Oral L-Citrulline Supplementation Improves Fatty Liver and Dyslipidemia in Adolescents with Abdominal Obesity: A Parallel, Double-Blind, Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Ethics Approval
2.3. Sample Size
2.4. Study Design
2.5. Anthropometric and Blood Pressure Measures
2.6. Biochemical Analyses
2.7. Steatosis Screening
2.8. Dietary Assessment
2.9. Physical Activity
2.10. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aguilar, M.J.; Ortegón, A.; Mur, N.; Sánchez, J.C.; García, J.J.; García, I.; Sánchez, A.M. Programas de actividad física para reducir sobrepeso y obesidad en niños y adolescentes; revisión sistemática. (Physical activity programs to reduce overweight and obesity in children and adolescents; systematic review). Nutr. Hosp. 2014, 30, 727–740. [Google Scholar]
- Wabitsch, M.; Laviani, S.; Hebebrand, J.; Mühlig, Y. Obesidad del adolescente y morbilidad asociada. In Trastornos de la Conducta Alimentaria y Obesidad en Niños y Adolescentes, Adolescent Obesity and Associated Morbidity, 1st ed.; Elsevier: Barcelona, Spain, 2020; pp. 47–53. [Google Scholar]
- Nobili, V.; Alisi, A.; Valenti, L.; Miele, L.; Feldstein, A.E.; Alkhouri, N. NAFLD in children: New genes, new diagnostic modalities and new drugs. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, M.; Liu, Z.; Yuan, H.; Wu, X.; Shi, T.; Chen, X.; Zhang, T. Increasing prevalence of NAFLD/NASH among children, adolescents and young adults from 1990 to 2017: A population-based observational study. BMJ Open 2021, 11, e042843. [Google Scholar] [CrossRef] [PubMed]
- López-Velázquez, J.A.; Silva-Vidal, K.V.; Ponciano-Rodríguez, G.; Chávez-Tapia, N.C.; Arrese, M.; Uribe, M.; Méndez-Sánchez, N. The prevalence of nonalcoholic fatty liver disease in the Americas. Ann. Hepatol. 2014, 13, 166–178. [Google Scholar] [CrossRef]
- Eslam, M.; Sanyal, A.J.; George, J.; on behalf of the International Consensus Panel. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 2020, 158, 1999–2014. [Google Scholar] [CrossRef]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wong, V.W.; Dufour, J.F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef]
- Eslam, M.; Ratziu, V.; George, J. Yet more evidence that MAFLD is more than a name change. J. Hepatol. 2021, 74, 977–979. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Alkhouri, N.; Vajro, P.; Baumann, U.; Weiss, R.; Socha, P.; Marcus, C.; Lee, W.S.; Kelly, D.; Porta, G.; et al. Defining paediatric metabolic (dysfunction)-associated fatty liver disease: An international expert consensus statement. Lancet Gastroenterol. Hepatol. 2021, 6, 864–873. [Google Scholar] [CrossRef]
- Castillo-Leon, E.; Cioffi, C.E.; Vos, M.B. Perspectives on youth-onset nonalcoholic fatty liver disease. Endocrinol. Diabetes Metab. 2020, 3, e00184. [Google Scholar] [CrossRef]
- Cholongitas, E.; Pavlopoulou, I.; Papatheodoridi, M.; Markakis, G.E.; Bouras, E.; Haidich, A.B.; Papatheodoridis, G. Epidemiology of nonalcoholic fatty liver disease in Europe: A systematic review and meta-analysis. Ann. Gastroenterol. 2021, 34, 404–414. [Google Scholar]
