calprotectin: From biomarker to biological function. Gut 2021, 70, 1978–1988. [Google Scholar] [CrossRef] [PubMed]
- Onwuka, C.I.; Uguru, C.C.; Onwuka, C.I.; Obiechina, A.E. Evaluation of urinary hydroxyproline and creatinine level in patients with benign mandibular odontogenic tumor. Clin. Exp. Dent. Res. 2021, 7, 934–940. [Google Scholar] [CrossRef] [PubMed]
- George, B.O. Urinary and Anthropometrical Indices of Bone Density in Healthy Nigerian Adults. J. Appl. Sci. Environ. Manag. 2003, 7, 19–23. [Google Scholar] [CrossRef]
- Lana, A.; Alexander, K.; Castagna, A.; D’Alessandro, A.; Morandini, F.; Pizzolo, F.; Zorzi, F.; Mulatero, P.; Zolla, L.; Olivieri, O. Urinary Metabolic Signature of Primary Aldosteronism: Gender and Subtype-Specific Alterations. Proteom. Clin. Appl. 2019, 13, e1800049. [Google Scholar] [CrossRef] [PubMed]
- Prockop, D.J.; Sjoerdsma, A. Significance of urinary hydroxyproline in man. J. Clin. Investig. 1961, 40, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Garate-Carrillo, A.; Gonzalez, J.; Ceballos, G.; Ramirez-Sanchez, I.; Villarreal, F. Sex related differences in the pathogenesis of organ fibrosis. Transl. Res. 2020, 222, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Zong, C.; Nie, X.; Zhang, D.; Ji, Q.; Qin, Y.; Wang, L.; Jiang, D.; Gong, C.; Liu, Y.; Zhou, G. Up regulation of glyoxylate reductase/hydroxypyruvate reductase (GRHPR) is associated with intestinal epithelial cells apoptosis in TNBS-induced experimental colitis. Pathol. Res. Pract. 2016, 212, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Dai, Z.; Sun, S.; Ma, X.; Yang, Y.; Tso, P.; Wu, G.; Wu, Z. Hydroxyproline Attenuates Dextran Sulfate Sodium-Induced Colitis in Mice: Involvment of the NF-kappaB Signaling and Oxidative Stress. Mol. Nutr. Food Res. 2018, 62, e1800494. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Hou, Y.; Dai, Z.; Hu, C.A.; Wu, G. Metabolism, Nutrition, and Redox Signaling of Hydroxyproline. Antioxid. Redox Signal 2019, 30, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Milanlouei, S.; Menichetti, G.; Li, Y.; Loscalzo, J.; Willett, W.C.; Barabasi, A.L. A systematic comprehensive longitudinal evaluation of dietary factors associated with acute myocardial infarction and fatal coronary heart disease. Nat. Commun. 2020, 11, 6074. [Google Scholar] [CrossRef] [PubMed]
- Jayasooriya, N.; Baillie, S.; Blackwell, J.; Bottle, A.; Petersen, I.; Creese, H.; Saxena, S.; Pollok, R.C.; POP-IBD Study Group. Systematic review with meta-analysis: Time to diagnosis and the impact of delayed diagnosis on clinical outcomes in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2023, 57, 635–652. [Google Scholar] [CrossRef]
- Torres, J.; Gomes, C.; Jensen, C.B.; Agrawal, M.; Ribeiro-Mourao, F.; Jess, T.; Colombel, J.F.; Allin, K.H.; Burisch, J. Risk Factors for Developing Inflammatory Bowel Disease Within and Across Families with a Family History of IBD. J. Crohns Colitis 2023, 17, 30–36. [Google Scholar] [CrossRef]
Characteristics | IBD | PSC-IBD | PSCw/o | Controls |
---|---|---|---|---|
Number (females/males) | 71 (36/35) | 14 (5/9) | 5 (2/3) | 36 (18/18) |
Age (years) | 42 (19–70) b | 41 (18–63) c d | 57.0 (37.4–63.04) d | 54 (23–78) b c |
BMI (kg/m2) | 24.7 (15.5–44.3) | 24.9 (16.3–41.8) | 19.9 (18.0–21.8) | n.d. |
C-reactive protein (mg/L) | 2.0 (0–144) | 2.4 (0–26) | 0 | n.d. |
Creatinine (mg/dL) | 0.80 (0.51–1.18) | 0.83 (0.60–1.43) | 2.52 (1.09–3.94) | n.d. |
GFR (mL/min) | 100 (67–136) | 100 (56–135) | 42 (12–72) | n.d. |
Fecal calprotectin (µg/g) | 55 (0–3402) | 41 (0–999) | 0 | n.d. |
AST (U/L) | 25 (10–41) a | 27 (17–161) a | 31 (15–70) | n.d. |
ALT (U/L) | 19 (7–62) | 28 (8–205) | 27 (5–61) | n.d. |
Gamma GT (U/L) | 24 (8–71) | 29 (10–458) | 54 (11–234) | n.d. |
AP (U/L) | 63 (38–142) aa e | 107 (35–587) aa | 112 (70–426) e | n.d. |
Bilirubin (mg/dL) | 0.40 (0.15–1.90) aa e | 0.60 (0.30–4.30) aa | 0.80 (0.40–1.50) e | n.d. |
MELD Score | n.d. | 6 (6–12) | 7 (6–20) | n.d. |
Correlation | Creatinine | Glomerular Filtration Rate | C-reactive Protein | Fecal Calprotectin |
---|---|---|---|---|
IBD | r = −0.247 p = 0.051 | r = 0.108 p = 0.399 | r = 0.069 p = 0.595 | r = −0.203 p = 0.095 |
PSC | r = −0.279 p = 0.334 | r = 0.029 p = 0.923 | r = 0.145 p = 0.622 | r = 0.058 p = 0.837 |
PSC-IBD | r = −0.210 p = 0.513 | r = −0.154 p = 0.632 | r = 0.042 p = 0.897 | r = −0.028 p = 0.929 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huss, M.; Elger, T.; Loibl, J.; Kandulski, A.; Binder, B.; Stoeckert, P.; Mester, P.; Müller, M.; Buechler, C.; Tews, H.C. Urinary Hydroxyproline as an Inflammation-Independent Biomarker of Inflammatory Bowel Disease. Gastroenterol. Insights 2024, 15, 486-497. https://doi.org/10.3390/gastroent15020035
Huss M, Elger T, Loibl J, Kandulski A, Binder B, Stoeckert P, Mester P, Müller M, Buechler C, Tews HC. Urinary Hydroxyproline as an Inflammation-Independent Biomarker of Inflammatory Bowel Disease. Gastroenterology Insights. 2024; 15(2):486-497. https://doi.org/10.3390/gastroent15020035
Chicago/Turabian StyleHuss, Muriel, Tanja Elger, Johanna Loibl, Arne Kandulski, Benedicta Binder, Petra Stoeckert, Patricia Mester, Martina Müller, Christa Buechler, and Hauke Christian Tews. 2024. "Urinary Hydroxyproline as an Inflammation-Independent Biomarker of Inflammatory Bowel Disease" Gastroenterology Insights 15, no. 2: 486-497. https://doi.org/10.3390/gastroent15020035
APA StyleHuss, M., Elger, T., Loibl, J., Kandulski, A., Binder, B., Stoeckert, P., Mester, P., Müller, M., Buechler, C., & Tews, H. C. (2024). Urinary Hydroxyproline as an Inflammation-Independent Biomarker of Inflammatory Bowel Disease. Gastroenterology Insights, 15(2), 486-497. https://doi.org/10.3390/gastroent15020035