- Galvan-Martinez, D.H.; Bosquez-Mendoza, V.M.; Ruiz-Noa, Y.; Ibarra-Reynoso, L.D.R.; Barbosa-Sabanero, G.; Lazo-de-la-Vega-Monroy, M.L. Nutritional, pharmacological, and environmental programming of NAFLD in early life. Am. J. Physiol. Gastrointest. Liver Physiol. 2023, 324, 99–114. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, D.S.; An, T.H.; Park, H.J.; Kim, W.K.; Bae, K.H.; Oh, K.J. Metabolic Spectrum of Liver Failure in Type 2 Diabetes and Obesity: From NAFLD to NASH to HCC. Int. J. Mol. Sci. 2021, 22, 4495. [Google Scholar] [CrossRef] [PubMed]
- Mandel, H.; Levy, N.; Izkovitch, S.; Korman, S.H. Elevated plasma citrulline and arginine due to consumption of Citrullus vulgaris (watermelon). J. Inherit. Metab. Dis. 2005, 28, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Mundi, M.S.; Velapati, S.; Patel, J.; Kellogg, T.A.; Abu Dayyeh, B.K.; Hurt, R.T. Evolution of NAFLD and Its Management. Nutr. Clin. Pract. 2020, 35, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Windmueller, H.G.; Spaeth, A.E. Source and fate of circulating citrulline. Am. J. Physiol. 1981, 241, E473–E480. [Google Scholar] [CrossRef]
- Bahri, S.; Zerrouk, N.; Aussel, C.; Moinard, C.; Crenn, P.; Curis, E.; Chaumeil, J.C.; Cynober, L.; Sfar, S. Citrulline: From metabolism to therapeutic use. Nutrition 2013, 29, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Bahadoran, Z.; Mirmiran, P.; Kashfi, K.; Ghasemi, A. Endogenous flux of nitric oxide: Citrulline is preferred to Arginine. Acta Physiol. 2021, 231, e13572. [Google Scholar] [CrossRef]
- Ligthart-Melis, G.C.; van de Poll, M.C.; Boelens, P.G.; Dejong, C.H.; Deutz, N.E.; van Leeuwen, P.A. Glutamine is an important precursor for de novo synthesis of arginine in humans. Am. J. Clin. Nutr. 2018, 87, 1282–1289. [Google Scholar] [CrossRef]
- Jegatheesan, P.; Beutheu, S.; Ventura, G.; Nubret, E.; Sarfati, G.; Bergheim, I.; De Bandt, J.P. Citrulline and Nonessential Amino Acids Prevent Fructose-Induced Nonalcoholic Fatty Liver Disease in Rats. J. Nutr. 2015, 145, 2273–2279. [Google Scholar] [CrossRef]
- Jegatheesan, P.; Beutheu, S.; Freese, K.; Waligora-Dupriet, A.J.; Nubret, E.; Butel, M.J.; Bergheim, I.; De Bandt, J.P. Preventive effects of citrulline on Western diet-induced non-alcoholic fatty liver disease in rats. Br. J. Nutr. 2016, 116, 191–203. [Google Scholar] [CrossRef]
- Jegatheesan, P.; Beutheu, S.; Ventura, G.; Sarfati, G.; Nubret, E.; Kapel, N.; Waligora-Dupriet, A.J.; Bergheim, I.; Cynober, L.; De-Bandt, J.P. Effect of specific amino acids on hepatic lipid metabolism in fructose-induced non-alcoholic fatty liver disease. Clin. Nutr. 2016, 35, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Sellmann, C.; Jin, C.J.; Engstler, A.J.; De Bandt, J.P.; Bergheim, I. Oral citrulline supplementation protects female mice from the development of non-alcoholic fatty liver disease (NAFLD). Eur. J. Nutr. 2017, 56, 2519–2527. [Google Scholar] [CrossRef] [PubMed]
- Ouelaa, W.; Jegatheesan, P.; M’bouyou-Boungou, J.; Vicente, C.; Nakib, S.; Nubret, E.; De Bandt, J.P. Citrulline decreases hepatic endotoxin-induced injury in fructose-induced non-alcoholic liver disease: An ex vivo study in the isolated perfused rat liver. Br. J. Nutr. 2017, 117, 1487–1494. [Google Scholar] [CrossRef] [PubMed]
- Darabi, Z.; Darand, M.; Yari, Z.; Hedayati, M.; Faghihi, A.; Agah, S.; Hekmatdoost, A. Inflammatory markers response to citrulline supplementation in patients with non-alcoholic fatty liver disease: A randomized, double blind, placebo-controlled, clinical trial. BMC Res. Notes 2019, 12, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Chernykh, O.; Figueroa, A. Chronic L-citrulline supplementation improves cardiac sympathovagal balance in obese postmenopausal women: A preliminary report. Auton. Neurosci. 2016, 198, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Flores-Ramírez, A.G.; Tovar-Villegas, V.I.; Maharaj, A.; Garay-Sevilla, M.E.; Figueroa, A. Effects of l-citrulline supplementation and aerobic training on vascular function in individuals with obesity across the lifespan. Nutrients 2021, 13, 2991. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Alvarez-Alvarado, S.; Jaime, S.J.; Kinsey, A.W.; Spicer, M.T.; Madzima, T.A.; Figueroa, A. Combined whole-body vibration training and L-Citrulline supplementation improves pressure wave reflection in obese postmenopausal women. App. Physiol. Nutr. Metab. 2015, 41, 292–297. [Google Scholar] [CrossRef]
- Sanchez-Gonzalez, M.A.; Koutnik, A.P.; Ramirez, K.; Wong, A.; Figueroa, A. The Effects of Short Term L-Citrulline Supplementation on Wave Reflection Responses to Cold Exposure with Concurrent Isometric Exercise. Am. J. Hypertens. 2013, 26, 518–526. [Google Scholar] [CrossRef]
- Figueroa, A.; Alvarez-Alvarado, S.; Jaime, S.J.; Kalfon, R. L-Citrulline supplementation attenuates blood pressure, wave reflection and arterial stiffness responses to metaboreflex and cold stress in overweight men. Br. J. Nutr. 2016, 116, 279–285. [Google Scholar] [CrossRef]
- Figueroa, A.; Alvarez-Alvarado, S.; Ormsbee, M.J.; Madzima, T.A.; Campbell, J.C.; Wong, A. Impact of l-citrulline supplementation and whole-body vibration training on arterial stiffness and leg muscle function in obese postmenopausal women with high blood pressure. Exp. Gerontol. 2015, 63, 35–40. [Google Scholar] [CrossRef]
- Pagès-Puigdemont, N.; Valverde-Merino, M.I. Métodos para medir la adherencia terapéutica. (Methods to measure therapeutic adherence). Ars. Pharm. 2018, 59, 251–258. [Google Scholar] [CrossRef]
- Vargas, M.E.; Souki, A.; Ruiz, G.; Garcia, D.; Mengual, E.; Gonzalez, C.C.; Chavez, M.; Gonzalez, L. Percentiles de circunferencia de cintura en niños y adolescentes del municipio Maracaibo del Estado Zulia, Venezuela. (Waist circumference percentiles in children and adolescents from the Maracaibo municipality of Zulia State, Venezuela). An. Venez. Nutr. 2011, 24, 13–20. [Google Scholar]
- World Health Organization. Report of the Commission on Ending Childhood Obesity: Implementation Plan: Executive Summary; World Health Organization: Geneva, Switzerland, 2017.
- De Jesus, J.M. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents. Pediatrics 2011, 128 (Suppl. 5), 213–256. [Google Scholar]
- Lira, A.R.; Oliveira, F.L.; Escrivão, M.A.; Colugnati, F.A.; Taddei, J.A. Hepatic steatosis in a school population of overweight and obese adolescents. J. Pediatr. 2010, 86, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Csendes, P.; Paolinelli, P.; Busel, D.; Venturelli, V.; Rodriguez, J. Higado graso: Ultrasonido y correlación anatomopatológica. (Fatty liver: Ultrasound and anatomopathological correlation). Rev. Chil. Radiol. 2004, 10, 50–52. [Google Scholar]
- Li, Y.; Xu, S.; Mihaylova, M.M.; Zheng, B.; Hou, X.; Jiang, B.; Park, O.; Luo, Z.; Lefai, E.; Shyy, J.Y.; et al. AMPK Phosphorylates and Inhibits SREBP Activity to Attenuate Hepatic Steatosis and Atherosclerosis in Diet-induced Insulin Resistant Mice. Cell Metab. 2012, 13, 617–638. [Google Scholar] [CrossRef] [PubMed]
- Cordero-Herrera, I.; Kozyra, M.; Zhuge, Z.; McCann Haworth, S.; Moretti, C.; Peleli, M.; Caldeira-Dias, M.; Jahandideh, A.; Huirong, H.; Cruz, J.C.; et al. AMP-activated protein kinase activation and NADPH oxidase inhibition by inorganic nitrate and nitrite prevent liver steatosis. Proc. Natl. Acad. Sci. USA 2019, 116, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Sato, I.; Yamamoto, S.; Kakimoto, M.; Fujii, M.; Honma, K.; Kumazaki, S.; Matsui, M.; Nakayama, H.; Kirihara, S.; Ran, S.; et al. Suppression of nitric oxide synthase aggravates non-alcoholic steatohepatitis and atherosclerosis in SHRSP5/Dmcr rat via acceleration of abnormal lipid metabolism. Pharmacol. Rep. 2022, 74, 669–683. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Yamagishi, Y.; Suguro, S.; Nishihara, M.; Yoshitomi, H.; Hayashi, M.; Gao, M. L-citrulline inhibits body weight gain and hepatic fat accumulation by improving lipid metabolism in a rat nonalcoholic fatty liver disease model. Food Sci. Nutr. 2021, 9, 4893–4904. [Google Scholar] [CrossRef]
- Bagheripour, F.; Jeddi, S.; Kashfi, K.; Ghasemi, A. Metabolic effects of L-citrulline in type 2 diabetes. Act. Physiol. 2023, 237, 13937. [Google Scholar] [CrossRef]
- Joffin, N.; Jaubert, A.M.; Durant, S.; Bastin, J.; De Bandt, J.P.; Cynober, L.; Moinard, C.; Forest, C.; Noirez, P. Citrulline induces fatty acid release selectively in visceral adipose tissue from old rats. Mol. Nutr. Food Res. 2014, 58, 1765–1775. [Google Scholar] [CrossRef] [PubMed]
- Azizi, S.; Mahdavi, R.; Vaghef-Mehrabany, E.; Maleki, V.; Karamzad, N.; Ebrahimi-Mameghani, M. Potential roles of Citrulline and watermelon extract on metabolic and inflammatory variables in diabetes mellitus, current evidence and future directions: A systematic review. Clin. Exp. Pharmacol. Physiol. 2020, 47, 187–198. [Google Scholar] [CrossRef]
- Kudo, M.; Yoshitomi, H.; Momoo, M.; Suguro, S.; Yamagishi, Y.; Gao, M. Evaluation of the Effects and Mechanism of L-Citrulline on Anti-obesity by Appetite Suppression in Obese/Diabetic KK-Ay Mice and High-Fat Diet Fed SD Rats. Biol. Pharm. Bull. 2017, 40, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Xiang, W.; Xie, B.; Yu, L. Molecular mechanisms of fatty liver in obesity. Front. Med. 2015, 9, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Virdis, A.; Masi, S.; Colucci, R.; Chiriacò, M.; Uliana, M.; Puxeddu, I.; Bernardini, N.; Blandizzi, C.; Taddei, S. Microvascular endothelial dysfunction in patients with obesity. Curr. Hypertens. Rep. 2019, 21, 32. [Google Scholar] [CrossRef]
- Ali, A.; Al-Ani, F.; Al-Ani, O. Childhood obesity: Causes, consequences, and prevention. Ceska Slov. Farm. 2023, 72, 21–36. [Google Scholar] [CrossRef]
Citrulline (n = 22) | Placebo (n = 20) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline | Post-Treatment | Baseline | Post-Treatment | |||||||
Mean | SD | Media | SD | p | Mean | SD | Media | SD | p | |
Anthropometry | ||||||||||
Height (m) | 1.64 | 0.09 | 1.64 | 0.09 | 0.99 | 1.69 | 0.20 | 1.69 | 0.11 | 0.99 |
Weight (kg) | 91.5 | 16.8 | 92.8 | 17.5 | 0.02 | 94.2 | 15.0 | 95.7 | 14.9 | 0.17 |
BMI (kg/m2) | 34.1 (27.2, 43.5) | 33.7 (27.6, 46.4) | 0.00 | 33.0 | 3.3 | 33.5 | 2.9 | 0.08 | ||
Waist circumference (cm) | 105.9 | 12.3 | 106.3 | 13 | 0.62 | 104.9 | 9.4 | 104.5 | 10.8 | 0.71 |
BP (mmHg) | ||||||||||
Systolic | 115.9 | 12.2 | 116.7 | 14.2 | 0.44 | 119.3 | 16.5 | 116.1 | 13.6 | 0.10 |
Diastolic | 73.6 (64.6, 96.3) | 74.1 (62.3, 95.3) | 0.15 | 76.5 | 11.4 | 73.0 | 9.9 | 0.02 | ||
Metabolic profile | ||||||||||
Glucose (mg/dL) | 93.8 | 8.5 | 101.5 | 11.9 | 0.00 | 97.1 | 8.9 | 102.9 | 13.3 | 0.08 |
Insulin (μU/mL) | 43.1 | 20.0 | 50.9 | 17.1 | 0.73 | 38.0 | 18.8 | 47.4 | 21.5 | 0.09 |
HOMA-IR | 10.1 | 5.3 | 12.5 | 4.3 | 0.03 | 8.9 | 21.5 | 12.2 | 6.4 | 0.03 |
Urea (mg/dL) | 25.0 (13.0, 58.0) | 22.5 (16.0, 35.0) | 0.16 | 24.7 | 8.3 | 22.6 | 7.8 | 0.36 | ||
BUN (mg/dL) | 11.7 (6.1, 27.1) | 10.5 (7.5, 16.4) | 0.17 | 11.5 | 3.9 | 10.5 | 3.6 | 0.36 | ||
Uric acid (mg/dL) | 5.8 | 1.2 | 6.3 | 1.5 | 0.06 | 6.4 | 1.7 | 6.5 | 1.5 | 0.77 |
Lipid profile | ||||||||||
Total cholesterol (mg/dL) | 165.0 (106.0, 349.0) | 149.5 (111, 237) | 0.001 | 177.3 | 41.4 | 155.1 | 31.4 | 0.03 | ||
HDL-C (mg/dL) | 39.5 (25.0, 65.0) | 33.0 (12.0, 55.0) | 0.011 | 40.2 | 10.8 | 37.2 | 8.6 | 0.04 | ||
LDL-C (mg/dL) | 111.5 (59.0, 254.0) | 84.0 (44.0, 171.0) | 0.002 | 104.5 (57.0, 196.0) | 90.0 (57.0, 196.0) | 0.05 | ||||
VLDL-C (mg/dL) | 26.5 (10.0, 44.0) | 27.0 (13.0, 52.0) | 0.67 | 21.0 (12.0, 64.0) | 24.5 (12.0, 103.0) | 0.90 | ||||
Atherogenic Index | 4.5 (2.8, 11.0) | 4.0 (2.8, 16.5) | 0.28 | 4.5 | 1.1 | 4.3 | 1.3 | 0.43 | ||
Triglyceride, mg/dL | 132.0 (50.0, 222.0) | 135.0 (66.0, 258.0) | 0.62 | 105.5 (60.0, 318.0) | 121.5 (60.0, 516.0) | 0.85 | ||||
Hepatic profile | ||||||||||
Direct bilirubin (mg/dL) | 0.02 (0.01, 0.19) | 0.02 (0.01, 0.30) | 0.21 | 0.03 (0.01, 4.03) | 0.02 (0.01, 0.30) | 0.05 | ||||
AST (U/L) | 23.0 (13.0, 61.0) | 25.5 (16.0, 53.0) | 0.58 | 27.5 (18.0, 68.0) | 27.0 (15.0, 75.0) | 0.22 | ||||
ALT (U/L) | 23.5 (10.0, 78.0) | 25.5 (10.0, 114.0) | 0.06 | 42.5 | 27.2 | 37.8 | 25.6 | 0.11 | ||
Alkaline phosphatase (U/L) | 236.7 | 93.3 | 192.6 | 68.4 | 0.05 | 87.5 | 236.7 | 87.3 | 0.58 | |
L-citrulline (nmol/mL) | 2.0 (0.0, 14.2) | 2.2 (0.0, 23.7) | 0.40 | 2.5 (0.0, 15.2) | 3.2 (0.0, 13.4) | 0.82 | ||||
L-arginine (μg/mL) | 3.3 | 1.7 | 2.8 | 1.5 | 0.10 | 2.7 | 1.7 | 3.0 | 1.7 | 0.37 |
MDA (ng/mL) | 1849 | 239 | 1845 | 278 | 0.92 | 1689 | 278 | 1684 | 251 | 0.89 |
Lifestyle | ||||||||||
Kcal | 2472.7 | 649.8 | 2598.2 | 818.1 | 0.63 | 2482.5 | 905.2 | 2379.1 | 929. | 0.30 |
Protein (g) | 107.3 | 29.6 | 97.8 | 24.8 | 0.22 | 110.9 | 44.6 | 99.9 | 35.8 | 0.17 |
Carbohydrates (g) | 310.0 | 94.1 | 347.0 | 123.4 | 0.24 | 300.2 | 86.0 | 297.5 | 113.3 | 0.05 |
Lipids (g) | 92.7 | 34.7 | 92.7 | 35.4 | 0.88 | 96.4 | 48.4 | 90.7 | 47.6 | 0.09 |
Total fructose (g) | 34.5 (13.1, 90.9) | 28.4 (11.8, 83.5) | 0.08 | 36.2 | 19.8 | 24.8 | 15.7 | 0.04 | ||
Physical activity (METs) | 888.0 (0.0, 10590.0) | 763.5 (0.0, 7542.0) | 0.93 | 371.2 (99.0, 6684.0) | 594.0 (66.0, 3096.0) | 0.64 |
Citrulline | Final Steatosis | |||||||
---|---|---|---|---|---|---|---|---|
n = 22 | Normal | Mild | Moderate | Severe | Total | Chi-Square | p | |
Baseline steatosis | Mild | 8 | 2 | 0 | 0 | 10 | 11.589 | 0.0007 |
Moderate | 1 | 1 | 6 | 0 | 8 | |||
Severe | 0 | 0 | 2 | 2 | 4 | |||
Total | 9 | 3 | 8 | 2 | 22 | |||
Placebo | Final steatosis | |||||||
n = 20 | Normal | Mild | Moderate | Severe | Total | Chi-square | p | |
Baseline steatosis | Mild | 3 | 3 | 0 | 0 | 6 | 1.633 | 0.2013 |
Moderate | 3 | 3 | 6 | 0 | 12 | |||
Severe | 0 | 0 | 1 | 1 | 2 | |||
Total | 6 | 6 | 7 | 1 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tovar-Villegas, V.I.; Kang, Y.; Ibarra-Reynoso, L.d.R.; Olvera-Juárez, M.; Gomez-Ojeda, A.; Bosquez-Mendoza, V.M.; Maldonado-Ríos, M.L.; Garay-Sevilla, M.E.; Figueroa, A. Oral L-Citrulline Supplementation Improves Fatty Liver and Dyslipidemia in Adolescents with Abdominal Obesity: A Parallel, Double-Blind, Randomized Clinical Trial. Gastroenterol. Insights 2024, 15, 354-365. https://doi.org/10.3390/gastroent15020024
Tovar-Villegas VI, Kang Y, Ibarra-Reynoso LdR, Olvera-Juárez M, Gomez-Ojeda A, Bosquez-Mendoza VM, Maldonado-Ríos ML, Garay-Sevilla ME, Figueroa A. Oral L-Citrulline Supplementation Improves Fatty Liver and Dyslipidemia in Adolescents with Abdominal Obesity: A Parallel, Double-Blind, Randomized Clinical Trial. Gastroenterology Insights. 2024; 15(2):354-365. https://doi.org/10.3390/gastroent15020024
Chicago/Turabian StyleTovar-Villegas, Verónica Ivette, Yejin Kang, Lorena del Rocío Ibarra-Reynoso, Montserrat Olvera-Juárez, Armando Gomez-Ojeda, Víctor Manuel Bosquez-Mendoza, Miriam Lizette Maldonado-Ríos, Ma. Eugenia Garay-Sevilla, and Arturo Figueroa. 2024. "Oral L-Citrulline Supplementation Improves Fatty Liver and Dyslipidemia in Adolescents with Abdominal Obesity: A Parallel, Double-Blind, Randomized Clinical Trial" Gastroenterology Insights 15, no. 2: 354-365. https://doi.org/10.3390/gastroent15020024
APA StyleTovar-Villegas, V. I., Kang, Y., Ibarra-Reynoso, L. d. R., Olvera-Juárez, M., Gomez-Ojeda, A., Bosquez-Mendoza, V. M., Maldonado-Ríos, M. L., Garay-Sevilla, M. E., & Figueroa, A. (2024). Oral L-Citrulline Supplementation Improves Fatty Liver and Dyslipidemia in Adolescents with Abdominal Obesity: A Parallel, Double-Blind, Randomized Clinical Trial. Gastroenterology Insights, 15(2), 354-365. https://doi.org/10.3390/gastroent15020024